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Abstract

Background: Liquid chromatography-mass spectrometry (LC-MS) is one of the major techniques for the
quantification of metabolites in complex biological samples. Peak modeling is one of the key components in
LC-MS data pre-processing.

Results: To quantify asymmetric peaks with high noise level, we developed an estimation procedure using the
bi-Gaussian function. In addition, to accurately quantify partially overlapping peaks, we developed a deconvolution
method using the bi-Gaussian mixture model combined with statistical model selection.

Conclusions: Using extensive simulations and real data, we demonstrated the advantage of the bi-Gaussian
mixture model over the Gaussian mixture model and the method of kernel smoothing combined with signal
summation in peak quantification and deconvolution. The method is implemented in the R package apLCMS:
http://www.sph.emory.edu/apLCMS/.

Background
Liquid chromatography-mass spectrometry (LC-MS) is
one of the major techniques in metabolomics [1-4], as
well as a key component in MS-based proteomics [5,6].
The pre-processing of LC-MS data involves a complex
workflow including noise reduction, peak identification
and quantification, retention time correction, peak
alignment and weak signal recovery [7,8]. We have pre-
viously reported the apLCMS package which carries out
the entire workflow with new algorithms specifically
designed for LC-MS data with high mass resolution [9].
High-resolution mass spectrometry, such as Fourier
transform mass spectrometry (FT-MS), allows the
separation of m/z values at or below 10 ppm level [10],
resulting in good separation between metabolites. The
high resolution facilitates the use of empirical peak
shape models to accurately quantify peaks, which is cri-
tical in biomarker studies where the relative quantities
of metabolites are compared across samples.
Currently, LC-MS peaks are quantified either by

summation of ion count, or using symmetric peak

shape models, such as the Gaussian function [7-9].
Both methods have serious drawbacks. The method of
ion count summation results in biased quantification
when the ion trace has missing intensities, which often
occurs in high-resolution LC-FTMS data. The Gaus-
sian peak model can result in bias in peak location
estimation and peak quantification when the peaks are
asymmetric. Hence asymmetric peak models are neces-
sary for the accurate quantification and identification
of metabolites. In addition, some metabolites may
share m/z and partially overlap in retention time,
which necessitates the development of deconvolution
procedures.
A large number of empirical peak shape models have

been developed for asymmetric peaks in chromatogra-
phy, most of which were summarized by Di Marco and
Bombi [11]. For a few of the models, advanced deconvo-
lution procedures are available [12-17]. Examples
include the non-linear deconvolution based on Powell’s
method [18] for the polynomial-modified Gaussian
(PMG) model [16,19], regression-based methods for the
parabolic-Lorentzian modified Gaussian (PLMG) model
[17], and various deconvolution methods for the expo-
nentially modified Gaussian (EMG) model [12,13].
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The estimating procedures for asymmetric peak mod-
els in chromatographic data generally assume low noise
level. In LC-MS data, the noise level is magnitudes
higher, and the intensity observations are obtained at
much fewer time points. Thus a simple, robust model
that can be fitted using a limited number of intensity
observations is necessary. The bi-Gaussian peak model
(Figure 1a) has been described in the context of chro-
matography [11,20]. Empirical and theoretical results
have shown that the bi-Gaussian model is well suited
for asymmetric peaks [20,21]. With four parameters and
a simple functional form that’s amenable to maximum
likelihood estimation, the bi-Gaussian model is suitable
for LC-MS data. A parameter estimation method for the
bi-Gaussian model has been developed in the openMS
environment [22]. The method relies on the observed
maximum intensity for the determination of the peak
summit location, which could lead to inaccurate esti-
mates when the signal-to-noise ratio is low. Currently
no deconvolution method is available for the bi-Gaus-
sian mixture model.
In this paper, we first develop a new algorithm to fit

the bi-Gaussian function to noisy ion traces. Secondly,
we develop a deconvolution procedure for partially
overlapping peaks using the bi-Gaussian mixture
model. Thirdly, the low signal-to-noise ratio causes
uncertainty in the number of components of the mix-
ture model. We address this issue by a procedure
involving statistical model selection. All the algorithms
described here have been implemented to improve the
apLCMS package for high-resolution LC-MS data ana-
lysis [9].

Methods
The bi-Gaussian peak model
The model involves four parameters - the location of
the peak summit a, the standard deviation of the half
Gaussian function to the left of the summit s1, the stan-
dard deviation of the half Gaussian function to the right of
the summit s2, and the scaling factor δ (Figure 1a). The
intensity as a function of retention time is modeled by:

g t
e t

e t

t

t
( ) =

<

≥

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

−
−( )

−
−( )



















2

2

2

1
2

2

2
2

2

2

,

,

 

 

The areas of the two regions to the left/right of the
peak summit are δs1/2 and δs2/2, respectively.

