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ABSTRACT: A new aluminosilicate zeolite, denoted EMM-28, has
been successfully synthesized on a large scale using 1,1-(3,3-(1,3-
phenylene)bis(propane-3,1-diyl))bis(1-methylpyrrolidinium) hydrox-
ide as an organic structure directing agent (OSDA), which was scaled
up to an ∼20 g scale with a yield of 77%. It crystallizes as thin plates
(40−100 nm in thickness), and the corresponding powder X-ray
diffraction (PXRD) pattern shows significant peak broadening which
makes it insufficient for structure determination. Continuous rotation
electron diffraction (cRED) data collected from 13 crystals were
successfully used to solve and refine the structure of EMM-28. This
illustrates that cRED data are capable of performing structure
determination despite limited PXRD data quality. EMM-28 has a
unique framework structure containing supercavities, >21 Å in size,
connected by one-dimensional 10-ring channels. High-resolution transmission electron microscopy (HRTEM) confirmed the
structure model. The structure of EMM-28 is related to several known zeolite structures with large cavities.

■ INTRODUCTION
Zeolites are microporous crystalline materials with pores of
molecular dimensions, which have found wide applications in
catalysis, gas separation, and ion-exchange.1 The unique
properties of these materials, e.g., shape selectivity and sorption
capacity, are to a large extent determined by their structures.
Zeolites have a large structural diversity, with pores denoted
either by cavities with windows or channels that extend in
one-, two-, or three dimensions. In order to understand the
properties, predict possible applications, and design new
synthesis routes for zeolites, it is of great importance to
know their structures.

Three-dimensional electron diffraction (3D ED) has gained
increasing attention in recent years for structure determination
from submicrometer sized crystals. The recent developments
of 3D ED techniques have been shown to be very powerful;
almost complete 3D electron diffraction data can be obtained
from an arbitrarily oriented crystal within a matter of minutes
or less.2−6 A rapidly growing number of zeolite structures have
been solved using the techniques,7−11 and the refinements
have been shown to provide accurately refined structures.12,13

Many zeolites contain large cavities that are connected by
smaller windows. These large internal cavities may act as
chambers for bulky reaction intermediates. One example is
faujasite with its large supercavities connected by 12-ring
windows. Zeolite Y with the framework topology of faujasite

(three letter code FAU) has been widely used as a catalyst for
fluid catalytic cracking. Zeolites with the MWW topology
contain large cavities interconnected by 10-ring windows.14

Other examples of zeolite structures containing cage structures
are MCM-6815 (MSE), EU-116 (EUO), SSZ-5217 (SFE), and
ZEO-1.18

In order to explore zeolites with cavity-type structures, a
family of diquaternary ammonium molecules was investigated
as organic structure directing agents (OSDAs). Using the meta
isomer, a novel crystalline aluminosilicate zeolite was
discovered, denoted EMM-28. EMM-28 crystallizes as thin
nanoplates of 40−100 nm in thickness. The powder X-ray
diffraction (PXRD) pattern of EMM-28 was characteristic, but
the peaks were not as sharp as one would expect from a highly
crystalline material, potentially due to disorder or internal
strain in the crystals. The lack of sharp reflections in the PXRD
pattern prevented a successful structure determination from
the PXRD data. In this study, we show that 3D electron
diffraction methods can be used to successfully determine the
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structure of this novel zeolite material even though the material
possesses a less than ideal PXRD pattern. The structure of
EMM-28 shows an interesting pore structure with extra-large
cavities accessible via 10-ring windows.

■ RESULTS AND DISCUSSION
In the current study, we examined the structure directing
effects of the meta analogue of an organic structure directing
agent (OSDA) molecule that possess N-methylpyrrolidinium
end groups connected to a phenyl core by a chain of 3
methylene groups. Using the 1,1-(3,3-(1,3-phenylene)bis-
(propane-3,1-diyl))bis(1-methylpyrrolidinium) hydroxide
(see Figure 1A) as the OSDA, the new phase EMM-28 was

