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Abstract

Balancing selection occurs when multiple alleles are maintained in a population, which can result in their preservation
over long evolutionary time periods. A characteristic signature of this long-term balancing selection is an excess number
of intermediate frequency polymorphisms near the balanced variant. However, the expected distribution of allele fre-
quencies at these loci has not been extensively detailed, and therefore existing summary statistic methods do not
explicitly take it into account. Using simulations, we show that new mutations which arise in close proximity to a site
targeted by balancing selection accumulate at frequencies nearly identical to that of the balanced allele. In order to scan
the genome for balancing selection, we propose a new summary statistic, b, which detects these clusters of alleles at
similar frequencies. Simulation studies show that compared with existing summary statistics, our measure has improved
power to detect balancing selection, and is reasonably powered in non-equilibrium demographic models and under a
range of recombination and mutation rates. We compute b on 1000 Genomes Project data to identify loci potentially
subjected to long-term balancing selection in humans. We report two balanced haplotypes—localized to the genes WFS1
and CADM2—that are strongly linked to association signals for complex traits. Our approach is computationally efficient
and applicable to species that lack appropriate outgroup sequences, allowing for well-powered analysis of selection in the
wide variety of species for which population data are rapidly being generated.
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Introduction
The availability of high-quality, population-level genomic data
from a wide variety of species has spurred recent efforts to
detect genomic regions subjected to natural selection (Singh
et al. 2012; Vitti et al. 2013; Xu et al. 2015). One type of pressure,
balancing selection, occurs when more than one allele is main-
tained at a locus. This selection can arise from overdominance
(in which the fitness of heterozygotes at a locus is higher than
either type of homozygote) or from frequency, temporally, or
spatially dependent selection (Charlesworth 2006). A classic
case of overdominance occurs at the hemoglobin-b locus in
populations locatedin malaria-endemicregions.Homozygotes
for one allele have sickle-cell anemia, and homozygotes for the
other allele have an increased risk of malaria. In contrast, het-
erozygotes are protected from malaria, and at most have a mild
case of sickle-cell anemia (Aidoo et al. 2002; Luzzatto 2012).

The discovery of novel targets of balancing selection could
help us better understand the role this selection has played in
evolution, uncover traits that have been preserved for long
evolutionary time periods, and aid in interpreting regions
previously associated with phenotypes of interest. In addition,

theory predicts that signatures of long-term balancing selec-
tion will be confined to regions of at most a few kilobases in
human (Gao et al. 2015). This feature of balancing selections’
targets leads to fewer possible causal variants than other types
of selection, potentially aiding in understanding the underly-
ing biology and associated mechanism.

Patterns of genetic variation around a locus targeted by
balancing selection are distorted relative to a neutral locus.
Because both alleles at a balanced locus are maintained in the
population, the time to the most recent common ancestor
(TMRCA) will be substantially increased if selection is main-
tained long enough (Charlesworth 2006). This elevates the
levels of polymorphism around the balanced locus and leads
to a corresponding reduction in substitutions (i.e., fixed differ-
ences relative to an outgroup species) (Charlesworth 2006).

This deviation in the site frequency spectrum has been
harnessed to identify signals of balancing selection in popu-
lation data, genome-wide. These methods include Tajima’s D
(Tajima 1989), which detects an excess number of interme-
diate frequency alleles. Another commonly used method, the
HKA test (Hudson et al. 1987), uses the signal of high diversity
and/or a deficit of substitutions. Although these methods are
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easily implemented and widely applicable, their power under
certain demographic scenarios or equilibrium frequencies is
modest (DeGiorgio et al. 2014).

If the selection began prior to the divergence of two spe-
cies, then both species can share the balanced haplotype or
variant (Charlesworth 2006). These shared variants are un-
likely to occur under neutrality (Gao et al. 2015). Several re-
cent studies have utilized primate outgroups to identify these
trans-species polymorphisms (Andrés et al. 2009; Leffler et al.
2013; Teixeira et al. 2015). While specific, this approach fails to
identify selection if the balanced variant was lost in at least
one of the species under consideration.

More powerful methods to detect balancing selection
have been developed, though challenges have limited their
broader application. DeGiorgio et al. (2014) proposed two
model-based summaries, T1 and T2, which generate a com-
posite likelihood of a site being under balancing selection.
However, the most powerful measure (T2) requires the exis-
tence of a closely related outgroup sequence and knowledge
of the underlying demographic history from which an exten-
sive grid of simulations must first be generated. New advances
in estimating population-scale coalescent trees have also
been harnessed to detect regions of the genome showing
an unusually old TMRCA, but genome-wide application
may be computationally prohibitive (Rasmussen et al. 2014).

