
Article

Neural G0: a quiescent-like state found in
neuroepithelial-derived cells and glioma
Samantha A O’Connor1,†, Heather M Feldman2,†, Sonali Arora2, Pia Hoellerbauer2,3, Chad M Toledo2,3,

Philip Corrin2, Lucas Carter2, Megan Kufeld2, Hamid Bolouri2, Ryan Basom4, Jeffrey Delrow4 ,

Jos�e L McFaline-Figueroa5, Cole Trapnell5, Steven M Pollard6, Anoop Patel2,7, Patrick J Paddison2,3,* &

Christopher L Plaisier1,**

Abstract

Single-cell RNA sequencing has emerged as a powerful tool for
resolving cellular states associated with normal and maligned
developmental processes. Here, we used scRNA-seq to examine the
cell cycle states of expanding human neural stem cells (hNSCs).
From these data, we constructed a cell cycle classifier that identi-
fies traditional cell cycle phases and a putative quiescent-like state
in neuroepithelial-derived cell types during mammalian neurogen-
esis and in gliomas. The Neural G0 markers are enriched with
quiescent NSC genes and other neurodevelopmental markers
found in non-dividing neural progenitors. Putative glioblastoma
stem-like cells were significantly enriched in the Neural G0 cell
population. Neural G0 cell populations and gene expression are
significantly associated with less aggressive tumors and extended
patient survival for gliomas. Genetic screens to identify modulators
of Neural G0 revealed that knockout of genes associated with the
Hippo/Yap and p53 pathways diminished Neural G0 in vitro, result-
ing in faster G1 transit, down-regulation of quiescence-associated
markers, and loss of Neural G0 gene expression. Thus,
Neural G0 represents a dynamic quiescent-like state found in
neuroepithelial-derived cells and gliomas.
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Introduction

Most developing and adult tissues are hierarchically organized such

that tissue growth and maintenance are driven by the production of

lineage-committed cells from populations of tissue-resident stem

and progenitor cells (Reya et al, 2001). Stem cells in adult tissues

are typically found in a quiescent or reversible G0 state and must re-

enter the cell cycle and divide to promote lineage commitment

(Doetsch, 2003; Obernier et al, 2018). Stem cell progeny further

balances lineage commitment with proliferation to produce

adequate numbers of lineage-committed and terminally differenti-

ated cells to keep pace with demand (Lin, 2008). While much is

known about specific regulatory events governing organismal devel-

opment and tissue homeostasis, we lack a detailed picture of how

cells enter, maintain, and exit quiescent-like states.

Data from recent studies using single-cell analysis of specific devel-

opmental compartments have begun to unravel some of the mysteries

around G0-like states, including hematopoiesis (Cabezas-Wallscheid

et al, 2017; Hay et al, 2018), adult and fetal neurogenesis

(Llorens-Bobadilla et al, 2015; Artegiani et al, 2017; Nowakowski

et al, 2017), skeletal muscle regeneration (Scott et al, 2019), colon

homeostasis (Gr€un et al, 2015), and a variety of other tissue types.

The picture emerging from these studies indicates that in any given

tissue, there is a continuum of highly regulated G0-like states in stem

and progenitor cells and their progeny, which cause cells to enter

long- or short-term states of quiescence (distinguishable from terminal

differentiation/maturation states). For example, during adult mamma-

lian neurogenesis, single-cell RNA-seq (scRNA-seq) analysis has led

to a model where "dormant" quiescent neural stem cell (NSC) popula-

tions (e.g., in the subventricular zone or hippocampus) enter a

"primed" state before entering the cell cycle and differentiating

(Llorens-Bobadilla et al, 2015).
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The application of scRNA-seq to dissociated primary glioma

tumors has provided critical insights into intratumoral heterogeneity

and developmental gene expression patterns for primary gliomas

(Patel et al, 2014; Tirosh et al, 2016a; Darmanis et al, 2017;

Venteicher et al, 2017; Filbin et al, 2018; Neftel et al, 2019). One key

conclusion from these studies is that each tumor represents a

complex, yet maligned, neurodevelopmental ecosystem that harbors

diverse cell types which presumably contribute to tumor growth

and homeostasis in specific ways (e.g., vascular mimicry, immune

evasion, recreating NSC niches, and neural injury responses).

However, these datasets have failed to produce models for transi-

tions in and out of G0-like states. In contrast to NSC scRNA-seq

studies where established cell-based markers are used to enrich for

NSCs (e.g., GLAST+/Prom1+) (Llorens-Bobadilla et al, 2015), there

are no pre-existing universal markers for glioblastoma (GBM) tumor

cells that can neatly resolve subpopulations into quiescent,

"primed", G1, or differentiated cellular states (Lathia et al, 2015).

As a result, these studies generally create a catchall G1 category for

cells with "low cell cycle index" or that lowly express S, G2, or M

phase marker genes.

In addition, scRNA-seq cell cycle classifiers are not trained to

identify G0-like populations. For example, the state-of-the-art cell

cycle classifier from the Seurat scRNA-seq analysis pipeline (ccSeu-

rat) by design only classifies cells into G1, S, and G2/M phases

(Butler et al, 2018). ccSeurat was trained on a mouse embryonic

stem cell (mESC) scRNA-seq dataset, where mESCs were Hoescht

stained and sorted into G1, S, and G2/M populations and then

subjected to scRNA-seq (Buettner et al, 2015; Scialdone et al, 2015).

The ccSeurat cannot identify G0-like states because the training

forced only these three states as the outcome, and mESCs do not

transition into a natural state of quiescence.

Here, we performed scRNA-seq on in vitro grown human neural

stem cells (hNSCs) derived from the developing mammalian telen-

cephalon (Davis & Temple, 1994; Johe et al, 1996), which can reca-

pitulate the expansion, specification, and maturation of each of the

major cell types in the mammalian central nervous system (Pollard

et al, 2006; Sun et al, 2008). We have previously used hNSCs as

non-transformed, tissue-appropriate controls for functional genomic

screens in patient-derived glioblastoma stem-like cells (GSCs)

(Danovi et al, 2013; Ding et al, 2013, 2017; Hubert et al, 2013;

Toledo et al, 2014, 2015). We have observed that NSCs have longer

doubling times of 40–50 h compared to 30–40 h for GSC isolates

due to longer G0/G1 transit times. NSC scRNA-seq analysis led to

the discovery of a transient Neural G0 subpopulation, which self-

renewing NSCs pass in and out of and is enriched for genes

expressed in quiescent NSCs and a broader set of neurodevelopment

markers expressed in other neural progenitors and cell types poised

for cell division. We constructed a classifier, which we apply to

neurodevelopment and glioma patient data to determine the func-

tional impact of this cell subpopulation. Finally, we identify genes

that when perturbed diminish this G0-like state. Thus, our results

reveal Neural G0 as a cellular state associated with quiescence in

neuroepithelial-derived cell types.