successfully synthesized under conditions of high Si/Al ratios
(>100).19 The representative large scale syntheses are reported
in Table S1, where 72.7 g of colloidal silica (30 wt % silica)
resulted in 16.9 g of calcined EMM-28, a yield of 77% based on
silica. EMM-28 is obtained as thin plate-like crystals of 40−100
nm thickness by hydrothermal synthesis at 160 °C (Figure
1B). The total BET surface area and micropore volume of the
EMM-28 product are 506 m2/g and 0.176 cm3/g, respectively.
The uptakes of n-hexane (0.089 g/cm3) and 2,3-dimethylbu-
tane (0.077 g/cm3) are both very fast, while that for 2,2-
dimethylbutane (0.044 g/cm3) is slow (see isotherm in Figure
S1). This adsorption behavior is indicative of a zeolite with
medium pores. The magnitude of the capacity indicates either
that the zeolite is multidimensional or that it is a one-
dimensional pore zeolite with large side pockets−like the
EUO-type zeolites (ZSM-50 or EU-1).

Solid state 29Si NMR of EMM-28 was performed on samples
after different stages of treatment. As expected for an all-silica
material prepared from a hydroxide medium, the spectrum of
as-made EMM-28 shows broad peaks containing both Q3 and
Q4 species. The Q3 peaks are reduced after calcination, but
the spectrum remains broad. After steaming the sample to 700
and 900 °C, there is a sharpening of the peaks as the remaining
internal silanols anneal, and the environment of the individual
T sites becomes more homogeneous. Deconvolution of the
spectrum indicates that there are at least 10 symmetry-
independent T sites in the structure (Figure 2).

The PXRD pattern shows significant peak broadening,
which might be due to disorder or the very thin plate-like
morphology of the crystals (Figures 1B, 1A and Figure S2).
The peak broadening in combination with the large unit cell
parameters of the material (14−42 Å) gives rise to significant
peak overlap, which hampers an accurate intensity integration,
see Figure S3 for a comparison between the experimental

PXRD pattern of EMM-28 and simulated pattern from the
final structure. Accurately measured intensities are essential in
order to use the PXRD pattern for ab initio structure
determination. Hence, we were directed toward other methods
to determine the structure. Similarities in the PXRD pattern of
EMM-28 with that of EUO were observed (Figure S4). The
PXRD pattern of EMM-28 could be indexed with a unit cell
where the a and b parameters are similar to those of EUO but
the c parameter is approximately doubled. This suggests that
the structural model for EMM-28 may be derived from the
layers present in the EUO structure.

In order to solve the structure of EMM-28, continuous
rotation electron diffraction (cRED) data were collected from
a calcined sample (Figure S5, Table S2). The crystal tilting
range was 52.4°, and the data acquisition time was only 1 min.
The cRED data could be indexed using a face-centered unit
cell, with the lattice parameters a = 14.11 Å, b = 22.59 Å, c =
41.72 Å, α = 89.07°, β = 89.99°, and γ = 88.85°, indicating that
the crystal might be orthorhombic. From the reconstructed 3D
reciprocal lattice, the following reflection conditions were
deduced: hkl: h + k = 2n, h + l = 2n, k + l = 2n; 0kl: k,l = 2n;
h0l: h, l = 2n; hk0: h,k = 2n. These are consistent with space
groups F222 (No. 22), Fmm2 (No. 42), and Fmmm (No. 69).
Considering most of the zeolite frameworks in the IZA
database20 are centrosymmetric, space group Fmmm was
chosen for structure determination. Intensities of reflections
were extracted using the software XDS21 (Table S2). Although
the data resolution was relatively low (1.3 Å) and data
completeness was low (47.8%), the framework structure could
be solved in a straightforward manner using the program
Focus22,23 (Table S2). All 10 T atoms (T = Si, Al) were found,
and O atoms were added in the expected positions between
the T atoms. The low resolution and low completeness of the
cRED data however hampered a successful structure refine-
ment at this point.

In order to achieve higher quality data sets suitable for
structure refinement and evaluate the occurrences of the
streaks observed in the cRED data,10 we collected more cRED
data on 13 different crystals using the software Instamatic
which allows crystal tracking during data collection so that a
larger rotation range can be achieved.24 The crystal tilting
ranges were between 64.56° and 126.4°, and the data

Figure 1. (A) 1,1-(3,3-(1,3-Phenylene)bis(propane-3,1-diyl))bis(1-
methylpyrrolidinium) cation was used as the organic structure
directing agent (OSDA) in the synthesis of EMM-28. (B) SEM
micrograph of the EMM-28 crystal with a thickness of about 40−100
nm.