Despite these methodological advances, the exact frequen-
cies of the excess intermediate frequency alleles seen under
balancing selection have not been precisely quantified. The key
insight motivating our work was the observation that the
frequencies of these excess variants closely match the balanced
allele’s frequency. We confirm this signature using simulations.

Motivated by this observation, and inspired by the struc-
ture of summary-spectrum based statistics (Tajima 1989; Fay
and Wu 2000), we developed a new summary statistic that
detects these clusters of variants at highly correlated allele
frequencies. This statistic is computationally efficient and
does not require knowledge of the ancestral state or an out-
group sequence. Using simulations, we show that our ap-
proach has equivalent or higher power to identify balancing
selection than similar approaches, and retains power over a
range of population genetic models and assumptions (i.e.,
demography, mutation, or recombination).

We report a genome-wide scan applying our statistic to
humans using 1000 Genomes Project data (The 1000
Genomes Consortium 2015), focusing on regions of high se-
quence quality. We highlight signals of balancing selection at
two loci (WFS1 and CAMD2) with functional evidence sup-
porting these as the target genes, as well as signals at several
previously known loci.

New Approaches

Allelic Class Build-up
We begin with an idealized model generating the expected
distribution of allele frequencies around a balanced variant.
Consider a new neutral mutation that arises within an out-
crossing, diploid population. In a genomic region not
experiencing selection, this mutation is expected to

eventually either drift out of the population, or become fixed
(i.e., become a substitution). However, if the locus is under
balancing selection, then the allele’s frequency can reach no
higher than the frequency of the balanced allele it arose in
linkage with, assuming no recombination (fig. 1). This is be-
cause the frequency is constrained by selection. Without a
recombination event and given enough time, variants that
are fixed within these allelic classes (defined by the selected
variant) accumulate (Hey 1991; Hudson 1991; Charlesworth
2006). We used Wright–Fisher forward simulations to model
neutral variants in a region closely linked to a variant under
balancing selection (see Materials and Methods). Within a
region not expected to have experienced recombination since
the start of the selection, we observed an excess number of
variants with frequencies identical to that of the balanced
variant, as predicted by this model (fig. 2A).

Eventually, recombination decouples variants from the
balanced allele, which allows them to drift to loss or fixation
within the population. However, even after recombination,
the frequency of the variants previously fixed in their allelic
class will remain close to that of their previous class until
enough time has passed for genetic drift to significantly
change their frequencies (Hey 1991; Hudson 1991;
Charlesworth 2006). In our simulations of balancing selec-
tion, a window expected to have experienced recombina-
tion since the onset of selection still has an excess number of
variants at similar frequencies to the balanced variant.
However, there is a diminished excess at identical frequen-
cies relative to the more narrow window, demonstrating the
effects of recombination (fig. 2B).

A Measure for Allele Frequency Correlation
To capture this signature, we derive a measurement of fre-
quency similarity between a core variant and a second variant
of interest. Let n be the number of chromosomes sampled, f0
be frequency of the core SNP, fi be the frequency of the
second SNP, i, and p be a scaling constant (see
Supplementary Material online). Finally, g(f) returns the
folded allele frequency and m is the maximum possible folded
allele frequency difference between the core SNP and SNP i,
We then measure the similarity in frequency, di, by:

gð fÞ ¼ minðf ; n� fÞ (1)

m ¼ max
�

gðf0Þ;
n

2
� gðf0Þ

�
(2)

di ¼
m� jgðf0Þ � gðfiÞj

m

� �p

(3)

Thus, gðf0Þ � gðfiÞ is the folded frequency difference be-
tween the core SNP and the SNP under consideration. We
then subtract this value from m, the maximum folded fre-
quency difference possible with the core SNP, and then divide
by m. This gives the fraction of the maximum folded frequency
difference of the SNP under consideration compared with the
core SNP. We then raise it to the power p so that we can weight
variants in a nonlinear fashion with respect to this fraction.
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Therefore, di can range from 0 if a SNP has the maximum fre-
quency difference with the core SNP, to 1 if SNP i is at the same
frequency as the core SNP. We give guidance on the choice of p
in the Supplementary Material online. However, the power ofb
is fairly insensitive to its value (supplementary fig. S12,
Supplementary Material online). We use the folded site fre-
quency spectrum in calculating di, as the frequency difference
betweenthecorevariantandthesecondvariantis independent
ofwhetherthederivedorancestralalleleofthenearbyallele is in
linkage with the derived or ancestral core allele.

In a region under long-term balancing selection, the aver-
age di between a core SNP and the surrounding variants is
expected to be elevated. However, di alone is not optimally
powered to detect balancing selection, as its value will be
sensitive to changes in the mutation rate in the surrounding
region, and it does not take into account the probability of
observing each allele frequency under neutrality.