The estimation procedure for a single peak
For the estimation of the parameters from the observed data,
the most important is to find the peak summit a. When the
data is noisy, we cannot rely on the observed high point as
the estimate. Rather, information from the entire ion trace
must be used to estimate the parameter. We define two
quantities as a function of retention time τ. The first one is
the log-ratio of the areas to the left- and right- of τ:
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Figure 1 The characteristics of the bi-Gaussian function. (a) the four parameters that define the bi-Guassian function; (b) The function A(τ)-B
(τ) used in our estimation. Different s1/s2 ratios are plotted.
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The second quantity is the log-ratio of the cube-root
of the non-centered second moments of the left- and
right- truncated portions of the function:
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When τ = a, the quantity A(a) is the log ratio
between the areas of the two half Guassian functions,
which is equal to the log ratio between the two standard
deviations; B(a) is the log ratio between the cubic roots
of the variances of the two Gaussian functions multi-
plied by their scaling factors, which is also equal to the
log ratio between the two standard deviations. Thus τ =
a is a root for A(τ)-B(τ) = 0.
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Simulations using a reasonable range of s1/s2 showed
that A(τ)-B(τ) is a monotone function (Figure 1b), which
indicates the solution is unique.
In LC-MS data, the intensity values {x1,x2, ..., xn} are

collected at discrete time points {t1,t2, ..., tn}, which
means the function g(t) is approximated by a step func-
tion. We first define the step sizes of the function:
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Because the data are generated from discrete time

points, we first find ˆ ˆA B ( ) − ( ) for all the middle

points between adjacent t’s. Then we interpolate
between the largest point below zero and the smallest
point above zero to find ̂ . After finding ̂ , estimating

s1 and/s2 becomes straight-forward:
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To estimate the scaling factor δ, we first find the fitted
values without scaling:
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Then the estimate ̂ is found by a weighted average

of the ratio between the observed intensities and the
fitted values without scaling. Because ion counts are
highly skewed, the calculation is carried out in log scale,
giving higher weights to points closer to the summit of
the curve,
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Fitting the bi-Gaussian mixture model
In LC-MS data from complex samples, e.g. serum or
urine, sometimes peaks sharing m/z value may also
partially overlap in the retention time dimension. Here
we propose an EM-like iterative algorithm to fit
partially overlapping asymmetric peaks. The expecta-
tion-maximization (EM) algorithm finds maximum
likelihood estimates of parameters in the presence of
latent variables. It iterates between finding the expecta-
tion of the log-likelihood with regard to the latent
variables given the current estimate of the parameters,
and finding the parameters that maximize the likeli-
hood [23]. In our application, the parameter estimation
is not obtained using the maximum likelihood proce-
dure, and an extra step of eliminating components that
explain too small a proportion of the data is added to
deal with the noise.
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(1) Fit a kernel smoother to the data {(ti,xi)}. Split
the data points into groups at the valleys of the
smoother. For every group j of the data points, use
the smoother peak as the initial estimate of peak

summit ̂ j , and estimate ˆ , j 1 , ˆ , j 2 , and ̂ j using

the procedure in the previous sub-section. More dis-
cussion about smoother parameter selection is pre-
sented in the next sub-section.
(2) Iterate until convergence:

(2.1) Find the fitted values at every ti for com-
ponent j,
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(2.2) For every component j, find the proportion
of data explained by the component:
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Remove component j if Qj is smaller than a threshold.

(2.3) For every time point, we find the expected
proportion of the observed intensities that belong
to each component j, denoted qij.

q
z

z
i jij

ij

ik

k

= ∀
∑

ˆ

ˆ
, ,

Then for every component j, re-estimate

ˆ , ˆ , ˆ , ˆ
, ,   j j j j1 2{ } from the data {(ti,xiqij)}, using the

procedure described in the previous sub-section.

Choosing the number of components of the mixture by
statistical model selection
In the previous sub-section, the kernel smoother is
employed to obtain an initial estimate of the number of
components and the parameters. When the data is
noisy, changing the window size of the kernel smoother
could result in different numbers of components of the
mixture. To find the best model to explain the data, we
utilize statistical model selection based on the Bayesian
information criterion (BIC) [24]. BIC is one of the most

popular criteria for the selection among a set of para-
metric models with different number of parameters. It
penalizes the number of free parameters. The model
with lower BIC value is preferred.
First, a reasonable range of the window-size parameter

is determined based on biological/chemical considera-
tions about potential peak width. It can be quite lenient
to cover a wide range of potential values. Several win-
dow size values spanning the range are selected. Starting
from each of the window-size value, we compute the
kernel smoother, and run the EM-like algorithm
described in the previous sub-section. The correspond-
ing BIC value is computed by:
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where N is the total number of time points with
observed intensities, and J is the number of bi-Gaussian
components in the model. The model with the lowest
BIC value is selected. In the setting of LC-MS data, this
is a heuristic criterion, because the data we observe are
not random samples, and the Gaussian error assumption
of BIC may not be satisfied. We justify the usage of the
criterion by extensive simulations.

