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A Potential Role of Vitamin D on Platelet 
Leukocyte Aggregation and Pathological Events in 
Sepsis: An Updated Review
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Abstract: Vitamin D deficiency and sepsis are both significant global health problems. 
Insufficient vitamin D is considered to be a pathogenically relevant factor of sepsis-related 
deaths; however, a causal relationship has not yet been demonstrated. Recently, vitamin 
D has been an exciting field of research owing to the identification of vitamin D receptors on 
many extra skeletal tissues and cells, suggesting an unexpected role on body physiology, 
beyond its effects on bone homeostasis. However, while the role of vitamin D on bone health 
is widely understood and has been successfully translated into clinical applications and 
public health policies, recent evidence supporting its role in other physiological and patho-
logical processes has not been fully established. In sepsis, there is an induction of local 
intracellular vitamin D activity by most immune cells, including lymphocytes, macrophages, 
neutrophils, and dendritic cells, as well as vascular endothelial cells, to ensure efficient 
clearance of infective microorganisms and mediate anti-inflammatory and tolerogenic 
effects. The literature suggests an association between low vitamin D levels and sepsis, but 
clinical trials have yielded contradictory results. A greater understanding of this role may 
improve disease management. This article reviews the available knowledge regarding vita-
min D in immune function, emerging literature regarding the association between its 
deficiency and sepsis, as well as presenting its potential effect on platelet leukocyte aggrega-
tions (PLAs), a significant pathology in sepsis. It also summarizes clinical trials involving 
vitamin D supplementation during critical illness and sepsis and addresses the impact of 
relevant factors of sepsis pathogenesis on the efficacy of vitamin D supplementation, which 
could contribute to the reported inconsistencies. Looking ahead, further studies are required 
to uncover the possible modulatory relationship between vitamin D and sepsis to define 
better cut-offs for its levels, proper timing of its administration, and the optimum dosage for 
best management. 
Keywords: infection, inflammation, cellular interaction, 25(OH)D3 deficiency

Background
Vitamin D (VD), is a steroid hormone and a crucial nutrient that is reported to 
control a wide range of physiological processes.1 Several sources of VD are 
available in the form of D2, known as ergocalciferol, and D3, known as cholecalci-
ferol. VD2 is produced from ergosterol found mainly in fungi and also in some 
plants upon ultraviolet irradiation. Approximately 80% of VD3 is synthesized 
endogenously in the human skin as 7-dehydrocholesterol in response to ultraviolet 

Correspondence: Azzah Alharbi  
Medical Microbiology and Parasitology 
Department, King Abdulaziz University, 
Jeddah, Saudi Arabia  
Email Asalharbi3@kau.edu.sa

Journal of Inflammation Research 2021:14 3651–3664                                                     3651
© 2021 Alharbi. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Inflammation Research                                                         Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 25 May 2021
Accepted: 21 July 2021
Published: 30 July 2021

mailto:Asalharbi3@kau.edu.sa
http://www.dovepress.com/permissions.php
https://www.dovepress.com


ray exposure from sunlight, and about 20% is provided 
through diet.2–4 Inside the body, VD2 and VD3 undergo 
two consecutive steps of hydroxylation in the liver and 
then kidneys to be converted into their active compounds, 
25(OH)D3 calcidiol (a clinical marker of plasmaV 
D level), and 1,25(OH)2D3 calcitriol, respectively.5

In addition to its well-known effects on calcium and 
phosphate metabolism to ensure bone health, VD has an 
emerging immune modulatory effect. VD is involved 
immune system regulation; it regulates the action of 
suppressor T lymphocytes, the synthesis of cytokines, 
and acts by modulating the processes of cellular 
apoptosis.6 In the 19th century, prior to the development 
of effective antibiotics, VD was serendipitously used to 
cure infections, such as tuberculosis, through sunlight 
exposure and administration of cod liver oil, which are 
the main sources of VD.7–11 The Nobel Prize for medi-
cine or physiology in 1903 was awarded to Finsen for 
his contribution in treating lupus vulgaris, a skin disease 
caused by Mycobacterium tuberculosis with ultraviolet 
(UV) light.12–14 Since then, some cross-sectional studies 
have suggested an inverse correlation between lower 
levels of VD and increased infections, such as tubercu-
losis (TB) and upper respiratory tract infections. In 1977, 
it was reported that children with malnutritional rickets 
were more prone to lung infections associated with an 
apparent radiographic pulmonary abnormalities called 
“rachitic lung.”15 However, little attention has been 
paid to these studies owing to the subsequent discovery 
and application of antibiotic therapy for infections.