Capturing Allelic Class Build-up
We propose a statistic, b, that uses our measure of allele
frequency correlation, di, combined with a measure of the
overall mutation rate, to detect balancing selection. Our ap-
proach is inspired by previous summary statistics based on
the site frequency spectrum (Tajima 1989; Fay and Wu 2000).
These methods compute the difference between two estima-
tors of h, the population mutation rate parameter, one of
which is more sensitive to characteristics of the site frequency
spectrum distorted in the presence of natural selection. We
propose to calculate b at each SNP in a region of interest to

identify loci in which there is an excess of variants near the
core SNP’s allele frequency, as evidence of balancing selection.

It has been previously shown that the mutation rate in a
region can be estimated as: ĥi ¼ Si � i, where Si is the total
number of derived variants found i times in the window from
a sample of n chromosomes in the population (Fu 1995). An
estimator of h can then be obtained by taking a weighted
average of hi. In our method, we weight by the similarity in
allele frequency to the core SNP, as measured by di. If there is
an excess of variants at frequencies close to the core SNP allele
frequency, then our new estimator, hb, will be elevated. We
propose:

b ¼ ĥb � ĥw (4)

ĥb ¼

Pn�1

i¼1

idiSi

Pn�1

i¼1

di

(5)

ĥw ¼

Pn�1

i¼1

Si

Pn�1

i¼1

1
i

(6)

hw is simply Watterson’s estimator (Watterson 1975). b is,
in effect, a weighted average of SNP counts based on their
frequency similarity to the core SNP. We exclude the core site
from our estimation of hw and hb.

New Balanced 
SNP Arises

Balanced SNP Reaches
Equilibrium Frequency

Fixation of Variation 
within Allelic Class 

After 
Recombination 

FIG. 1. Model of allelic class build-up. (1) A new SNP (red star) arises in the population and is subject to balancing selection. (2) It sweeps up to its
equilibrium frequency. (3) New SNPs enter the population linked to one of the two balanced alleles and some drift up in frequency. However,
unlike in the neutral case, their maximum frequency is that of the balanced allele they are linked to, so variants build-up at this frequency (e.g., blue
diamond or brown circle). (4) Recombination decouples SNPs (e.g., purple pentagon) from the balanced site, allowing them to experience further
genetic drift.

A B

FIG. 2. Simulations demonstrating build-up of alleles at frequencies similar to balanced alleles as compared with selectively neutral counterparts.
The blue bars indicate the fraction of SNPs in simulation replicates at specific frequency differences away from a balanced core site. In contrast, the
orange bars represent simulation replicates that lack a balanced variant. Instead, the core site is chosen to be a neutral variant within frequency 10%
of the equilibrium frequency of variants introduced in the balanced simulations. (A) Folded frequency differences between the core SNP and each
other SNP in a 400-bp window surrounding the core site. Recombination is not expected to have occurred in this region since the start of selection
(Gao et al. 2015). (B) Frequency differences in 2,000-bp windows, where recombination is expected to have occurred since the start of selection.
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To better understand the properties of b, we used simula-
tions to examine its distribution with and without a balanced
SNP (supplementary fig. S2, Supplementary Material online).
As expected, under long-term balancing selection b tends to
be greater than 0, and under neutrality it tends to be close to 0.

We note that the mean value of b in our neutral simu-
lations generally increases slightly with higher equilibrium fre-
quencies. This behavior is expected because higher frequency
alleles will tend to have a longer TMRCA and therefore higher
diversity. The exception to this trend is neutral SNPs of fre-
quency 0.5, which we posit is due to the fact that this allele
frequency requires the most time for mutations to drift up to
the equilibrium frequency needed to fix in their allelic class.

In this version of b, knowledge of the ancestral state for
each variant is required. To address this possible shortcoming,
we developed a version of the statistic based on a folded site
frequency spectrum. This formulation is available in the
Supplementary Material online.

Although our statistic can be calculated on any window size,
previous work has suggested that the effects of balancing selec-
tion localize to a narrow region surrounding the balanced site
(Gao et al. 2015). Ultimately, the optimal window size depends
on the recombination rate, as it breaks up allelic classes. In the
Supplementary Material online, we present some mathemati-
cal formulations to suggest reasonable window sizes.