Results

Identification of cell cycle phases and candidate G0/G1
subpopulations in hNSCs

We profiled 5,973 actively dividing U5-hNSCs (Bressan et al, 2017)

using scRNA-seq to identify the single-cell gene expression states

corresponding to cell cycle phases with a focus on G0/G1 subpopu-

lations. Unsupervised cell clustering identified eight distinct clusters

of cells (Fig 1A). A small cluster of cells that had significantly lower

RNA levels was excluded; it was later included as an outgroup for

classifier construction (i.e., "G1/other"; Appendix Fig S1D). Mean-

ing was attributed to the remaining seven clusters based on (i)

analyzing the set of marker genes significantly over-expressed

within each cluster (avg log fold-change ≥ 0.3; adjusted P-value

≤ 0.05; Dataset EV1); (ii) comparison with predicted cell cycle

phases from the ccSeurat single-cell classification method; (iii)

distribution of single-cell cyclin and CDK expression across each cell

cycle phase; and (iv) RNA velocity predicted progression of cells

along the cell cycle phases. Through these comparisons, described

below, we labeled the clusters based on the Whitfield et al, 2002

convention as follows: Neural G0 (17.3% of cells), G1 (36.7%), Late

G1 (6.4%), S (7.2%), S/G2 (10.9%), G2/M (10.6%), and M/Early

▸Figure 1. Gene expression map of cell cycle and candidate G0 and G1 subpopulations using single-cell RNA-seq in U5-hNSCs.

A Eight transcriptional clusters were discovered from unsorted U5-hNSCs using an unsupervised graph-based clustering method. Single cells were embedded into a
two-dimensional space for visualization using t-Distributed Stochastic Neighbor Embedding (tSNE).

B The ccSeurat classifier was applied to the unsorted U5-hNSCs. The G1, S, and G2M phase calls were overlaid onto the tSNE embedding.
C The number of cells for each U5-hNSC defined cell cycle phase colorized by the three ccSeurat classifier phases. Names for new U5-hNSC defined cell cycle phases

are red.
D RNA velocity stream plot for U5-hNSCs shows the directional flow of cells through the phases of the cell cycle (i.e., G1 ? Late G1 ? S ? S/G2 ? G2/M ? M/Early

G1 ? G1) and into the novel Neural G0 phase.
E Heat map of the relative expression (row-wise z-score) for the top 10 non-redundant genes for each prominent cluster in U5-NSCs and gene ontology analysis of the

up-regulated genes defining each cluster.
F Top marker genes for each cluster.
G Cyclin and CDK marker genes found for each cluster.
H Functional GO term enrichment for key cell cycle-related and “glial cell differentiation” terms. Full cluster-defining gene list is in Dataset EV1, and full gene ontology

is in Dataset EV2.
I Enrichment of knockdown cell cycle arrest phenotype genes for each cluster.
J Ridge graph comparisons of cyclin expression across the U5-hNSC defined cell cycle phases. The x-axis is relative expression of the cyclin, and the y-axis is counts of

cells per phase. The cell cycle phase with the peak expression is denoted by an arrowhead at the top of the plot.
K Ridge graph comparison of cyclin expression across the Seurat-classified cell cycle phases. The x-axis is relative expression of the cyclin, and the y-axis is counts of

cells per phase.
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G1 (8.4%) (Fig 1A). Neural G0 and Late G1 are novel states that

were observed in U5-hNSCs.

Characterizing U5-hNSC cell cycle phases

We assigned a cell cycle phase to the seven U5-hNSC clusters by

analyzing the marker genes (Fig 1F, Appendix Fig S2), cyclin and

CDK expression (Fig 1G, J and K), GO term functional enrichment

(Fig 1H; Dataset EV2), and enrichment of genes associated with

arrest in specific cell cycle phases (Fig 1I) (Santos et al, 2015).

Cyclin expression patterns were consistent with prior knowledge

(Appendix Fig S1A) where CCND1 is a marker gene for the Late G1

and S clusters, CCNE2 for the S cluster only, CCNA2 for the S/G2

and G2/M clusters, CCNA1 and CCNB1 for the G2/M cluster only,

and CCNB2 for the G2/M and M/Early G1 clusters (Fig 1G and J). In

addition, the cyclin-dependent kinase CDK1 is a marker gene for the

S, S/G2, and G2/M phases. The cyclin and CDK1 expression patterns

are highly consistent with the expected cell cycle expression pattern

(Fig 1G and J) (Darzynkiewicz et al, 1996). Functional enrichment

analysis of each cluster’s marker genes linked Neural G0 with “glial

cell differentiation”, S with “G1 to S transition”, S and S/G2 with

“DNA replication”, and G2/M with “G2M transition” and “cell divi-

sion” (Fig 1H; Dataset EV2). Gene knockdowns that arrest cells in S

and G2 phases were enriched in S cluster marker genes, arrest in S

and M phases were enriched in S/G2 cluster marker genes, and

arrest in M phase were enriched in G2/M cluster marker genes

(Fig 1I; Dataset EV3) (Santos et al, 2015). The accumulation of these

sources of evidence strongly supports the cell cycle identities we

have attributed to the seven cell clusters observed in actively divid-

ing U5-hNSC cells.

Four of the seven clusters were related to G0/G1: G1, Late G1,

M/Early G1, and Neural G0. Despite being the largest cluster, the G1

cluster had the smallest number of enriched genes, which included

IGFR1 signaling genes (e.g., IGFBP3 and IGFBP5) and had significant

reductions of genes expressed in S, S/G2, and G2/M clusters

(Fig 1E). The Late G1 cluster was defined by genes important in G1

cell cycle progression, including CCND1 and MYC, and was enriched

for cholesterol biosynthesis genes, cell adhesion genes, and a subset

of YAP target genes, such as CTGF, CYRG1, and SERPINE1 (Fig 1E;

Appendix Fig S1B; Datasets EV1 and EV2). The M/Early G1 cluster

showed low but significant residual expression of M phase genes

and enrichment for splicing factor genes, which could represent

residual mRNA from G2/M (Fig 1E; Dataset EV1).

The Neural G0 cluster showed significant repression of 246 genes

peaking in other phases of the cell cycle, including suppression of

CCND1 expression, which is an indicator of cell cycle exit (Sherr,

1995), and other cell cycle-regulated genes such as AURKB, CCNB1/

2, CDC20, CDK1, and MKI67. Moreover, the 158 up-regulated genes

defining this cluster were genes with key roles in neural develop-

ment, including glial cell differentiation, neurogenesis, neuron dif-

ferentiation, and oligodendrocyte differentiation (Fig 1E; Dataset

EV1). These genes included transcription factors with known roles

in balancing stem cell identity and differentiation, including BEX1,

HEY1, HOPX, OLIG2, SOX2, SOX4, and SOX9 (Sakamoto et al, 2003;

Bergsland et al, 2006; Scott et al, 2010) (Fig 1E; Dataset EV1).

We further characterized the U5-hNSC cell cycle phases by

comparison with ccSeurat (Butler et al, 2018). The current ccSeurat

classifier assigns cells into the G1, S, and G2/M phases. When

ccSeurat is applied to the hNSC scRNA-seq data, the G1 phase cells

match with the U5-hNSC phases Neural G0, G1, and M/Early G1

(Fig 1B and C). The ccSeurat M phase matches to S/G2, G2/M, and

M/Early G1 (Fig 1B and C). The ccSeurat S phase most strongly

matches to S, but also matches to all the other phases except for

G2M. Overall, there is good agreement between the U5-hNSC and

ccSeurat cell cycle phases when comparing only the cells labeled as

G1, S, or G2/M in the U5-hNSCs (accuracy = 90%; Fig 1B).