Figure 2. 29Si MAS NMR spectra of EMM-28. As-made material is
shown in green as well as after different stages of treatment: calcined
(orange), steamed at 700 °C (blue), and further steamed at 900 °C
(dark blue). The sample survived the steaming at 900 °C
(superimposed spectra at top). Deconvolution of the data from the
700 °C steamed sample shows at least ten unique T-sites (right).
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acquisition time for each crystal was 2.3−4.6 min. All the data
sets could be indexed with the same face-centered
orthorhombic unit cell as above, and some diffusely scattered
streaks could be observed along the b*-direction, see Figure
3B−D. The intensities were extracted in space group Fmmm
using XDS. A summary of data collection and data reduction
statistics of all 13 data sets is given in Table S3. The structure
of EMM-28 was solved with all of the following programs:
SHELXT,25 SIR2014,26 and Focus.22,23 The framework
structure determined was identical to the one found initially
using Focus.

In order to obtain the best possible combination of data sets,
an automated script was created to evaluate the impact of
merging all possible combinations of cRED data sets for the
final structure refinement. All possibilities were evaluated in an
automated procedure. The best result was found to be a
sequence of three data sets (3, 9, and 13: see Table S3 and
Table 1) that were merged and scaled using the program
XSCALE to obtain a higher completeness.27 The merged data
set was used for structure refinement using SHELXL (Table
1).28,29 Similarity restraints were applied to all T−O bonds and
O−O distances (and correspondingly the O−T−O angles) to
keep the geometry reasonable. They were refined to 1.594(17)
Å for the T−O bond distance and 109.5(1.7)° for the O−T−
O angle (Table 2) using the lattice parameters determined
from PXRD data (a = 13.946(3) Å, b = 22.580(5) Å, c =
40.402(8) Å). One of the oxygen atoms is positioned in a
special position at an inversion center, which results in a T−
O−T angle of 180°. In the absence of such restraints, the O−
T−O angles would refine to values that were too low. All T
and O atoms were refined anisotropically. Rigid-bond
restraints were introduced to all framework atoms to keep
the anisotropic displacement parameters (ADPs) reasonable
(Figure 4C). In a recent publication, it has been shown that
physically meaningful anisotropic ADPs that indicate the
quality of the data can be obtained from cRED data.10 In the
final stage of the refinement, an extinction coefficient (EXTI)

was introduced. This reduced the R1 value. The refinement
converged with an R1 value of 16.74% (Table 1).

The framework structure of EMM-28 can be described as a
set of interconnected non and cas units connected with a
double layer constituted by chains of TO4 tetrahedra running
along the a-axis (Figure 4A). It contains a one-dimensional
straight 10-ring channel system along the a-axis. In addition,
the structure contains supercavities ([44512620102]) with two

Figure 3. (A) Experimental PXRD data of calcined EMM-28. (B−D) Two-dimensional slices cut from the reconstructed three-dimensional lattice
showing the (B) 0kl, (C) h0l, and (D) hk0 planes. Diffuse scattering is observed, shown as streaks along the b*-axis in (D).

Table 1. Crystallographic Details for the Refinement of
EMM-28 Using the Merged Data Set

merged data set

chemical formula (refined) Si224O448

space group Fmmm (69)
a (Å) 13.946(3)
b (Å) 22.580(5)
c (Å) 40.402(8)
volume (Å3) 12723(5)
resolution (Å) 1.03
total no. reflections 13664
no. unique reflections (all) 1697
no. unique reflections (Fo > 4σ(Fo) 1055
Rint 0.2275
data redundancy 8.05
completeness (%) 100
parameters 218
no. of restraints 340
R1 for all reflections 0.1945
R1 for Fo > 4σ(Fo) 0.1674
GOOF 1.233

Table 2. Framework Bond Angles and Distances of the
Refined EMM-28 Model Using cRED Data

nominal value min max average

T−O (Å) 1.61 1.565 1.636 1.594 (17)
O−T−O (deg) 109.5 105.1 112.1 109.5 (1.5)
T−O−T (deg) 145.0 140.9 180.0 157(12)
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side pockets which are connected to the 10-ring channels. The
10-ring channels have an effective size of 4.87 × 5.74 Å
(assuming an oxygen van der Waals radius of 1.35 Å) (Figure
S6).