Results

Power Analysis
We used forward simulations (Haller and Messer 2017) to
calculate the power of our approach to detect balancing se-
lection relative to other commonly utilized statistics. Initially,
we simulated a single, overdominant mutation for each sim-
ulation replicate in an equilibrium demographic model, varied
over a range of balancing selection equilibrium frequencies
and onset times (see Materials and Methods). We also sim-
ulated genomic regions in which all variants were selectively
neutral. We then computed the power of b, Tajima’s D, HKA,
and T1 to distinguish between simulation replicates with a
balanced variant (i.e., our balanced simulations) or those with
only neutral mutations (i.e., our neutral simulations). As a
reference, we also measured the likelihood-based statistic, T2.

b, Tajima’s D and HKA use a sliding window approach, in
units of base pairs, when scanning the genome, whereas T1
and T2 use the number of informative sites (polymorphisms
plus substitutions). In order to make a fair comparison be-
tween these methods, we first determined the most powerful
window size for each method using simulations (supplemen-
tary fig. S5, Supplementary Material online). For the summary
statistics, a 1-kb window size did well across a range of selec-
tion timings and equilibrium frequencies. This 1-kb region
matches the approximate size of the ancestral region, in
which there have been no expected recombination events
between allelic classes (see Supplementary Material online).

For T1 and T2, a number of informative sites of�20, or 10
on either side of the core site, achieved maximum power in
simulations (supplementary fig. S6, Supplementary Material
online). Furthermore, this roughly matches the expected

number of informative sites in a 1-kb region under selection
(see Supplementary Material online). Therefore, a window of
20 total informative sites is roughly equal to the expected
ancestral region size, which is roughly equal to the window at
which all these methods achieve optimal power. For this
reason, we used a 1-kb window or 20 informative sites, as
applicable, when calculating each statistic.

Compared with other summaries, b had the greatest per-
formance across most parameter combinations (fig. 3 and
supplementary figs. S4–S17, Supplementary Material online).
As expected, b performs slightly worse than T2 under many
conditions. However, unlike T2, our method does not require
an outgroup sequence, or grids of simulations which are com-
putationally expensive.

We next investigated the power of b under more complex
demographic scenarios (see Materials and Methods) compat-
ible with recent human history (DeGiorgio et al. 2014). We
found that b performs well under bottleneck and expansion
models. Under an expansion scenario, the performance of all
methods decreased (supplementary fig. S7, Supplementary
Material online), consistent with results from previous studies
(DeGiorgio et al. 2014), possibly due to the larger population
size increasing the expected time until an allele can fix in its
allelic class. The effect of a population bottleneck on power
was less drastic and led to a slight increase in power to detect
more recent selection (supplementary fig. S8, Supplementary
Material online).

Population substructure can confound scans for selection
(Schierup et al. 2000; Ingvarsson 2004). To investigate the
power of our method in these scenarios, we simulated two
models of population substructure. First, we considered a
model of two completely subdivided populations. We pooled
together 50 individuals from each subpopulation with which
to perform the statistical calculations. In this case, the power
of all methods to detect balancing selection at equilibrium
frequency 0.5 decreased considerably (supplementary fig. S9,
Supplementary Material online). This matches expectation, as
this situation is expected to drastically increase the number of
variants at frequency 0.5.

Next, we considered a two-pulse model of ancient admix-
ture. We selected this model because of its approximation of
Neanderthal admixture into human (Vernot and Akey 2015),
which may be thought to confound scans for selection in
humans. Power with Neanderthal admixture stayed roughly
the same as without (supplementary fig. S10, Supplementary
Material online). This is as expected, as most haplotypes in-
troduced through admixture are expected to be at very low
frequency.

We next examined the power for all methods under mod-
els of variable mutation rates, recombination rates, and sam-
ple sizes. As expected, the power of all methods was positively
correlated with mutation rate (supplementary figs. S13 and
S15, Supplementary Material online), and negatively corre-
lated with recombination rate (supplementary figs. S14 and
S16, Supplementary Material online). A higher mutation rate
provides more variants that can accumulate within an allelic
class, whereas a lower recombination rate allows for longer
haplotypes upon which mutations can accumulate.
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b has reasonable power down to very small sample sizes,
achieving near maximum power with as few as 20 sampled
chromosomes (supplementary figs. S19 and S20,
Supplementary Material online). In practice, the sample size
used to calculate the frequency of each variant may differ
between variants. We tested the power of b when the sample
size of each variant is downsampled from the original size of
100 by a random amount from 0 to 25 individuals. We found
that this decreases power very slightly, and that lower values
of p perform better in this scenario (supplementary fig. S11,
Supplementary Material online).

Finally, power remained high under frequency-dependent
selection (supplementary fig. S18, Supplementary Material
online), and when a lower selection coefficient was simulated
(supplementary fig. S17, Supplementary Material online). This
matches expectation, as frequency-dependent selection is
expected to maintain haplotypes in the population for long
time periods, causing allelic class build-up. A lower selective
coefficient would be expected to lower the probability of
maintenance of the balanced allele in the population, but
conditioned on this maintenance, should not affect power,
as we observed.

Simulations show that the power of the folded version of
b is similar to the unfolded version at intermediate allele
frequencies, but has reduced power at very high frequencies
(supplementary fig. S4, Supplementary Material online).
However, even at these frequencies, it still outperforms
Tajima’s D, the only other statistic of those tested which
does not require knowledge of the ancestral state or an
outgroup.