Closer examination of cyclin expression across the U5-hNSC and

ccSeurat cell cycle phases reveals that the subdivision of the G1

ccSeurat phase into Neural G0, G1, Late G1, and M/Early G1 phases

is meaningful (Fig 1J and K). The novel Late G1 phase has the high-

est peak expression of CCND1 (Fig 1J), which is consistent with prior

studies that showed CCND1 protein peaks just prior to entry into S

phase (Matsushime et al, 1994). The Neural G0 subpopulation has

the lowest peak CCND1 gene expression (Fig 1J), a hallmark of quies-

cence (Sherr, 1995). ccSeurat does not capture that information as it

lumps together high, medium, and low CCND1 expressing cells

(Fig 1K). In addition, the U5-hNSC cell cycle phases better stratify

CCNA2 and CCNB1 expression into more discrete expressing subpop-

ulations (high, medium, and low) across S, S/G2, G2/M, and M/Early

G1, further demonstrating that these phases are distinct (Fig 1J). The

U5-hNSC cell cycle phases highly overlap with ccSeurat cell cycle

phases, and the U5-hNSC cell cycle phases outperform ccSeurat by

classifying cells into more specific cell cycle phases which better

capture the real biology of the cell cycle as demonstrated through

meaningful changes in cyclin expression between cell cycle phases.

Resolving the flow of cells through the cell cycle using
RNA velocity

We resolved the possible trajectories between the seven distinct cell

cycle phases through statistical assessment of the similarity between

gene expression mediods for each cell cycle phase. The mediods are

gene expression vectors where each gene holds the average expres-

sion across all cells from a cell cycle phase. First, the vectors were

compared using correlation. Then, a distance matrix was constructed

using Canberra distance. Finally, a cutoff was used to determine the

edges of the resulting network. The resulting pattern from this

network fits well with cell cycle progression and predicted transit

through G0/G1 (Appendix Fig S1C). Cells from the candidate G0

population were linked solely to the G1 cluster, which is consistent

with G0 as a cell cycle exit from G1. The linkages between clusters

are not directed, and therefore, the cells may pass in either direction.

We added directionality to the edges using RNA velocity, which

computes the ratio of unspliced to spliced transcripts and infers the

likely trajectory of cells through a two-dimensional single-cell

embedding, e.g., tSNE. The RNA velocity trajectories delineate the

cell cycle in the expected orientation (Fig 1D), i.e., G1 ? Late G1 ?
S ? S/G2 ? G2/M ? M/Early G1 ? G1. Both the similarity analy-

sis and RNA velocity predict that cells enter Neural G0 through G1

(G1 ? Neural G0). A reverse trajectory from Neural G0 to G1 was

not apparent, although we demonstrate later that Neural G0 cells re-

enter the cell cycle after transient stays of variable length. This

model of cell cycle progression was further validated by total mRNA

expression levels for the cell subpopulations (total UMI counts per

cell). The total mRNA expression level was low in Neural G0 and

peaks in G2/M (Appendix Fig S1D), which is consistent with prior
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observations that total mRNA levels peak with the expression of

cyclin B (CCNB1/2) and other mitotic genes (Shapiro, 1981).

Through unbiased means, we reconstructed the cell cycle progres-

sion and identified gene expression signatures that can be used to

track a cell’s progress through the cell cycle.

Constructing a cell cycle classifier from actively dividing hNSCs

The ability to accurately assign a cell cycle phase based on a tran-

scriptome profile has many potential uses in single-cell studies and

beyond. We used the hNSC scRNA-seq data to build a cell cycle clas-

sifier. We tested four different methods which were previously found

to be useful for building classifiers from scRNA-seq profiles (Abdelaal

et al, 2019): (i) support vector machine with rejection (SVMrej), (ii)

random forest (RF), (iii) scRNA-seq optimized K-nearest neighbors

(KNN) (Wolf et al, 2018), and (iv) scRNA-seq optimized Neural

Network (NN) method ACTINN (Ma & Pellegrini, 2020). We selected

the 1,536 most highly variable genes in the U5-hNSC scRNA-seq pro-

files as the training dataset for the classifier. We applied 100-fold

cross-validation (CV) for each classifier method and determined that

the NN method ACTINN was statistically similar or slightly better at

predicting each cell cycle phase than the next best classifier and had

a significantly higher F1 score for Late G1 (P-value ≤ 4.3 × 10�64,

Fig 2A). The ACTINN classifier had an overall error rate of 18.4% in

the CV studies, which was the best of all the methods tested. The

ACTINN classifier was named ccAF for cell cycle ASU/Fred Hutch.

A significant issue in scRNA-seq studies is that the number of

genes detected depends on sequencing depth, and missing gene infor-

mation is commonplace. Therefore, we conducted a sensitivity analy-

sis to determine the effect of randomly removing an increasing

percentage of genes. We show that removing 40% of the classifier

genes causes an increase of only ~10% in the error rate (Appendix Fig

S3). The classifier is quite robust to even a large percentage of missing

genes in query datasets, which provides a useful sensitivity analysis

that informs future users of the ccAF classifier.

Validating ccAF S and M phase cell cycle classifications

Next, we validated S and M phase classifications by applying the

ccAF classifier to a gold standard cell cycle synchronized time-series

dataset from HeLa cells (Whitfield et al, 2002). The synchronized

HeLa cell study simultaneously characterized transcriptome profiles

and experimentally determined whether the cells were in S or M

phase at each time point (Whitfield et al, 2002). The ccAF classifier

had an error rate of 13.7% when applied to the gold standard Whit-

field et al, 2002 dataset (Appendix Fig S4), which demonstrated that

ccAF could accurately predict the S and M phases for each query

transcriptome profile (single-cell or bulk RNA-seq/microarray).

Validating G0/G1 cell cycle classifications

We validated the G0/G1 phase classifications by experimentally

determining which cells from the U5-hNSCs belonged to the G0/G1

subpopulations. We used the well-established fluorescent

ubiquitination-based cell cycle indicator (FUCCI) (Sakaue-Sawano

et al, 2008) coupled with flow cytometry to enrich the CDT+ G0/G1

cell subpopulations. The enriched G0/G1 subpopulations were then

quantified using scRNA-seq, and the cell cycle phase of each cell

was classified using ccAF. The U5-hNSC Neural G0 and G1 subpop-

ulations were enriched in the CDT+ subpopulation (log2(FC) > 0;

Fig 2B), whereas the U5-NSC Late G1, S/G2, and G2/M subpopula-

tions were all significantly depleted (log2(FC) ≤ �1; Fig 2B). We

experimentally demonstrated that we have correctly defined the G0/

G1 subpopulations using the well-established FUCCI system. Impor-

tantly, the Neural G0 population is enriched when sorting for CDT+

cells, which validates that this subpopulation is a part of the G0/G1

pool of cells.

Next, we evaluated whether the Neural G0 subpopulation from

in vitro U5-hNSCs was similar to the quiescent NSCs (qNSCs)

from two independent in vivo scRNA-seq profiling studies of NSCs

from adult rodent neurogenesis in the subventricular zone (Llorens-

Bobadilla et al, 2015; Dulken et al, 2017). In both studies, a majority

of the qNSC cells were classified as Neural G0 by ccAF. One

hundred percent of the dormant state qNSC1 from Llorens-Bobadilla

et al, 2015 classified as Neural G0, and 96% of the primed-quiescent

state qNSC2 classified as Neural G0 (Fig 2C). The non-mitotic acti-

vated NSCs (aNSC1) state cells were primarily classified as Neural

G0, G1, Late G1, and M/Early G1, whereas the mitotic aNSC2 state

cells classified as S, S/G2, and G2M (Fig 2C). The enrichment of

Neural G0 in quiescent neural stem cells was validated in a second

independent cohort from Dulken et al, 2017, where 64% of the

qNSC state classified as Neural G0 and 88% classified as Neural G0,

▸Figure 2. Application of the ccAF classifier to neuroepithelial-derived cell populations.

A Comparison of four different classifier methods (SVMrej, RF, KNN, and ACTINN) by F1 score, which is a metric that integrates precision and recall and reaches its
maximum value at 1. An F1 score is computed for each cell cycle phase to be predicted, and the boxplots represent the distribution of F1 scores from the 100-fold
cross-validation with a hold-out of 1,000 cells. Each boxplot shows the median (middle band), interquartile range (box), and the whiskers denote 1.5 times the
interquartile range of the 100 F1 scores from the cross-validation.