Simulations
To assess the performance of the proposed method,
extensive simulations were conducted. The bi-Gaussian
mixture model with BIC model selection was compared
with two other methods - the Gaussian mixture model
[9] with BIC model selection, and the peak quantifica-
tion based on kernel smoother and signal summation.
The data were generated from a 3-component bi-

Gaussian mixture model, with different levels of peak
asymmetry, noise and peak overlap. Given the parameters
(Additional file 1: Table S1), the data from each compo-
nent are generated from the bi-Gaussian functions:
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After summing the intensities from the components,
multiplicative noise was added to the data. In addition, a
portion of the values were turned into zero to mimic the
behavior of real high-resolution LC-MS data:
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The parameter ξ is the standard deviation of the noise
added at the log-scale. Three levels of ξ were used in
the simulations (0.2, 0.4, 0.6). At the high noise level of
ξ = 0.6, 50% of the intensity values were changed by 1.5
fold or more, and 25% were changed by two fold or
more. The parameter θ controls the percentage of values
turned into zero using random samples from the bino-
mial distribution. Three levels of θ were used (0, 0.25,
0.5). The value of θ directly corresponds to the propor-
tion of intensities turned into zero. In addition, various
levels of peak asymmetry and overlap were considered
(Additional file 1: Table S1). In total 864 parameter
combinations were tested. At each parameter setting,
the simulation was performed 100 times. For detailed
information, please refer to Additional file 1.

Results
Simulation results
First, we compared the rate of successfully selecting the
correct number of components between the bi-Gaussian
mixture model and the Gaussian mixture model
(Figure 2). The method of kernel smoother combined
with signal summation wasn’t compared because no BIC
model selection could be performed using this method,
which is a shortcoming in itself. In summarizing the
results, the level of peak overlap is defined by the ratio r
between the lowest point of the valley between two peaks
and the lower of the peak summits, before noise is intro-
duced. Because two valleys exist between the three simu-
lated peaks, the larger r value is taken for each simulation
setting. For the purpose of plotting, we roughly divide the
amount of overlap into four categories: little overlap (r <
0.2), moderate overlap (0.2 ≤ r < 0.5), strong overlap (0.5
≤ r < 0.75), and severe overlap (r ≥ 0.75). The level of
overlapping is color-coded. The point size corresponds to
the three levels of noise added to the data (ξ = 0.2,0.4,
0.6). The fill of the point represents the proportion of
missing values (0%, 25% and 50%).
When the peaks were symmetric (Figure 2, upper-left

panel), the Gaussian mixture model showed a slight
advantage when the overlapping was strong (red and
magenta points). When the peaks were asymmetric
(Figure 2, upper-right and lower-left panels), the bi-
Gaussian mixture model showed a clear advantage.
When the peak overlapping was not strong (blue and
green points), the success rate of the bi-Gaussian mix-
ture model was mostly higher than 90%, even when the

noise level was high. When there was strong peak over-
lapping and the noise level was high (larger sized red
and magenta points), the rate of successfully selecting
the correct number of components was reduced for
both the bi-Gaussian mixture model and the Gaussian
mixture model.
Secondly, we compared the percentage error in peak

area quantification between the three methods, when all
three methods were able to identify the correct number
of components (not necessarily the best BIC value).
Compared to the Gaussian mixture model, the bi-
Gaussian mixture model yielded much smaller errors
when the peaks were asymmetric (Figure 3, upper-right
and lower-left panels). Compared to the method of
kernel smoother combined with signal summation, the
bi-Gaussian mixture model showed a clear advantage
when some of the intensity values were missing (filled
points) (Figure 4). When the peak overlapping was not
strong (blue and green points), the error of the bi-
Gaussian mixture model was mostly under 15%. Further
comparisons on peak location and peak spread estima-
tion are presented in Additional file 1. The bi-Gaussian
mixture model also clearly out-performed the other two
methods in those aspects (Additional file 1: Fig. S2~S4).