Genome-Wide Scan in Human Populations
We applied the unfolded version of b to population data
obtained by the 1000 Genomes Project (Phase 3) to detect
signatures of balancing selection (The 1000 Genomes
Consortium 2015). We calculated the value of b in 1-kb
windows around each SNP in all 26 populations, separately.

We focused on regions that passed sequencing accessibility
and repeat filters (see Materials and Methods).

In addition, we filtered out variants which did not have a
folded frequency of at least 15% in a minimum of one pop-
ulation. The purpose of the frequency filter is to prevent false
positives: we were unable to simulate balancing selection with
a folded equilibrium frequency of <15%, due to the high
frequency of one allele drifting out of the population.
Although this phenomenon has not been described for pop-
ulation sizes near that of humans to our knowledge, it has
been detailed for lower effective population sizes (Ewens and
Thomson 1970). Therefore, it seems unlikely that a balanced
variant with a folded equilibrium frequency<15% could suc-
cessfully be maintained in a population.

We defined extreme b scores as those in the top 1% in the
population under consideration (see Materials and Methods).
We analyzed the autosomes and X-chromosome separately.
Because our method is substantially better powered to detect
older selection, we focus on signals of selection that predate
the split of modern populations. For this reason, we further
filtered for loci that were top-scoring in at least half of the
populations tested (see Materials and Methods). We focus on
results of our unfolded b scan, however, we also scanned
using the folded b statistic to test for robustness of our top
scoring sites.

We identified 8,702 autosomal, and 317 X-chromosomal,
top-scoring variants that were shared among at least half
(� 13) of the 1000 Genomes populations (see
Supplementary Material online). Together, these variants
comprise 2,453 distinct autosomal and 86 X-chromosomal
loci, and these signatures overlapped 692 autosomal and 29
X-chromosomal genes.

Characterization of Identified Signals
Trans-species haplotypes are defined as two or more variants
are found in tight linkage and are shared between humans
and a primate outgroup (in our case, chimpanzee). These

FIG. 3. Power of methods to detect ancient balancing selection. Power was calculated based on simulation replicates containing only neutral
variants (True Negatives) or containing a balanced variant that was introduced (True Positives). Columns correspond to simulations of balanced
alleles at equilibrium frequencies 0.25, 0.50, and 0.75. Rows correspond to older and more recent selection, beginning 250,000 and 100,000
generations prior to sampling, respectively.

Siewert and Voight . doi:10.1093/molbev/msx209 MBE

3000

Deleted Text: w
Deleted Text: &thinsp;
Deleted Text: less than 
Deleted Text: less than 


haplotypes are highly unlikely to occur by chance, unlike
trans-species SNPs, which are expected to be observed in
the genome due to recurrent mutations (Gao et al. 2015).
These haplotypes present a signature of balancing selection
independent from the signature captured by b. If b captures
true signatures of balancing selection, one would expect an
enrichment of high b values at trans-species haplotypes. We
found that b was indeed predictive of trans-species haplotype
status from Leffler et al. (2013), even after including adjust-
ments for the distance to the nearest gene (P < 2� 10�16,
see Materials and Methods).

Our scan identified several loci that have been previously
implicated as putative targets of balancing selection (see
Supplementary Material online). Several major signals oc-
curred on chromosome 6 near the HLA, a region long pre-
sumed to be subjected to balancing selection (Hedrick 1998;
Hughes and Nei 1988). In particular, we found a strong signal
in the HLA at a locus influencing response to Hepatitis B
infection, rs3077 (Thursz et al. 1997; DeGiorgio et al. 2014;
Jiang et al. 2015). Several additional top sites in our scan
matched those from DeGiorgio et al. (2014). These include
sites that tag phenotypic associations (Welter et al. 2014),
such as MYRIP, involved with sleep-related phenotypes
(Gottlieb et al. 2007), and BICC1, associated with corneal
astigmatism (Lopes et al. 2013). We focus on two of our
top-scoring regions, located in the CADM2 and WFS1 genes.
In addition to passing the 1000 Genomes strict filter and the
RepeatMasker test, these haplotypes also passed Hardy–
Weinberg filtering (see Materials and Methods).

A Signature of Selection at the CADM2 Locus
One of our top-scoring regions fell within an intron of the cell
adhesion molecule 2 gene, CADM2. This locus contains a
haplotype with b scores falling in the top 0.25 percentile in
17 of the 1000 Genomes populations, and scoring in the top
0.75 percentile across all 26 populations (fig. 4). This site was
also a top scoring SNP in the CEU population based on the T2
statistic (DeGiorgio et al. 2014). In our scan using the folded b
statistic, this haplotype contained top-scoring variants in 20
populations, indicating the result was not due to ancestral
allele miscalling. In the remaining six populations, the haplo-
type was at folded frequency 0.15 or lower, where the folded
version of b has significantly reduced power.