Over the past three decades, Finsen’s work has 
received renewed attention as a consequence of multiple 
epidemiological studies showing a strong correlation 
between VD deficiency and the incidence of different 
infectious diseases, including pneumonia and sepsis.16–19 

A significantly higher rate of such infections were reported 
during winter when exposure to sunlight, the major source 
of VD, is reduced.20,21 Since then, extensive studies of VD 
and incidence of infection have been published. Most of 
them focused on respiratory tract infections and consis-
tently revealed the link between low VD plasma level (25 
(OH)D3 and the risk of acute respiratory infections.22,23 

These findings were further confirmed by several rando-
mized clinical trials (RCTs) that reported the protective 
effect of VD supplementation in reducing the risk of acute 
respiratory infections by 25% at doses of 400–1000 IU 
per day for 12 months, particularly in those with a baseline 
of <25 nmol/l.24,25

During sepsis, there is growing evidence that VD defi-
ciency is strongly associated with sepsis risk, pathogen-
esis, and outcomes as described later,26–29 but to date, 
these data could not be applied clinically. Several clinical 
trials aimed at analyzing the effects of supplementing VD 
on the outcomes of critical illness including sepsis have 
reported contradictory results as shown in Table 1.

Given the fact that sepsis is the most common cause of 
critical illness,30 all RCTs investigating the effect of VD 
supplementation for critically ill and septic adult patients 
controlled with a placebo were retrieved. The databases of 
Pumped, Scopus, Medline, Embase, Web of Science, and 
Clinical Trials.gov were used to search for the following 
words: RCT, administration, supplementation, vitamin D, 
vitamin D2, vitamin D3, cholecalciferol, ergocalciferol, 
calcitriol, calcidiol, 25-hydroxyvitamin D3, 25(OH)D3, 
1,25-dihydroxyvitamin D3, 1,25(OH)2D3, sepsis, critical 
ill, intensive care unit, septic shock. All critical and septic 
cases with low VD plasma levels (25(OH)D3 ≤50 nmol/l) 
at admission were eligible for inclusion.

In some studies, the administration of VD resulted in 
significant increases in leukocyte mRNA expression of 
cathelicidin (LL-37, antimicrobial peptide)31 and plasma 
cathelicidin, significant reductions in IL-1β and 1L-6 
among septic patients,32 and showed a reduction in 30- 
day ICU readmission in septic cases, a lower hospital 
death rate among critically ill patients with severe VD 
deficiency (25(OH)D3 ≤30 nmol/l),33 a significant 
decrease in the duration of hospital stay,34 a reduction in 
the duration of respiratory support with mechanical venti-
lators and hospitalization, and a reduction in mortality rate 
in the ICU among the critically ill.35 However, other 
studies demonstrated the ineffectiveness of VD supple-
mentation on the mortality rate and duration of hospital 
stay.31,33,36,37

VD deficiency and sepsis are very common,20,26 and 
both conditions frequently coexist clinically. However, 
neither the effects of its deficiency on the pathogenesis 
of the disease and outcomes nor the effects of the disease 
itself on the correct assessment of VD status have yet been 
estimated. Such effects may contribute to the confusion 
about positivity and negativity of VD effects in the 
reported results so far. For the first time, this paper dis-
cusses the role of VD in the pathogenesis of sepsis with 
particular focus on platelet leukocyte aggregations (PLAs) 
and how it may reduce aggregate formation as well as their 
adherence to the endothelium to mitigate sepsis progres-
sion. It also addresses the impact of relevant factors of 
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sepsis pathogenesis on the effectiveness of VD supple-
mentation, which could contribute to clarification of the 
controversy in the reported results.