B Top, percent of cells found in each cluster for the U5-hNSCs. Middle, mapping of FUCCI reporter system to cell cycle phases. Bottom, fold-change between U5-hNSCs
sorted for CDT+ compared to unsorted U5-hNSC cells on the log base 2 scale. Positive values indicate an increase in a given cell cycle subpopulation in CDT+ sorted
relative to unsorted, and negative values indicate reduced cell subpopulations. The expected CDT+ and CDT� cell subpopulations are found below the red bar and
green bar, respectively. The others are expected to be transition subpopulations.

C Percent of cells assigned to each ccAF cell cycle phase for scRNA-seq data from GLAST and PROM1 flow-sorted cells from the subventricular zone (SVZ) of mice
(Llorens-Bobadilla et al, 2015). qNSC1 = dormant quiescent neural stem cell; qNSC2 = primed-quiescent neural stem cell; aNSC1 = active neural stem cell;
aNSC2 = actively dividing neural stem cell.

D Percent of cells assigned to each ccAF cell cycle phase for scRNA-seq data from EGFR, GFAP, and PROM1 flow-sorted cells from the subventricular zone (SVZ) of adult
mice (Dulken et al, 2017). qNSC = quiescent neural stem cell; aNSC = active neural stem cell.

E Percent of cells assigned to each ccAF cell cycle phase for scRNA-seq data from the developing human telencephalon (Nowakowski et al, 2017). Cell types were
grouped by glial, neuronal, and vascular developmental cell lineages and ordered in each group by most to least differentiated (left to right). RG = radial glia,
div = dividing. All cell type abbreviations are available in Dataset EV4.
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G1, Late G1, or M/Early G1 (Fig 2D). These results validate that the

Neural G0 subpopulation from in vitro U5-hNSCs is similar to the

quiescent NSC subpopulation in vivo. Additionally, this validates

that the ccAF classifier can accurately identify quiescent NSCs as

Neural G0, and is robust enough to be applied across species using

gene homology.

The Neural G0 state is enriched in neuroepithelial-derived stem
and progenitor cell populations

We investigated how Neural G0 might arise during mammalian

development by applying the ccAF classifier to data from the devel-

oping human telencephalon (Nowakowski et al, 2017). We analyzed

scRNA-seq data from microdissected developing human cerebral

cortex samples (PCW 5.85-19), which capture the spatial and

temporal developmental trajectories for 24 cell types, including

astrocytes, oligodendrocyte precursor cells (OPC), microglia, radial

glia (RG), intermediate progenitor cells, excitatory cortical neurons,

ventral medial ganglionic eminence progenitors, inhibitory cortical

interneurons, choroid plexus cells, mural cells, and endothelial

cells. We classified the cell cycle phase of every single cell using the

ccAF classifier and cross-tabulated with the 24 cell types from

Nowakowski et al, 2017 (Fig 2E; Dataset EV4). We found that the

Neural G0 category was significantly enriched in excitatory neurons

of the pre-frontal cortex (EN-PFCs), non-dividing astrocytes, OPCs,

and RGs (ventral, outer, and truncated), which had a Neural G0

population ranging from 10 to 94% (Fig 2E; Dataset EV4). Popula-

tions characterized as dividing (i.e., "div", "div1", or "div2") were

highly enriched with S/G2 and/or G2/M classified cells, and Neural

G0 and G1 were absent or greatly diminished. Further, microglia

had a tiny Neural G0 population and the G0/G1 pool of cells were

instead classified as G1 and Late G1, which is interesting because

they arise from the embryonic mesoderm rather than neuroecto-

derm (Ginhoux & Garel, 2018). It is likely that the terminally dif-

ferentiated EN-PFC cell types were classified as Neural G0 rather

than G1 due to their expression of the Neural G0 markers BEX1,

BEX4, GPM6A, NOVA1, SCD5, and TGLN3. However, EN-PFCs were

negative or low for key Neural G0 stem/progenitor markers, e.g.,

CLU, SOX2, SOX9, and S100B (Appendix Figs S5 and S6). These

results suggest that the ccAF classifier identifies quiescent popula-

tions of adult and fetal neural stem cells and astrocyte subpopula-

tions as Neural G0.

Applying ccAF to non-neuroepithelial cells

We next tested whether it was appropriate to apply the ccAF classi-

fier to non-neuroepithelial cell lines by applying it to 3,468 actively

dividing human embryonic kidney (HEK293T) cells. ccAF primarily

classifies HEK293T cells as S/G2 (39%), G2/M (19%), and M/Early

G1 (39%), with a negligible number of quiescent Neural G0 cells

(0.49%). The UMAP embedding has the characteristic cyclical

pattern of the cell cycle (Appendix Fig S7A). We were surprised by

the lack of a G1 population by ccAF, which ccSeurat predicts (29%).

However, we realized that this is because the cells that would other-

wise be classified as G1 retain residual G2/M gene expression (e.g.,

CCNB1, CDK1) (Appendix Fig S7). Thus, ccAF correctly calls them

as M/Early G1, rather than G1. This difference is likely due to the

transforming activity of SV40 Large T antigen, which is expressed in

these cells (Manfredi & Prives, 1994). We further observed that

ccSeurat misclassifies cells situated between S and G2/M as G1

(Appendix Fig S7B). On the other hand, ccAF classifies these cells as

S/G2, consistent with their placement in the cyclic embedding and

expression of cyclins in these cells (Appendix Fig S7D). These

results suggest that the ccAF classifier can resolve the cell cycle

phases in a non-neuronal cell type even in the presence of a trans-

forming factor that partially skews cell cycle gene expression.

Neural G0 is a prominent subpopulation in human glioma cells

Gliomas are tumors of the central nervous system which originate

from neuroepithelial cells (Chen et al, 2012; Zong et al, 2015). They

contain subpopulations of cells that express genes associated with

NSCs, OPCs, and astrocytes, which may contribute to progression,

therapy resistance, and tumor recurrence (Dirks, 2008; Zong et al,

2015). Recently, scRNA-seq has been applied to human gliomas of

different grades and subtypes to reveal intratumoral cellular hetero-

geneity (Patel et al, 2014; Tirosh et al, 2016b; Darmanis et al, 2017;

Venteicher et al, 2017; Filbin et al, 2018; Neftel et al, 2019; Bhaduri

et al, 2020; Wang et al, 2020). To address whether Neural G0 exists

in gliomas, we used the ccAF classifier to analyze the scRNA-seq

data available for 68 gliomas from these studies (Table 1; Fig 3

showing Neftel et al, 2019; Dataset EV4).

First, we filtered the datasets using a common filtering criterion

to remove clusters of terminally differentiated oligodendrocytes

(MBP and PLP1) (Val�erio-Gomes et al, 2018), astrocytes (ETNPPL)

(Zhang et al, 2016c), neurons (RBFOX3) (Herculano-Houzel & Lent,

2005), and immune cells (AIF1, CD14, CX3CR1, PTPRC), which

were distinct from tumor cell clusters. Each glioma dataset was

loaded, normalized, and scaled if necessary. De novo clustering

identified co-expressed cells, UMAPs were plotted with cell clusters

(Appendix Fig S8A showing Wang et al, 2020), and expression of

the genes above was overlaid onto the cells (Appendix Fig S8B).