To elucidate the potential mechanisms contributing to the
signal in this region, we overlapped multiple genomic data
sets to identify potential functional variants that were tightly
linked with our haplotype signature. First, one variant that
perfectly tags (EUR r2 ¼ 1:0) our signature, rs17518584, has
been genome-wide significantly associated with cognitive
functions, including information processing speed (Davies
et al. 2015; Ibrahim-Verbaas et al. 2016). Second, multiple
variants in this region colocalized (EUR r2 between 0.9 and
1 with rs17518584) with eQTLs of CADM2 in numerous tis-
sues (Lung, Adipose, Skeletal Muscle, Heart-Left Ventricle),
though notably not in brain (The GTEx Consortium 2015).
That said, several SNPs with regulatory potential
(RegulomeDB scores of 3a or higher) are also strongly tagged
by our high-scoring haplotype (EUR r2 between 0.9 and 1.0

with rs17518584), which include regions of open chromatin in
Cerebellum and other cell types (Boyle et al. 2012). Several
SNPs on this haplotype, particularly rs1449378 and rs1449379,
fall in enhancers in several brain tissues, including the hippo-
campus (Boyle et al. 2012; Ernst and Kellis 2012). Taken col-
lectively, these data suggest that our haplotype tags a region
of regulatory potential that may influence the expression of
CADM2, and potentially implicates cognitive or neuronal
phenotypes in the selective pressure at this site.

A Signature of Balancing Selection near the Diabetes
Associated Locus, WFS1
We identified a novel region of interest within the intron of
WFS1, a transmembrane glycoprotein localized primarily to
the endoplasmic reticulum (ER). WFS1 functions in protein
assembly (Takei et al. 2006) and is an important regulator of
the unfolded protein and ER Stress Response pathways
(Fonseca et al. 2005). A haplotype in this region (�3.5 kb)
contains�26 variants, 3 of which are in high-quality windows
and are high-scoring b in all populations (fig. 5). The haplo-
type was also in the top 1 percentile in our folded b scan in 21
populations. In the remaining five populations, this haplotype
was at frequency 0.82 or higher, where the folded version of b
has significantly lower power than the unfolded version.

Our identified high-scoring haplotype tags several func-
tional and phenotypic variant associations. First, one variant
that perfectly tags our signature (EUR r2 ¼ 1:0), rs4458523,
has been previously associated with type 2 diabetes (Voight
et al. 2010; Mahajan et al. 2014). Second, multiple variants in
this region are associated with expression-level changes of
WFS1 in numerous tissues (The GTEx Consortium 2015);
these variants are strongly tagged by our high-scoring haplo-
type (EUR r2 between 0.85 and 0.9 with rs4458523). Finally,
several SNPs with regulatory potential (RegulomeDB scores of
2 b or higher) are also strongly tagged by our high-scoring
haplotype (EUR r2 between 0.9 and 1.0 with rs4458523).
Taken collectively, these data suggest that our haplotype
tags a region of strong regulatory potential that is likely to
influence the expression of WFS1.

Discussion
Informed by previous theory on allelic-class build-up (Hey
1991; Hudson 1991; Charlesworth 2006), we developed a
novel summary statistic to detect the signature of balancing
selection, and measured efficacy and robustness of our ap-
proach using simulations. Although our method does not
require knowledge of ancestral states for each variant from
outgroup sequences, this information can improve power at
extreme equilibrium frequencies.

Although our method outperforms existing summary sta-
tistic methods, it is not as powerful as the computationally
intensive approach of T2, which uses simulations to calculate
likelihoods of observed data (DeGiorgio et al. 2014). To im-
prove power, we considered utilizing information on rates of
substitutions, but this did not substantially improve discrim-
inatory power (see supplementary methods, Supplementary
Material online). Alternative possibilities could include the
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following: 1) consideration of the region past the ancestral
region surrounding the balanced variant, or 2) deviations in
the frequency spectrum beyond just nearly identical frequen-
cies to the balanced SNP. As expected from theory, we also
note that models of population structure can also produce
our haplotype signature, emphasizing the requirement to
perform scans on individual populations.

Balancing selection can cause a similar signature in self-
fertilizing species, though we focused on out-crossed species
in this report. Previous work has shown that given the same
selection coefficient, the signature of balancing selection can
be wider in self-fertilizing species due to a lower effective
recombination rate (Nordborg et al. 1996). However, lower
recombination rate also means that background selection
leaves a wider footprint on the genome in these species,

which can reduce levels of polymorphism (Agrawal and
Hartfield 2016). Furthermore, a decrease in the frequency of
heterozygotes, owing to selfing, can reduce or eliminate the
effects of heterozygote advantage. Instead, modes of balanc-
ing selection like frequency, temporally or spatially dependent
selection may be more significant.