Association Between Vitamin 
D Deficiency and Sepsis
Sepsis is a life-threatening organ dysfunction caused by 
a dysregulated host response to an infection.38 It is a fast- 
growing international health issue that imposes 
a substantial economic burden. Worldwide, it accounts 
for 48.9 million cases annually, resulting in more than 
11 million deaths.39 In the UK, around 250,000 cases 
and 44,000 deaths of sepsis are reported every year.40,41 

In the United States, 1.7 million cases are diagnosed and 
270,000 of these cases die from sepsis.42 Very little is 
known about the estimates of the incidence and outcome 
of sepsis from developing countries, especially Saudi 
Arabia. However, all the available data confirm that sepsis 
is a serious cause of morbidity and mortality all over the 
world. Approximately two-thirds of septic patients are 
treated in intensive care units (ICU) with an annual esti-
mated cost of £15.6 billion in the UK41 and $24 billion in 
the United States.39 The current management guidelines 
applied for sepsis, including antibiotics and fluid replace-
ment, are crucial and lead to significant improvement in 
clinical outcomes and reduction in mortality.43 However, 
some patients may still die and this maybe owing to the 
difficulty in assigning a patient’s disease course to the 
relative over- or under inflammation that may occur,44 or 
microbial adaptation within the host in the form of acquir-
ing resistance genes to the applied antibiotics (bacterial 
sepsis).45 Development of new adjunctive therapy to 
improve the disease might be helpful in those cases 
when standard care is not sufficient.

Although there is no consensus in the literature about 
25(OH)D plasma concentrations used to define VD defi-
ciency, it is a highly prevalent condition worldwide.46–48 

The minimum agreement to date is that maintaining 
a plasma level of 25(OH)D above 30 nmol/l shields 
against VD deficiency-associated bone disorders; a lower 
25(OH)D level could be used to define VD deficiency and 
should be prevented and treated.46 Based on the 25(OH)D 
cutoff of <30 nmol/l, VD deficiency is very common 
worldwide49 with a reported prevalence of 13% in 
Europe, 5.9% in the United States, 7.4% in Canada, and 
more than 20% in many developing countries.50 The 
reported worldwide prevalence is much higher when VD 

deficiency is defined as <50 nmol/l. It is estimated as 40% 
in Europe, 24% in the United States, 37% in Canada,50 

34–22% in Africa,48 and 60% in Saudi Arabia.51

Low VD plasma levels have been observed in 79% to 
98% of critical care unit patients, involving septic cases.52– 

54 The risk of sepsis and its consequential outcomes such 
as death rate, length of hospital stay, and organ failure are 
positively correlated with VD deficiency.52,55 Trongtrakul 
and Feemuchang found that three-quarters of patients who 
are diagnosed with severe sepsis had a low plasma level of 
VD and a higher death rate, especially in cases where VD 
plasma levels were severely deficient (25(OH)D <30 nmol/ 
l).29 In the developed world, the number of new cases of 
sepsis as well as its related deaths are elevated during 
winter when low plasma levels of VD are detected,17 

albeit that various seasonal factors are also implicated.56 

Thus, restoring the VD to optimal plasma levels could 
have a valuable impact on sepsis development and out-
comes. To date, the suggested recommended plasma con-
centrations of 25(OH)D that are considered sufficient or 
optimal vary in different settings. Concentrations of >50 
nmol/l are sufficient for bone health maintenance, although 
concentrations of 60–75 nmol/l are suggested for optimal 
beneficial effects on bone health. However, several studies 
note that higher levels of above 75 nmol/l are needed for 
optimal function of the immune system.57,58 Thus, it is 
very important to conduct further studies to determine 
optimal plasma levels for VD to exert its extra skeletal 
functions. In the developing world, data regarding the link 
between VD deficiency and sepsis is very limited. 
However, with the high reported prevalence of VD defi-
ciency, increasing hospital admissions of septic patients 
with VD deficiency are to be expected. Future studies to 
estimate the VD levels among patients with sepsis and to 
correlate plasma level with various inflammatory media-
tors and disease outcomes are required.