Clusters with high expression of these markers were excluded from

further analysis as they were likely to be terminally differentiated

cells. Further, the inferCNV algorithm (Patel et al, 2014) was applied

to each dataset to confirm that cells from each tumor shared copy

number alterations and therefore were likely to be neoplastic

(Appendix Fig S9 showing Darmanis et al, 2017). This filtering and

copy number analysis ensured that the cells used in further studies

were neoplastic glioma cells.

The scRNA-seq profiled tumors represent a broad range of

gliomas, including grades II, III, and IV, IDH1wt and mutant tumors,

as well as glioma developmental subclasses (i.e., classical,

mesenchymal, and proneural) and tumor types (i.e., astrocytoma,

oligodendroglioma, GBM, and pediatric diffuse midline gliomas).

Our analysis revealed that Neural G0 and G1 are the two most

prominent tumor subpopulations regardless of stage (Table 1;

Dataset EV4). Neural G0 and G1 represent 92.5 and 6.7%, respec-

tively, of stage II oligodendrogliomas, 91.2 and 6.3% of stage III

astrocytomas, 49.4–67.7% and 17.3–34.8% of stage IV GBMs, and

77.9 and 2% of diffuse midline gliomas (Table 1; Fig 3H). GBM

subtype analysis (Wang et al, 2017) of each tumor cell further

revealed that Neural G0 subpopulations were reduced in mesenchy-

mal cell subpopulations in stage IV cancers (Table 1; Fig 3G and J).

Overall the prevalence of the Neural G0 state diminished as stage

increased regardless of subtype (Table 1; Dataset EV4).
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Examining non-tumor brain cell types associated with stromal

tissue available from Darmanis et al (2017), showed that Neural G0

populations were found in neuroepithelial-derived cells such as

astrocytes (98%), OPCs (79%), and oligodendrocytes (86%), in

CD45+ immune cells (77%), but were completely absent in vascular

endothelial cells (0%). In scRNA-seq data from 21 primary and

metastatic head and neck tumors (Puram et al, 2017), we observed

that 48% of these neoplastic cells appeared in G1 and only 11.2%

were classified as Neural G0 (Table 1). These results suggest that

the Neural G0 state may be applied more broadly to other human

cell types beyond neuroepithelial-derived cells.

We also compared the ccAF-predicted cell classifications for indi-

vidual GBM tumors with de novo clustering, ccSeraut, and develop-

mental subtype classifications (Fig 3A–D). This comparison reveals

that ccAF further stratifies clusters that are not apparent in ccSeraut,

and better matches de novo clustering of tumor populations

(Fig 3A–C). This observation was also true at the study level when

considering all tumors profiled by Neftel et al, 2019 (Figure 3E-J).

Comparing cell cycle classifications from ccAF to the Neftel et al,

2019, alternative GBM developmental classification scheme (e.g.,

astrocytic (AC), neural progenitor cell (NPC), oligodentrocyte

progenitor cell (OPC), and mesenchymal (MES)) shows that the two

methods of characterizing had some similarities and some dif-

ferences (Fig 3K and L). Most cells classified as AC, NPC, or OPC

were also classified as Neural G0, while MES populations had fewer

Neural G0 and more G1 cells. The MES and NPC cells had a higher

S, S/G2, and G2M fraction than AC and OPC cells (Fig 3L). Thus,

the abundance of Neural G0 cells in AC and OPC cells is consistent

with Neural G0 representing a quiescent state and/or a pre-

mesenchymal state associated with the proneural-to-mesenchymal

Table 1. Percentages of cell cycle states classified by ccAF for primary neoplastic cells.

Data set Tumor type
No.
tumors Other

Neural
G0 G1 Late G1 S S/G2 G2/M M/Early G1 No. cells

Tirosh 2016
(GSE70630)

II-O IDH1mut 6 0 92.5 6.7 0 0.2 0.2 0.3 0 4,047

Classical 0 89.9 9.6 0 0.2 0.2 0.2 0 1,203

Mesenchymal 0 89.7 9.6 0 0.3 0 0.2 0.1 875

Proneural 0 95.4 3.8 0 0.2 0.4 0.3 0 1,969

Venteicher
2017
(GSE89567)

III-A IDH1mut 7 0 91.2 6.3 0 0.4 1.1 0.6 0.3 3,010

Classical 0 88.9 8 0 0.2 1.3 1.2 0.4 830

Mesenchymal 0 88 9.7 0 0.4 0 0 1.9 267

Proneural 0 92.6 5.2 0 0.5 1.2 0.4 0.1 1,913

Darmanis
2017
(GSE84465)

IV-GBM IDHwt 4 0.7 57.7 32 2.1 0.1 2.4 2.4 2.7 1,091

Classical 0.3 66.8 25.8 1.4 0.1 1.8 2.4 1.3 760

Mesenchymal 0.8 19.4 74.2 4.8 0 0.8 0 0 124

Proneural 2.4 46.9 29.5 2.9 0 5.3 3.9 9.2 207

Neftel 2019
(GSE131928)

IV-GBM IDHwt 22 1.1 67.7 17.3 0.3 1.5 3.7 4.5 4 11,376

Classical 1.4 67.7 18.1 0.1 1.2 4 5.2 2.3 5,630

Mesenchymal 0.7 36.2 55.1 1.4 2.3 1.3 1.3 1.7 1,036

Proneural 0.9 74.6 8 0.2 1.6 3.7 4.2 6.6 4,710

Bhaduri
2020

IV-GBM IDHwt 11 0.2 55.8 26.8 0.2 1.2 5.5 8.3 1.9 21,177

Classical 0.1 66.4 27.7 0.1 0.3 1.6 3.4 0.3 7,446

Mesenchymal 0.5 26.3 66.7 0.4 1.1 1.2 3.5 0.4 4,093

Proneural 0.2 60.2 9.2 0.2 1.9 10.4 14.2 3.6 9,638

Wang 2020
(GSE139448)

IV-GBM IDHwt 3 5 49.4 34.8 0.7 0.1 2.7 3.2 4.1 13,525

Classical 5.5 57.1 26.1 0.3 0.1 4.3 3.4 3.2 3,842

Mesenchymal 5.8 16.9 72.1 1.6 0.2 0.5 1.4 1.5 4,947

Proneural 3.9 77.1 2.9 0 0 3.8 4.9 7.5 4,736

Filbin 2018
(GSE102130)

DMG H3K27M 6 1.1 77.9 2 0.1 0.6 2.1 7.7 8.5 2,775

Classical 0.9 86.9 2.6 0 0.3 0.9 5.5 2.9 344

Mesenchymal 2.3 74.7 3.4 0.7 0.9 2.3 8.1 7.7 443

Proneural 0.9 77.1 1.6 0.1 0.6 2.3 8 9.6 1,988

Puram 2017
(GSE103322)

HNSCC 21 0.1 11.2 48.1 4.8 10.2 2.1 11.2 12.3 2,215

II-O = grade 2 oligodendroglioma; III-A = grade 3 astrocytoma; IV-GBM = grade 4 GBM; DMG = diffuse midline glioma; HNSCC = head and neck squamous cell
carcinoma; SKCM = skin cancer melanoma.
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transition (Bhat et al, 2013; Halliday et al, 2014; Segerman et al,

2016).

Putative stem-like cells are enriched in Neural G0 subpopulation
of primary GBM tumors

To further investigate the cells within the Neural G0 population of

GBM tumors, we examined the expression of markers associated

with GBM stem-like cells (GSCs). The prevailing rationale for GSCs

is that a small portion of GBM tumors have evolved stem-like char-

acteristics and generate tumor cell heterogeneity (Lathia et al,

2015). The tumor stem-like cells may be slow dividing cells that are

missed by surgery and which are resistant to standard of care treat-

ments (Lathia et al, 2015). This concept was elegantly demon-

strated in a mouse model of glioma where a quiescent subset of

endogenous glioma cells were shown to be responsible for tumor

regrowth after temozolomide treatment (Chen et al, 2012).