The framework structure of EMM-28 is closely related to
both EU-130 (EUO) as well as NU-8731 (NES). The structure
of EMM-28 is built from the same layer as in the EUO
framework. By translating every second layer in the ab-plane of
the EUO framework by 1/2a, the structure of EMM-28 is
formed. This operation introduces a doubling of the unit cell
along the c-axis. The relationship between EUO, NES, and
NON zeolites has previously been described beautifully by
Zanardi et al.32 All the above-mentioned materials contain
internal cavities in their structures, as depicted in Figure 5. The
dimensions of these cavities are closely related. The super-
cavity of EMM-28 is accessible via 10-ring channels running
along [100], with free dimensions of 4.87 × 5.74 Å. The
supercavity has two side pockets (each with a width of 9.35 Å),
which are located on each side of the 10-ring channel and are

connected by the channel. A similar situation has been found
in other zeolites such as the structurally related NU-87 (NES)
with double cavities defined by 10-ring channels (4.98 × 6.49
Å) and its length of 19.58 Å and MCM-2214 (MWW) with an
inner supercavity of 8.44 Å in diameter and a length of 18.98 Å.
The supercavity in SSZ-45 (EEI) is also similar to that of
EMM-28, with two similar side pockets connected by a smaller
channel (8-ring, 4.50 × 3.05 Å). Unlike the above examples,
EU-1 (EUO) has only one side pocket connected to a 10-ring
channel (4.84 × 6.12 Å), which results in a supercavity with a
shorter length (13.67 Å) compared to that in EMM-28. It
should be mentioned that these different zeolite structures
were synthesized by using different OSDAs, which may play
important structure directing roles in the formation of different
cavities, see Table S4.

High-resolution transmission electron microscopy
(HRTEM) was performed to reveal more details about the
pore structure in EMM-28 crystals. In order to observe the 10-
ring channels which are parallel to the thin crystal plates (along
the a-axis), ultramicrotomy was applied to prepare cross
sections of the plate-like crystals. A through-focus series of
HRTEM images with a defocus step of 53.3 Å were acquired to
minimize the focusing and acquisition time. The structure
projection image (Figure 6) was reconstructed using the
program QFocus.33 The 10-ring channels along the a-axis are
clearly observed in the image. The b-axis is perpendicular to
the plate-like crystals and the 10-ring channels.

■ CONCLUSIONS
A new aluminosilicate zeolite EMM-28 has been successfully
synthesized at a large scale using 1,1-(3,3-(1,3-phenylene)bis-
(propane-3,1-diyl))bis(1-methylpyrrolidinium) hydroxide as
the organic structure directing agent (OSDA). The structure
was determined ab initio based on continuous rotation electron
diffraction data. Despite the low quality of the PXRD pattern,
the quality of the continuous rotation electron diffraction data
is high enough to solve and refine the structure, which resulted
in a chemically reasonable bond geometry and atomic
displacement parameters. Local information was studied from

Figure 4. (A) EMM-28 with its building units highlighted: non (red)
and cas (yellow) and a double layer constituted by chains of TO4
tetrahedra running along the a-axis (green). (B) A supercavity
[44512620102] with two side pockets connected to a 10-ring channel.
(C) A fragment of the refined structure of EMM-28 viewed along the
a-axis showing anisotropic atomic displacement parameters for T-
atoms (T = Si/Al) and O-atoms.