Vitamin D Mechanisms to Interfere 
with Sepsis Development
In (bacterial) sepsis, damage and stress signals resulting 
from invading microorganisms and associated inflamma-
tory responses stimulate intracellular VD activity locally 
to ensure efficient clearance of the microorganisms and 
mediate anti-inflammatory and tolerogenic effects.59 

Stimulation of the TLR 2/1 pathway by binding to various 
pathogen-associated molecular patterns (PAMPs) results in 
induction of VDR and 1-α-hydroxylase (CYP27B1) genes. 
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Inflammatory mediators such as IFNγ, IL-15, and IL-17A 
contribute to 1-α-hydroxylase (CYP27B1) gene 
activation.60,61 The majority of immune cells, such as 
lymphocytes, macrophages, neutrophils, and dendritic 
cells, as well as vascular endothelial cells have 25- 
hydroxyvitamin D-1α-hydroxylase (1α-OHase), which 
acts locally to convert 25-hydroxy-vitamin D (circulating 
form of VD), to its active compound (1,25(OH)2D).62 

Unlike the conventional renal activation of VD, this con-
version is regulated by 25-hydroxy-vitamin D levels; thus, 
low concentration of 25-hydroxy-vitamin D interferes with 
its extra-skeletal actions.63,64 After activation, VD is trans-
located intracellularly, in association with a protein called 
VD binding protein and attach to its nuclear receptors 
(VDR) forming a complex. Subsequently, this complex 
attaches to the VD response element on DNA to regulate 
target gene transcription.60,65,66

VD receptor is expressed by most immune system 
cells. Thus, signaling through the VD receptor intensifies 
the local innate immune response by augmenting the 
release of antimicrobial peptides (AMPs) such as catheli-
cidin and LL-37, the active form of cathelicidin.67 Such 
AMPs induce a broad spectrum of antimicrobial activity 
mediated by cytokine release, including chemotaxis, pha-
gocytosis, and programmed cell death.68 VD reduces anti-
gen presentation processes by decreasing the expression 
level of major histocompatibility complex (MHC) class II 
and co-stimulatory molecules, CD40, CD80, CD86, on 
antigen presenting cells (APCs) such as dendritic cells 
(DC), resulting in a more tolerogenic, immature state.69 

It also has various effects on the activation status of cells 
mediating adaptive immunity.70–72 VD suppresses 
T lymphocytes (Th1) and their release of IL-2 and inter-
feron gamma (IFNγ).73,74 Furthermore, the intracellular 
downstream signaling initiated by the VD-VDR complex 
in the vascular endothelium reduces cell activity and 
inflammatory response.75 Moreover, VD has an anti- 
inflammatory effect. Four hours pre-incubation of immune 
cells extracted from blood of normal individuals with 100 
nM 1,25(OH)2D3, reduced the production of several pro- 
inflammatory mediators (such as IL-1β, TNF-α, and IFN-γ 
and IL-8), a 53-fold in response to their 24 h-treatment 
with bacterial stimulus [heat-killed pneumococcal serotype 
19F (HK19F)].76 Another study found that activating 
blood immune cells isolated from VD deficient samples 
with TLR stimuli released a wide range of proinflamma-
tory mediators, which were significantly decreased after 
VD treatment.77

VD exerts its anti-inflammatory actions by suppressing 
the gene expression of Toll-like receptor-2 and Toll-like 
receptor-4, reducing p38 and p42/42 phosphorylation and 
its downstream signaling, as well as decreasing the release 
of reactive oxygen species.78 In addition, VD acts as 
a transcription factor to regulate the gene expression of 
several biological processes controlling immune response, 
such as cellular proliferation, differentiation, apoptosis, 
and angiogenesis.79 Furthermore, VD deficiency results 
in disturbance of the gut microbiome,80 which has an 
emerging role in sepsis pathogenesis as it increases the 
susceptibility to sepsis and enhances subsequent multior-
gan failure.81,82 VD and VDR both play a significant role 
in maintaining the normal balance of gut microbiota,83 

which in turn boosts immunity against enteric and sys-
temic pathogens.84 Currently, multiple sepsis interven-
tional approaches aimed at restoration of a balanced gut 
microbiota are under investigation.82 Thus, VD could be 
used as an adjuvant to enhance their therapeutic effects.