However, unlike other non-transformed stem cell types (e.g.,

neural), there are no pre-existing, universal markers that can neatly

resolve GSC subpopulations into quiescent, primed, or activated

states (Lathia et al, 2015).

Therefore, to assess the prevalence of putative stem-like cells in

GBM datasets, we adopted the method of Bhaduri et al, 2020. They

defined a logic for discovering putative stem cells from scRNA-seq

profiles: any cell expressing FUT4 (SSEA1) or L1CAM or PROM1

(CD133) in conjunction with SOX2 and not expressing TLR4

(Bhaduri et al, 2020). We applied this logic to discover 4,563 puta-

tive stem-like cells in 47,405 neoplastic cells from four GBM scRNA-

seq studies (9.6% of neoplastic cells were putative stem-like cells;

Fig 4A) (Darmanis et al, 2017; Neftel et al, 2019; Bhaduri et al,

2020; Wang et al, 2020). Putative stem-like cells were significantly

enriched in Neural G0 classified cells (70% of putative stem-like

cells are in Neural G0; hypergeometric enrichment P-value =

3.4 × 10�60; Fig 4B; Dataset EV6). We then projected the putative

stem-like cell marker genes onto the Bhaduri et al, 2020 (Fig 4C)

and Neftel et al, 2019 embedding (Fig 4D). We discovered that

L1CAM is expressed at 1.2–3.6% of OPC and NPC cells and is

expressed in only 0.1–0.3% of AC and MES cells. PROM1 also

shows a bias toward NPC cells (21.7%) and away from AC cells

(9.8%), with OPC and MES in the middle (15.6 and 13.1%)

(Fig 4D). These results suggest that Neural G0 populations harbor

putative stem-like cell subpopulations and that Neural G0 captures

multiple subpopulations of non-dividing cells.

Higher Neural G0 expression is associated with better patient
prognosis in gliomas

Because the ccAF classifier was developed on NSCs, we wanted to

characterize and tailor the Neural G0 for GBM, thereby ensuring

that the Neural G0 signature was more relevant to disease. Thus, we

identified GBM neoplastic cell-specific Neural G0 marker genes by

applying ccAF to four GBM scRNA-seq studies (Table 1) (Darmanis

et al, 2017; Neftel et al, 2019; Bhaduri et al, 2020; Wang et al, 2020)

and discovered 22 Neural G0 marker genes in common across all

four studies (Fig 5A and B; Dataset EV5). Eight of the 22 common

GBM neoplastic cell-specific Neural G0 marker genes were originally

identified as Neural G0 marker genes for hNSCs (GPM6A, HOPX,

MARCKSL1, PLP1, S100B, SCD5, SCRG1, and TTYH1; Fig 5B; Dataset

EV1). The remaining 14 genes were unique to GBM neoplastic cells

(AQP4, BCAN, BCHE, GATM, GFAP, ITM2C, NDRG2, PLEKHB1,

PMP2, RAMP1, RTN3, SLC22A17, TSC22D4, and TSPAN7; Fig 5B;

Dataset EV5). Significantly, 13 of the 22 genes were previously

known to be associated with GBM in the DisGeNET database

(AQP4, BCAN, BCHE, GFAP, HOPX, MARCKSL1, NDRG2, PLEKHB1,

PLP1, S100B, SLC22A17, TSPAN7, and TTYH1; hypergeometric

over-enrichment P-value = 1.2 × 10�6; Fig 5B) (Pi~nero et al, 2015).

Of these, AQP4 has previously been shown to be differentially

expressed in quiescent astrocytes (Yoneda et al, 2001); HOPX is a

marker of quiescent radial glial neural progenitors (Berg et al,

2019); NDRG2 is up-regulated in G0/G1 arrested glioma cells (Li

et al, 2012, 2); S100B is a chemoattractant for tumor-associated

macrophages (Wang et al, 2013); and TTYH1 is required to maintain

NSC stemness via its role in activating the Notch signaling pathway

(Kim et al, 2018, 1). The genes AQP4, BCAN, GFAP, PLP1, and

S100B are part of the astrocytic, oligodendrocytic, or proneural

glioma signatures. Interestingly, high levels of PLP1 expression are

a marker for terminally differentiated oligodendrocytes, whereas

moderate expression is a marker for neoplastic Neural G0 cells

(Fig 5C). GFAP is more heavily expressed in neoplastic Neural G0

cells relative to other cell types, with astrocytes and OPCs coming in

a close second (Fig 5D), and the AQP4 gene is equivalently

expressed by astrocytes and neoplastic Neural G0 cells (Fig 5E).

◀ Figure 3. Application of the ccAF classifier to glioblastoma tumors.

A De novo clustering of all cells from patient MGH143 (Neftel et al, 2019; n = 2,182 cells).
B ccAF applied to all cells from patient MGH143 matches well to de novo clustering.
C ccSeurat applied to all cells from patient MGH143 matches well to de novo clustering, but has S phase in between G2 M and G1, similar to what was observed in

HEK293T (Appendix Fig S4).
D GBM subtypes of all cells from patient MGH143 show that the vast majority of cells are from the classical subtype.
E Application of the ccAF classifier to primary GBM neoplastic cells from Neftel et al, 2019 overlaid on a two-dimensional UMAP cell embedding (n = 11,376).
F Application of the ccSeurat classifier to primary GBM neoplastic cells from Neftel et al, 2019 overlaid on a two-dimensional UMAP cell embedding (n = 11,376).
G Application of the ssGSEA GBM subtype classifier to primary GBM neoplastic cells from Neftel et al, 2019 overlaid on a two-dimensional UMAP cell embedding

(n = 11,376). CL = classical; MS = mesenchymal; PR = proneural.
H Tabulation of cell counts for ccAF cell cycle phase classifications in E.
I Tabulation of cell counts for ccSeurat cell cycle phase classifications in F.
J Tabulation of cell counts for ccAF cell cycle phase classifications for each GBM subtype. CL = classical; MS = mesenchymal; PR = proneural.
K Two-dimensional embedding representing cellular state from Neftel et al, 2019 (Fig 3F), where each quadrant represents a different cellular state oligodendrocyte

progenitor cell-like (OPC), neural progenitor cell-like (NPC), mesenchymal-like (MES), and astrocyte-like (AC).
L Tabulation of cell counts for ccAF cell cycle phase classifications in each quadrant of K (OPC-like, NPC-like, MES-like, and AC-like).
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Figure 4. Putative stem-like cells are significantly enriched in primary Neural G0 tumor subpopulations.

A The ccAF classifier was applied to four GBM scRNA-seq datasets with a total of 47,169 cells (Darmanis et al, 2017; Neftel et al, 2019; Bhaduri et al, 2020; Wang et al,
2020). We then applied the logic for discovering putative stem-like cells from Bhaduri et al, 2020 to all 47,169 cells: (FUT4 > 0 or L1CAM > 0 or PROM1 > 0) &
SOX2 > 0 & (TLR4 = 0). The subpopulation of cells from each ccAF cell cycle phase was intersected with the putative stem-like cell subpopulation. The resulting
intersections for each dataset were summed and a hypergeometric enrichment P-value was computed for each ccAF cell cycle phase comparison.

B Top, Percentage of putative stem-like cells that map to each ccAF cell cycle phase. Bottom, Log 10 of hypergeometric enrichment P-values for each ccAF cell cycle
phase. More negative values indicate increased significance.