Figure 5. Supercavity connected by one 10-ring channel in (A) EMM-28, (B) EU-1, and (D) MCM-22, two 10-ring channels in (E) NU-87, and 8-
ring channels in (C) SSZ-45. All van der Waals oxygen atom diameters of 2.7 Å have been subtracted.
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reconstructed structure projection images based on through-
focus series of HRTEM images. These further confirmed the
refined structural model. This structure determination of
EMM-28 shows the feasibility of 3D ED as a tool to study
materials with PXRD patterns with significant peak overlap,
which extends beyond zeolites into MOFs as well as other
inorganic materials. EMM-28 has a novel zeolite framework
with a one-dimensional 10-ring channel system with
mesoporous cavities directed by the OSDA. The structure of
EMM-28 is related to several known zeolite structures with
large cavities and has one of the largest supercavities observed
so far in zeolites.

■ EXPERIMENTAL SECTION
Synthesis. Hydrothermal syntheses were performed at 160 °C for

28 days in sealed Parr reactors with volumes of 23 and 60 mL and in a
300 mL overhead stirred autoclave. 1,1-(3,3-(1,3-Phenylene)bis-
(propane-3,1-diyl))bis(1-methylpyrrolidinium) hydroxide was used
as the organic structure directing agent (OSDA). The representative
large scale syntheses are reported in Table S1. The OSDA produces
EMM-28 when the synthesis is performed with a high Si/Al ratio
(>100).

29Si Solid State NMR. Solid state 29Si NMR spectra of EMM-28
were recorded on a Varian InfinityPlus 500 spectrometer. It shows the
content of Si species of different coordinations. As expected for the
spectrum of an all-silica material prepared from a hydroxide medium,
the as-made spectrum contains a large fraction of Q3 species. After
calcination, there is a reduction in the density of Q3 sites, but the
spectrum remains broad. After steaming the sample to 700 and 900
°C, there is a sharpening of the peaks, as the remaining internal
silanols anneal and the environment of the individual T sites becomes
more homogeneous, see Figure 2 for the 29Si NMR spectrum of
EMM-28 after different treatments.
Calcination. The as-made EMM-28 was heated inside a muffle

furnace from ambient temperature to ca. 400 °C at a heating rate of
ca. 4 °C/min under a nitrogen atmosphere, then heated to ca. 600 °C
at ca. 4 °C/min in air, and maintained at ca. 600 °C in air for about 2
h. The calcined product was then measured with nitrogen
physisorption, and the data were analyzed by the t-plot method,
according to the method of Lippens et al.34

Adsorption. A sample of calcined EMM-28 was tested for
nitrogen sorption. The material was thermally treated at about 500 °C
for a time sufficient to substantially dehydrate the materials and/or to
remove any adsorbed species prior to doing the sorption test.
X-ray Powder Diffraction. The X-ray powder diffraction data

reported herein were collected on a PANalytical X-Pert Pro diffraction
system, equipped with an XCelerator detector, using copper Kα1
radiation and a fixed 0.25 degrees divergence slit. The diffraction data
were recorded by step-scanning at 0.017 degrees of two-theta and a
counting time of about 2 s for each step.

Continuous Rotation Electron Diffraction (cRED). A small
amount of EMM-28 was crushed in the mortar and then dispersed in
ethanol in an ultrasonic bath for 1−2 min. A droplet of the suspension
was transferred onto a carbon-coated copper grid.

The data set of EMM-28 used for the initial structure solution was
collected by using continuous Rotation Electron Diffraction
(cRED)8,35−37 on a JEOL JEM2100 transmission electron microscope
(TEM) at room temperature and 200 kV. A single-tilt tomography
sample holder was used for the data collection, which can tilt from
−70° to +70°. Electron diffraction frames were recorded on a Timepix
camera in selected area electron diffraction (SAED) mode with the
spot size 3 and the camera length of 50 cm. The cRED data sets used
for the structure refinement were collected using Instamatic,10,24

which simplifies the data collection procedure by including semi-
automated crystal tracking and results in more reliable, complete, and
reproducible data collections.

Data reduction for all crystals was performed using the XDS
software.21

Through-Focus Series of Images. A sample for HRTEM
imaging was prepared by ultramicrotomy. This is advantageous since
it is desired to study the cross section of the plate-like crystals. The
through-focus series of HRTEM images with a defocus step of 53.3 Å
were acquired on a JEOL JEM2100F TEM at 200 kV. The structure
projection images were reconstructed by program QFocus33 using a
contrast transfer function compensation algorithm.
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