Effect of Vitamin D on Platelet 
Leukocyte Aggregation
Platelet leukocyte aggregates are liberally generated dur-
ing sepsis and correlate significantly with diseases 
severity.85 The engagement of white blood cells (WBCs) 
with activated platelets producing cellular aggregates 
(moving freely in blood or attached to endothelial cells) 
contributed substantially to provoking and exacerbating 
organ dysfunction in septic cases.86 Thus, targeting this 
pathology at a specific time point in disease duration may 
limit the severity of sepsis outcomes such as vascular 
occlusion, decreased blood supply, and organ failure. 
PLA formation and their attachment to the endothelial 
lining of the vascular system may be triggered and propa-
gated by a broad spectrum of activated mediators, such as 
adhesion molecules, proinflammatory cytokines, chemo-
kines, complements, and procoagulant factors, as illu-
strated in Figure 1. This leads to sustained endothelial 
dysfunction, increased platelet and leukocyte reactivity, 
and activation of coagulation.87

As VDR is expressed genetically by most of the cells 
implicated in PLA formation, such as lymphocytes, neu-
trophils, macrophages, and vascular endothelial cells,88 

VD may affect the formation of these aggregates. 
Recently, it was shown that healthy individuals with defi-
cient VD have a high level of circulating PLAs and leu-
kocyte endothelial adhesion.89 However, there is no 
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reported clinical data of the effect of VD administration on 
the extent of PLAs. It has also been found that VD reduces 
the expression of adhesion molecules required for platelet 
activation90 and decreases homotypic platelet aggregation 
and platelet–platelet complexes.91 Therefore, it becomes 
crucial to consider the impact of VD and VDR in the 
formation of PLAs.

The first immune defense after infection is initiated by 
recognizing pathogen associated molecular patterns 
(PAMPs) and the released damage associated molecular 
pattern from tissue (DAMPs) by recognition receptors 
(RRs) such as toll-like receptors (TLRs). RRs are 
expressed by leukocytes and to a certain degree by 

endothelial cells and platelets, and result in the stimulation 
of intracellular signaling pathways and release of inflam-
matory cytokines such as IL-1, TNFα, IL-6, IL-8, and IL- 
12.92–94 VD downregulates the gene expression of TLRs, 
thus reducing inflammatory responses.77,95 Moreover, VD 
decreases many proinflammatory mediators such as IL-6, 
IL-8, and TNFα,96 which themselves induce the stimula-
tion of leukocytes, platelets, and endothelial cells and lead 
to the formation of PLAs.

The plasma level of VD is inversely correlated with 
mean platelet volume (MPV), a marker for platelet activ-
ity, noting that platelets with larger size are more 
active.97,98 Activated platelets secrete CD40 ligand 

Figure 1 Vitamin D effects on the cellular interaction of platelets, leukocytes and endothelium. Stimulation of platelets, leukocytes and endothelium by PAMPs, DAMPs and 
the released mediators in response to such stimulation results in the attachment of platelets to leukocytes and generating platelet leukocyte aggregates moving freely in the 
circulatory system or fixed to the stimulated endothelium. Several molecular interactions, which could be interfered by the action of VD, mediate this pathological 
phenomenon including P-Selectin with PSGL-1 and αMβ2 integrin with GPIbα, (TREM-1) with its ligand on neutrophil, platelet JAM-3 with neutrophil αMβ2 integrin, and LFA- 
1 to its legend on platelet. These interactions induce further cell activation resulting in increased surface expression of adhesion receptors, degranulation, release of CD40L, 
Angiopoietin 2 (Ang2), inflammatory mediators, reactive oxygen species, tissue factor expression, microparticles release, thrombus and neutrophil extracellular trap 
formation (NET). Sites of Vitamin D (VD) effects are indicated in green. The figure was created using Biorender.com.
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(CD40-L) into the blood, which interacts with CD40 
receptors present on platelets to enhance its activation,99 

and on leukocytes to augment its activation and generation 
of reactive oxygen species, ROS.100 Furthermore, it may 
bind to CD40 receptors expressed on vascular endothelial 
cells amplifying its activation and its expression of several 
adhesion molecules, such as ICAM and VCAM, on their 
surface and its production of the chemokine CCL2, thus 
mediating leukocyte recruitment.