C Number of putative stem-like cells in each ccAF cell cycle phase, and distribution of absolute gene expression across ccAF cell cycle phases for the genes used to
identify putative stem-like cells in Bhaduri et al, 2020.

D Putative stem-like cells and expression of the genes used to identify the putative stem-like cells projected onto Neftel et al, 2019. Expression of genes is overlaid as
the color of each cell (white = 0, dark blue = max expression). Quadrants are broken up by dashed gray lines: OPC = upper left; NPC = upper right; AC = lower left;
and MES = lower right. Percentages of gene expression greater than 0 are shown in the corners of the plot.
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While the 22 common GBM neoplastic cell-specific Neural G0

marker genes make poor markers alone as several of them show

expression at the same level in at least one other cell type, combin-

ing expression of all of them together allows the signature to

achieve discriminative power and specificity (Appendix Fig S10).

We further examined the roles for these genes and the Neural G0

gene signature in gliomas by investigating the relationship between

Neural G0 marker gene expression and glioma patient survival. We

interrogated data from 681 gliomas (grade II, III, and IV) from The

Cancer Genome Atlas (TCGA). In addition to transcriptome profiles,

the TCGA includes phenotypic and genetic information, which

allowed us to include tumor grade and IDH1/2 mutational status as

previously associated covariates in our model. We computed eigen-

genes for both the 22 GBM neoplastic cell-specific Neural G0 marker

genes and the 54 cell cycle genes from the Seurat G2M classifier

gene list. An eigengene represents the common variation across

each patient tumor, i.e., the first principal component corrected for

direction if necessary. The Neural G0 eigengene is significantly asso-

ciated with tumor grade (Fig 5F). This is consistent with the obser-

vation from scRNA-seq that lower grade gliomas are predicted to

have more quiescent Neural G0 cells than GBMs tumors (Table 1).

The Neural G0 eigengene is significantly anti-correlated with the cell

cycle eigengene (R = �0.48, P-value < 2.2 × 10�16; Fig 5G). More-

over, the Neural G0 versus cell cycle eigengene plot displays a char-

acteristic L-shaped distribution which strongly suggests mutual

independence of the two eigengenes (Fig 5G). This mutual indepen-

dence is likely due to the fact that the cell cycle and quiescence are

regulated by different means.

Next, we assessed the relationship between the Neural G0 eigen-

gene and patient survival using a Cox proportional hazards regres-

sion model that included the covariates tumor grade and IDH1/2

mutation status. The Neural G0 eigengene was significantly associ-

ated with patient survival even with the inclusion of tumor grade

and IDH1/2 mutation status (Cox PH coef. = �8.0 � 3.4; P-

value = 1.5 × 10�2). This strongly suggests that the Neural G0 cell

state is associated with patient survival variance independently from

the common glioma survival-associated covariates (tumor grade,

IDH1/2). Additionally, the Neural G0 eigengene was significantly

associated with patient survival when the cell cycle eigengene is

included in the model (Cox PH coef. = �0.14; and P-value =

9.8 × 10�9). Thus, Neural G0 has an independent effect beyond the

cell cycle effects, and therefore, the Neural G0 state is not simply

the opposite of an actively cycling cell state. We also computed a

Kaplan–Meier plot with the Neural G0 eigengene top 25% versus

the bottom 25% (n = 175 for each) Neural G0 gene expression

(Fig 5H and I). The top 25% in Neural G0 eigengene expression had

a median survival of 1,826 days, whereas the bottom 25% had a

median survival of 342 days, which is a difference of 4.1 years in

patient survival (Fig 5H). Subsetting the TCGA to only grade III

gliomas can address tumor grade as a potential confounding factor.

As before, increased Neural G0 eigengene in grade III gliomas is a

significant predictor of better prognosis (P-value = 3.0 x10�5). The

top 25% in Neural G0 eigengene expression in grade III gliomas had

a median survival of 1,674 days and the bottom 25% had a median

survival of 292 days, which is a difference of 3.8 years in patient

survival. This strongly suggests that the Neural G0 GBM-specific

marker genes describe a cell state that is independently predictive of

patient survival.

Taken together, these results demonstrate that Neural G0 cells

represent significant subpopulations in gliomas which diminish by

grade and are associated with better clinical outcomes. Thus, the

results are consistent with a model whereby higher steady-state

Neural G0 populations remove cells from the pool of cycling cells,

leading to slower tumor growth.

CRISPR-Cas9 gene knockout screens identify regulators of Neural
G0 in vitro

Given the association of Neural G0 populations with more indolent

glioma tumor growth, we wished to investigate whether the Neural

G0 state indeed causes slower cell cycles. An alternative hypothesis,

for example, is that Neural G0 in our cultured NSCs or in gliomas

could represent a "terminal" exit from the cell cycle, rather than a

transient G0-like state. For cultured hNSCs, we reasoned that if

Neural G0 ingress/egress is rate-limiting for NSC cell cycles, dimin-

ishing Neural G0 would cause NSCs to cycle faster. If true, a simple

▸Figure 5. Identifying GBM-specific Neural G0 marker genes and application to 641 human gliomas.

A A GBM-specific Neural G0 expression signature was developed using four GBM scRNA-seq datasets with a total of 47,169 cells (Darmanis et al, 2017; Neftel et al,
2019; Bhaduri et al, 2020; Wang et al, 2020). The ccAF classifier was applied to each dataset, marker genes were discovered for the Neural G0 phase in each dataset,
and 22 common marker genes were identified between all four datasets.

B A network showing the inter-relatedness of the 22 common GBM-specific Neural G0 marker genes. Genes with red circles were previously known to be associated
with GBM in the DisGeNET database.

C Violin plot showing PLP1 expression across all cell types from Darmanis et al, 2017. Data are log 10-transformed before plotting. Expression of PLP1 in single cells is
much higher in oligodendrocytes (Oligo) than in Neural G0 or oligodendrocyte progenitor cells (OPC).

D Violin plot showing GFAP expression across all cell types from Darmanis et al, 2017. Data are log 10-transformed before plotting. Expression of GFAP in single cells is
more highly expressed in Neural G0 relative to all other cell types.

E Violin plot showing AQP4 expression across all cell types from Darmanis et al, 2017. Data are log 10-transformed before plotting. Neural G0 expression of AQP4 in
single cells is similar to astrocytes but has a lower median expression and lower upper limit.

F Relative neural G0 eigengene expression between grade II (n = 226), III (n = 244), and IV (n = 150) tumors (TCGA; LGG and GBM). An eigengene represents the
common variation across each patient tumor for the Neural G0 genes, i.e., first principal component corrected for direction if necessary. All pairwise Student’s t-tests
comparisons had P-values < 0.003.

G Comparison of cell cycle (54 genes annotated to the Seurat G2 M classifier gene list) and Neural G0 eigengene relative expression in each glioma. Each tumor is
colored by its grade (green = II, red = III, and purple = IV).

H Kaplan–Meier survival plot of tumors with top 25% (n = 171) and bottom 25% (n = 171) of Neural G0 eigengene expression of Neural G0 genes. A Fleming–
Harrington survival P-value was used to determine significance. Shaded region is the 95% confidence interval for the survival curve.

I Distribution of tumor grade between tumors with top 25% and bottom 25% of Neural G0 eigengene expression.
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pooled LV-CRISPR-Cas9 sgRNA library outgrowth screen in normal

culture conditions should reveal overrepresented sgRNAs that cause

diminished Neural G0 (Appendix Fig S11A).