We have also assumed a single causal variant throughout.
However, there may be more than one variant at a locus
experiencing balancing selection. This situation is thought
to occur throughout the HLA region (Hedrick 1998).
Assuming the maintenance of multiple variants, this scenario
would also increase the regional TMRCA, leading to allele
class build-up, spanning perhaps a larger window than our
single-variant models (Lenz et al. 2016). The dynamics of this
type of situations could be the focus of future work.

rs17518584   T      C
rs1449379     C      T
YRI Freq     .12    .88
CEU Freq    .62    .38
CHB Freq    .91    .09
PJL Freq      .50    .50

H
ap

 2

H
ap

 1

FIG. 4. Signal of balancing selection at CADM2. The signal of selection is located in an intron of CADM2. Top: rs17518584 is the lead GWAS SNP for
several cognitive traits and is marked by the brown vertical dashed line. The purple dashed line marks two regulatory variants found on the
balanced haplotype. b scores were calculated using a rolling average with windows of size 5 kb, including only SNPs at the same frequency as the
core SNP in the average. In addition, we show the allele frequencies of the GWAS and a top-scoring b SNP in each representative population.
Bottom: Approximate haplotype spans for each population.
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rs4458523      G     T
rs13108780    G     A
YRI Freq      .29   .71
CEU Freq     .65   .35
CDX Freq    .17   .83
PJL Freq      .30   .70

FIG. 5. Signal of balancing selection at the WFS1 gene. Top: rs4458523 is the lead GWAS SNP for diabetes, and is marked by the brown vertical
dashed line. The purple dashed line marks five regulatory variants found on the balanced haplotype. In addition, we show the allele frequencies of
the GWAS and a top-scoring b SNP in each representative population. Bottom: Approximate haplotype spans for each population.
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Although it is impossible to know the true selective pres-
sure underlying our highlighted loci, our results suggest that
balancing selection could contribute to the genetic architec-
ture of complex traits in human populations. At the CADM2
locus, functional genomics data suggests that our haplotype
signature may connect to brain-related biology. Intriguingly, a
recent report also noted a strong signature of selection at this
locus in canine (Freedman et al. 2016), suggesting a possibility
of convergent evolution. That said, the phenotypes that have
resulted in a historical fitness trade-off at this locus are far
from obvious.

Similarly, speculation on the potential phenotypes subject
to balancing selection at WFS1 should also be interpreted
cautiously. It is known that autosomal recessive, loss of func-
tion mutations in this gene cause Wolfram Syndrome. This
gene is a component of the unfolded protein response
(Fonseca et al. 2005) and is involved with ER maintenance
in pancreatic b-cells. Furthermore, deficiency of WFS1 results
in increased ER stress, impairment of cell cycle, and ultimately
increased apoptosis of b-cells (Yamada et al. 2006). These
data would suggest that reduced expression of WFS1 would
be diabetes risk increasing; however, eQTLs that colocalized
with the diabetes risk-increasing allele elevate expression, at
least in nonpancreas tissue, suggesting perhaps a more com-
plex functional mechanism. Furthermore, how the unfolded
protein response could connect to historical balancing selec-
tion is also not immediately obvious. One possibility derives
from recent work suggesting that these pathways respond
not only to stimulus from nutrients or ER stress, but also to
pathogens (Nakamura et al. 2010). This could suggest the
possibility that expression of WFS1 is optimized in part to
respond to pathogen exposure at a population level.

b is powered to detect balancing selection when outgroup
sequences are not available and can do so quickly and easily.
Given the increasing ease of collecting population genetic
data from non-model organisms, our approach is in a unique
position to characterize balancing selection in these
populations.

An implementation of both the folded and unfolded ver-
sions of b is available for download at https://github.com/
ksiewert/BetaScan.

Materials and Methods

Simulations
Simulations were performed using the forward genetic sim-
ulation software SLiM 2.0 (Haller and Messer 2017). In our
simulations, neutral mutations and recombination events oc-
cur at a predefined rate throughout the entire length of the
simulation. A burn-in time of 100,000 generations was first
simulated to achieve equilibrium levels of variation. Then, two
populations representing humans and chimpanzees split
from this original population, and were simulated for
250,000 additional generations. We then sampled 100 chro-
mosomes from the human population, and 1 chromosome
from the chimpanzee population. We first simulated these
scenarios under parameters suitable for human populations,

with mutation and recombination rates of p ¼ r ¼ 2:5 x
10�8 and Ne ¼ 10,000.