Analysis of high-resolution LC-MS data
We implemented the new algorithms in the apLCMS
package for LC-MS metabolomics data analysis [9].
When analyzing the example dataset at the apLCMS
website, which contains 8 high-resolution LC-MS pro-
files, we observed many examples where the peaks were
clearly asymmetric. We show two examples in Figure 5,
where both peak asymmetry and peak overlapping exist.
In both examples, the inability of the Gaussian curve to
fit asymmetric peaks left residuals to be fitted by the
smaller peaks, which caused the smaller fitted peaks to
deviate from the local peak shape (Figure 5, lower
panels). Clearly the bi-Gaussian mixture model fitted
the data much better (Figure 5, upper panels).
At the global level, in 21.0% of the ion traces, the bi-

Gaussian mixture model and the Gaussian mixture
model selected different number of components. Among
these cases, the bi-Gaussian mixture model fitted the
data with smaller number of components 93.7% of the
time. In addition, it achieved better BIC scores in 66.2%
of the cases. Overall, in 59.4% of all the ion traces, the
bi-Gaussian (mixture) model achieved better BIC values
compared to the Gaussian (mixture) model. Considering
the bi-Gaussian model is penalized more heavily by BIC
with the extra parameter, which puts it in disadvantage
when the peak is close to symmetric, these results indi-
cate that the bi-Gaussian peak model is indeed better
suited for the data.
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Discussions
Compared to the Gaussian peak shape model, which has
been used in some model-based data processing pipe-
lines [8,9], the bi-Gaussian model provides extra flexibil-
ity to fit asymmetric peaks, while suffering little
disadvantage when the true peak shape is symmetric.
Compared to the method of kernel smoother combined

with signal summation, fitting a bi-Gaussian mixture
model disentangles partially overlapping peaks,
and copes with the issue of missing intensities in high-
resolution LC-FTMS data much better. The bi-Gaussian
model is among many asymmetric peak models in chro-
matographic peak modeling. A large number of other
models could potentially be used for the processing of

Figure 2 Comparison of the rate of successfully selecting the correct number of components between the bi-Gaussian mixture model
and the Gaussian mixture model. Each sub-plot corresponds to a different degree of asymmetry, as shown in the titles of the sub-plots (ratios
between the right- and left- standard deviations). Each dot represents a simulated situation. The values were obtained by averaging the results
from 100 simulations. The color represents the level of overlaps between the simulated peaks. The size of the dot represents the amount of
noise added to the data. The fill of the dot represents the percentage of values missing in the ion trace.
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LC-MS data [11]. Advanced deconvolution methods
already exist for a few of the models [12-17,19]. How-
ever, modifications to the existing estimation procedures
may be necessary to suit the characteristics of LC-MS
data, i.e. sparser data points and much higher noise.
In this study, the parameter estimation for a single

peak is done by numerically solving an equation that
involves the zero and second moments of the truncated

distribution functions. An alternative route is to
use the maximum likelihood method. We developed a
likelihood-based algorithm (Additional file 1: Section S4)
and compared its performance with the moment-based
method in simulations. The likelihood-based algorithm
was slower in computation due to its iterative nature,
and it didn’t achieve better estimation accuracy over the
moment-based method. Under the settings of our

Figure 3 Comparison of the accuracy in peak size quantification between the bi-Gaussian mixture model and the Gaussian mixture
model. Each sub-plot corresponds to a different degree of asymmetry, as shown in the titles of the sub-plots (ratios between the right- and
left- standard deviations). Each dot represents a simulated situation. The values were obtained by averaging the results from 100 simulations. The
color represents the level of overlaps between the simulated peaks. The size of the dot represents the amount of noise added to the data. The
fill of the dot represents the percentage of values missing in the ion trace.
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simulations, five window size values were used for the
initiation of the model selection process. With both
methods programmed in R, using a single core of a
2.26 GHz Xeon CPU, the median CPU time for solving
the three-component mixture was 0.15 second for
the moment-based method, and 0.33 second for the
likelihood-based method.

Conclusion
In this manuscript, we presented a method to fit the bi-
Gaussian curve to noisy LC-MS ion traces, as well as an
EM-like algorithm paired with BIC model selection for
the deconvolution of partially overlapping peaks. Cur-
rently, the methods were implemented in the apLCMS
package for the pre-processing of high-resolution

Figure 4 Comparison of the accuracy in peak size quantification between the bi-Gaussian mixture model and the method of kernel
smoother combined with signal summation. Each sub-plot corresponds to a different degree of asymmetry, as shown in the titles of the
sub-plots (ratios between the right- and left- standard deviations). Each dot represents a simulated situation. The values were obtained by
averaging the results from 100 simulations. The color represents the level of overlaps between the simulated peaks. The size of the dot
represents the amount of noise added to the data. The fill of the dot represents the percentage of values missing in the ion trace.
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LC-MS data. The same modeling procedure can be
adapted easily into other pipelines for the quantification
of both metabolites and peptides.

Additional material

Additional file 1: Supporting Material. The file contains details of the
simulation study, additional results of the simulation study, extra figure
illustrating the method workflow, and description of the likelihood-based
estimation procedure of the bi-Gaussian model.
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