Recently, it has been found that the administration of 
VD reduces gene expression of the CD40 ligand by blood 
cells,101 and serum levels of ICAM and VCAM that are 
secreted by stimulated endothelium.102 Angiopoietin 2 
(Ang-2) is produced immediately from endothelial 
Weibel–Palade bodies upon their activation. Ang-2 inter-
acts with Tie 2 receptors in a competitive manner to inhibit 
the protective effect of Ang-1,103,104 strengthen the activa-
tion of endothelium, and exaggerate the inflammation.105 

Additionally, it interacts synergistically with other inflam-
matory cytokines to boost their actions; for example, sen-
sitizing the vascular endothelium to stimulation with 
TNFα.106,107 It also induces the direct activation of poly-
morphonuclear cells towards the proinflammatory state.108 

VD administration causes a considerable reduction in the 
serum level of angiopoietin-2.109 The interaction of trig-
gering receptors expressed on myeloid cells (TREM-1) on 
platelets with their ligand on leukocytes is another med-
iator of PLAs. VD has been reported to inhibit the induced 
expression of TREM-1 in vitro.110

Tissue factor is expressed by activated endothelium, 
platelets, leukocytes,111–113 and their released microparti-
cles, bearing procoagulant and proinflammatory proper-
ties, upon activation.114,115 It stimulates the extrinsic 
pathway of coagulation and generates thrombin and fibri-
nogen. These are important for the following reasons: 
Thrombin enhances adhesion molecule expression on the 
surface of the vascular endothelium such as E and 
P selection and production of von Willebrand factor 
(VWF) as well as several soluble secretory products, 
including platelet activating factor, Il-8, and angiopoietin 
2.116–120 Fibrinogen stabilizes platelet leukocyte endothe-
lial cell interaction by binding to Mac-1 on leukocytic 
cells and GPIIb/IIIa (αIIbβ3) on platelets and it also 
binds to CD11b/CD18 on leukocytic cells and intracellular 
adhesion molecule −1 (ICAM-1) on endothelial cells.121

VD downregulates the expression of tissue factor 
in vitro. Treatment of an activated (inflamed) endothelial 
cell line with VD suppresses gene expression for tissue 

factors and adhesion molecules.122 Furthermore, treatment 
with VD in patients with chronic kidney disease who have 
endothelial dysfunction with high serum levels of circulat-
ing microparticles leads to a significant reduction in the 
level of microparticles;123 it has also been found to inhibit 
microparticle release from a human endothelial cell line 
after their exposure to oxidative stress.124 Moreover, sup-
plementing high doses of VD decreases thrombin produc-
tion in severely VD deficient patients.125

Potential Confounders of Vitamin 
D Supplementation in Sepsis
The current in vitro and observational data, discussed in 
this review, argue for the usefulness of VD supplementa-
tion in sepsis. Several RCTs, as summarized in Table 1, 
have been conducted to evaluate the effect of VD supple-
mentation on the clinical outcome of critical illnesses 
including sepsis, but their results are contradictory, and 
the correlation has not been confirmed in all studies.

The results obtained to date warrant further in-depth 
studies to determine the underlying mechanisms or factors 
that interfere with yielding the expected protective influ-
ences of VD on the progression and outcomes from sepsis. 
Herein, this part of the review addresses several factors 
which may confound the effectiveness of VD 
supplementation.

First, variability in the applied intervention methods 
regarding the dose, form, route, and duration of VD sup-
plementation as well as heterogeneity of the population 
and sample size seen across the published RCTs could 
largely contribute to the reported mixed results. Second, 
there is a lack of clarity and consistency regarding defini-
tions of VD deficiency and sufficiency in the literature, 
which produce a significant variation in the criteria of VD 
deficiency among RCTs.50,126,127 Thus, non-VD deficient 
cases could be involved in RCTs and have influenced the 
reported results.