We generated two sets of simulations: one without a bal-
anced variant (the set we refer to as our neutral simulations)
and one with a balanced variant (balanced simulations). In
the second set, a single balanced variant was introduced at
the center of the simulated region in the human population,
either at the time of speciation (250,000 generations prior to
simulation ending), or 150,000 generations after speciation
(100,000 generations prior to simulation ending). The simu-
lations then continued as normal, conditional on mainte-
nance of the balanced SNP in the population. If this
balanced variant was lost, the simulation restarted at the
generation in which the balanced variant was introduced.
In the second (neutral) set, no balanced variant was intro-
duced, so all variants are selectively neutral.

Each balanced SNP had an overdominance coefficient
h and selection coefficient s. The fitness of the heterozygote
is then 1þ hs, and the fitness of the ancestral and derived
homozygotes are 1 and 1þ s, respectively. We simulated two
different s values: 10�2 (our default) and 10�4. We simulated
six different equilibrium frequencies: 0.17, 0.25, 0.5, 0.75, 0.83,
which correspond to h ¼ �0:25, �0.5, 100, 1.5, 1.25.
Negative h values were paired with negative s values.

After simulation completion, the frequency of each variant
in the sampled individuals was calculated. Substitutions were
defined as any variant in which the allele from the chimpan-
zee chromosome was not found in the sampled human indi-
viduals. For each set of balanced simulations, we define the
core SNP as the variant under balancing selection. For each
set of balanced simulations, we then found a corresponding
set of core SNPs in our neutral simulations which were within
10% of the equilibrium frequency of the balanced variants.
We then calculated the score for each statistic on these core
variants. In this way, we have statistic scores for the balanced
variant from each balanced simulation replicate, and a score
for a neutral variant matched for similar frequency. For more
details on how each statistic was calculated, see supplemen-
tary methods in the Supplementary Material online.

To increase simulation speed, we rescaled our simulations
by a factor of 10 for specified power analyses in the support-
ing information (Hoggart et al. 2007); results presented in the
main text were not rescaled. A minimum of 1,500 simulation
replicates were performed for each parameter set. We simu-
lated 10-kb regions for each simulation replicate, with the
exception of the analysis of optimal windows size, in which
case a 100-kb region was simulated.

Empirical Site Analysis
To apply our method to 1000 Genomes data, we first down-
loaded data for each of the 26 populations in phase 3 of the
project (obtained May 2, 2013). We then calculated allele
frequencies separately for each population, and calculated b
in 1-kb-sized windows centered around each SNP for each
population.

Because poorly sequenced regions can artificially inflate the
number of SNPs in a region, we then filtered out regions that
contained one or more base pairs that were ruled as poor
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quality in the 1000 Genomes phase 3 strict mask file. For
further confirmation that the signal was not a result of
poor mapping quality, we overlapped SNPs of interest with
hg19 human RepeatMasker regions, downloaded from the
UCSC Table Browser on February 9, 2017. We then removed
all core SNPs from consideration that were found within a
repeat, similar to Bubb et al. (2006). We further removed SNPs
that were not of common frequency (at or above a folded
frequency of 15%) in at least one population. After filtering,
there were 1,803,299 SNPs that remained. We then found the
top 1% of these high-quality SNPs in each population in our b
scan.

Unknown paralogs or other technical artifacts could inflate
the number of intermediate frequency alleles. Although the
1000 Genomes data provides strict quality filter masks, we
wanted to further verify that our haplotypes of interest in
WFS1 and CADM2 were not the result of obvious technical
artifacts. In order to do this, we used the –hardy flag in
vcftools (Danecek et al. 2011), and investigated both the
one-tailed P value for an excess of heterozygotes, and the
two-tailed P value, in our four representative populations
(YRI, CEU, CDX, and PJL). All variants on these haplotypes
had P values above 1� 10�3.

The lowest autosomal significance cut-off of any popula-
tion, ASW, corresponds to a b score of 47.49. This score is in
the top 0.05 percentile of core SNPs in neutral simulations
corresponding to an equilibrium frequency of 0.5 (supple-
mentary fig. S3, Supplementary Material online).

To find top-scoring sites that are also GWAS hits, we
obtained LD proxies in European populations for our top-
scoring SNPs, using a cut-off of r2 of 0.9, a maximum distance
of 50 kb and a minimum minor allele frequency of 5%. We
then overlapped these LD proxies with GWAS hits obtained
from the GWAS Catalog to get our final list of putatively
balanced GWAS hits (Welter et al. 2014). Gene names and
locations were downloaded from Ensembl BioMart on
November 26, 2016.

For our trSNP comparison, we used the Human/Chimp
shared haplotypes from Leffler et al. (2013). Using logistic
regression, we then modeled the outcome of a SNP being
part of a trHap as dependent on the b Score and distance to
nearest gene.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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