Third, there is an inadequacy of prospective studies to 
determine the optimal VD dose for extra skeletal tissue 
functions.128 Moreover, the exact plasma concentration of 
VD to replace an insufficiency is controversial in patients 
with sepsis and its measurement must be interpreted cau-
tiously. VD is physiologically distributed as free (0.3%), 
or bound to either VD binding protein (DBP; 85%) or 
albumin (15%). Both DBP level and polymorphic variants 
affect the bioavailability of VD (free and bound to albu-
min) and this could affect the response to supplementation. 
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In some patients, DBP is low due to protein catabolism129 

or leakage to the extracellular matrix owing to increased 
vascular permeability.130 In the laboratory, VD sufficiency 
is commonly determined by measuring the plasma level of 
total vitamin 25(OH)D.131 Thus, the bioavailability of free 
VD (active form) is increased and it can diffuse into most 
body cells.132,133 Additionally, the higher rate of poly-
morphism in the gene encoding VDBP (GC gene) results 
in DBP isoforms with different binding affinities to 
VD,134,135 which affect the bioavailability of VD. 
Additional VD supplementation therefore requires atten-
tion because it may lead to higher risk of hypercalcemia.63 

Approximately 1% of mild hypercalcemia not requiring 
clinical intervention was reported among septic patients 
following VD administration.54 At the molecular level, 
any increase in extracellular (serum) calcium ions affects 
the inflammatory response. Extracellular Ca2+ act as 
a danger signal (DAMPs), and amplify inflammation.136 

Moreover, septic patients may be classified as VD defi-
cient based on their plasma level of total vitamin 25(OH) 
D, even if the bioactive free form of VD is within normal 
values.130 Consequently, supplementation of VD may not 
produce the expected positive effects.

VD levels are important in the maintenance of circu-
lating immunoglobulins and complement. A large study 
has documented, for low levels of VD, a positive asso-
ciation with IgG2 and C4 and a negative association for 
IgA (complement binding), IgG1, and C3.137 These 
changes are of particular relevance in cases of systemic 
inflammatory reactions, which draw initially on intact 
mucosal barriers and a humoral component of the 
immune response. Depletion of complement components 
following overactivation and deposition in tissue (con-
sumption in the blood phase) may be a determinant of 
overall outcome.138,139 Sepsis associated multiple-organ 
dysfunction, in which complement activation products 
and complement dysregulation have an undisputed 
pathogenic role, may well be influenced by specifically 
targeting pathways or components thereof. However, the 
timing of such an intervention for it to be effective and 
efficient may be difficult to judge.140 Septic patients 
suffer initially from an uncontrolled excessive inflamma-
tory response followed by immune suppression.141 

Therefore, proper timing of VD supplementation could 
significantly influence its supplementation outcomes. 
Modes of action may include pleiotropic effects on 
lipid metabolism, which are altered in the context of 
sepsis.142 VD deficiency is correlated with high levels 

of cholesterol, triglycerides, and low-density lipoproteins 
(LDL).143 VD supplementation leads to a reduction in 
lipid parameters, total cholesterol, very-low-density lipo-
proteins (VLDL), LDL, and triglycerides,144 which could 
be falsely interpreted as sepsis, because low lipid profiles 
are positively associated with poor sepsis outcome.145,146 

Thus, it appears that timing and dose of VD supplemen-
tation in sepsis influence its effectiveness and this could 
be a contributing factor to the controversy in the reported 
results of interventional studies. Detailed understanding 
of the molecular basis of VD metabolism and the reg-
ulation of its bioavailability during the course of sepsis 
is required to determine its effectiveness.

Conclusion
VD deficiency is prevalent in cases with sepsis;26 thus, its 
deficiency may affect disease pathogenesis and aggravate 
the condition. VD has immunomodulatory effects. 
Restoration of VD plasma levels may limit disease pro-
gression through decreasing the abundance of DAMPs and 
PAMPs, inflammatory mediators, extent of PLAs forma-
tion and their adhesion to endothelia, and balancing the gut 
microbiota to fight systemic and enteric pathogens. 
However, data available from the literature regarding the 
influence of VD supplementation are conflicting in 
patients with sepsis and disagree with current evidence 
from in vitro and observational studies. Several factors 
may underestimate the expected positive effects. Further 
studies are warranted to elucidate the molecular interac-
tions of VD with different players involved in the patho-
genesis of sepsis (immune homeostasis). Thus, proper 
timing of VD supplementation, dose, form, and its suffi-
cient plasma levels to be effective, as well as identifying 
patients who may benefit the most from supplementation 
with VD, need to be accurately determined in future clin-
ical trials. Targeting the population with severe VD defi-
ciency below 30 nmol/l is highly suggested for future 
trials.
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