To this end, we performed four separate CRISPR-Cas9 outgrowth

screens, using three separate libraries, two different time points

(10 days versus ~3 weeks), and two different human NSC isolates,

CB660 and U5 (Appendix Figs S11 and S12; Dataset EV7) (Pollard

et al, 2006; Bressan et al, 2017). These screens revealed dozens of

candidate screen hits significantly enriched at the end of outgrowth

period (Appendix Fig S12A). The sgRNAs targeted genes found

mutated across 35 different tumor types (Appendix Fig S12C) and

validated tumor suppressor genes (Futreal et al, 2004) (Appendix Fig

S12D). Examining the intersection of all of the screen data revealed

five reproducible and robust proliferation-enhancing screen hits:

CREBBP, NF2, PTPN14, TAOK1, and TP53 (Appendix Figs S11 and

S12A and B). These genes have previously suggested roles in the p53

pathway (for TP53 and CREBBP) (Ito et al, 2001; Fischer, 2017) or the

Hippo-YAP signaling pathway (for NF2, PTPN14, and TAOK1) (Zhang

et al, 2010; Lin et al, 2013; Wilson et al, 2014; Plouffe et al, 2016). The

p53 pathway has well-documented roles as a tumor and growth

suppressor in brain tumor cells (Mercer et al, 1990; Van Meir et al,

1995; Brennan et al, 2013). The Hippo-Yap signaling pathway has been
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implicated in the GBM proneural-to-mesenchymal transition to

promote mesenchymal tumor cell expansion and tumor regrowth after

standard of care (Minata et al, 2019). We chose to characterize the

impact of these genes on Neural G0 further.

Knockout (KO) of CREBBP, NF2, PTPN14, TAOK1, and TP53 in

hNSCs caused a significant proliferative advantage over control cells

in a 23-day outgrowth competition assay. In contrast, KO of the

essential gene KIF11 showed the opposite result (Appendix Fig

S12A). However, the competitive advantage did not appear to be

based on differences in survival since no changes in Annexin-V

staining were observed following normal culturing or in co-cultures.

Apoptosis remained < 2% regardless of the experimental condition.

Using cell proliferation assays (Appendix Fig S13B–D), we

found that each KO significantly increased cell accumulation in 48-

to 96-h outgrowth assays. Importantly, this effect was independent

of cell density, as KO cells showed increased proliferation at both

low and high densities (Appendix Fig S13B). Further, the doubling

time significantly decreased for each KO, shortening from ~50 h to

30–40 h (Appendix Fig S13E), similar to two GSC isolates used in

the same assay.

Neural G0 is a transient state of variable length which
determines hNSC cell cycle length and is reduced after KO of
CREBBP, NF2, PTPN14, TAOK1, or TP53

We utilized the fluorescent ubiquitination cell cycle indicator

(FUCCI) system to further investigate changes in cell cycle dynamics

(Sakaue-Sawano et al, 2008). In normal culture conditions, ~63% of

U5-NSCs cells were in G0/G1, ~15% were in S/G2/M, and the

remainder were transitioning between these phases (Fig 6A). KO of

CREBBP, NF2, PTPN14, TAOK1, or TP53, however, caused a

dramatic loss of the G0/G1 populations (reducing the frequency to

47-38%) and significantly lowered the ratio of G0/G1 to S/G2/M

cells (~2- to 4-fold lower) (Fig 6B and C).

We also measured transit time through G0/G1 and S/G2/M in

individual NSCs using time-lapse microscopy (Fig 6D; Appendix Fig

S14). We found that our control hNSCs exhibit variable G1 transit

times and a wide distribution of G0/G1 transit times, from fast

(4.3 h), medium, and extremely slow (95 h; averaging 32.5 h;

Fig 6D). By contrast, S/G2/M transit times were much more

uniform (~12.4 h; Fig 6D). KO of CREBBP, NF2, PTPN14, TAOK1, or

TP53 dramatically collapsed the distributed G0/G1 transit times

leading to a highly significant, faster transit of < 11.7 h in KOs (P-

value<0.0001; Fig 6D and Appendix Fig S14). S/G2/M transit times

were not significantly affected. GSCs also exhibit collapsed and

faster G0/G1 transit times similar to the KO hNSCs (Fig 6D).

To further examine possible changes in G0/G1 dynamics, we exam-

ined molecular features associated with G0, G1, and Late G1

(Appendix Fig S15A), including Rb phosphorylation, CDK2 activity,

and p27 accumulation. In mammals, cell cycle ingress is governed by

progressive phosphorylation of Rb by CDK4/6 and CDK2 as cells pass

through the restriction point in Late G1, causing de-repression of E2F

transcription factors (Weinberg, 1995; Zetterberg et al, 1995; Sherr &

McCormick, 2002; Yao et al, 2008). We observed that KO of CREBBP,

NF2, PTPN14, TAOK1, or TP53 in U5-NSCs results in a pronounced

increase in the intensity of phosphorylated Rb during G1, consistent

with enrichment of the Late G1 state (Appendix Fig S15B).

CDK2 activity correlates with cell cycle progression. If CDK2

activity levels are low during G1, cells enter G0 (Spencer et al,

2013); if CDK2 activity is intermediate (relative to its peak during

G2/M), they progress past the restriction point and into S phase

(Spencer et al, 2013). Using the steady-state cytoplasmic to nuclear

ratios of a DNA helicase B (DHB)-mVenus reporter as a readout of

CDK2 activity (Hahn et al, 2009; Spencer et al, 2013), we observed

significant increases in CDK2 activity in each KO in G0/G1 cells

(Appendix Fig S15C and D). This was true either by total intensity

or the proportion of cells with a reporter ratio greater than 1, a ratio

which corresponds with the entrance to S phase observed in

mammary epithelium (Spencer et al, 2013). Control cells averaged

~8% of G1 cells with > 1 cytoplasmic:nuclear reporter ratios CDK2

activity, while KOs were 20-27% (Appendix Fig S15D).

Another hallmark of G0/quiescence is the stabilization of p27, a

G1 cyclin-dependent kinase (CDK) inhibitor required for maintain-

ing G0 (Coats et al, 1996; Susaki et al, 2007). Consistent with loss of

transient G0 cells, we observed that KO of CREBBP, NF2, PTPN14,

TAOK1, or TP53 resulted in a significant reduction of p27 levels in

proliferating NSCs (Appendix Fig S15E and F).

Collectively, the above data demonstrate that KO of proliferation-

limiting genes in U5-NSCs causes a cell autonomous decrease in cell

cycle length with less distributed and faster G0/G1 transit times, an

increase in the molecular features associated with Late G1, and a

reduction in the molecular features associated with G0 (Appendix Fig

S15G). These data are consistent with KOs either blocking the entry of

cells into a transient G0 state or causing failure to maintain cells in G0.

Therefore, we call these G0-skip genes.

G0-skip mutants reprogram G0/G1, diminishing Neural G0
gene expression

To further characterize G0-skip genes, we performed a gene expres-

sion analysis of KO cells specifically in G0/G1 phase. To this end,

RNA-seq was performed on mCherry-CDT1+ sorted NSCs after KO,

▸Figure 6. Reduction of G0/G1 transit time in NSCs after KO of CREBBP, NF2, PTPN14, TAOK1, or TP53.

A Representative contour plot of flow cytometry for FUCCI (Sakaue-Sawano et al, 2008) in U5-NSCs after targeting of a non-growth limiting (NGL) control gene, GNAS1.
Values are similar to wild type and non-targeting control (NTC) U5-NSCs under similar culture conditions. The system relies on cell cycle-dependent degradation of
fluorophores using the degrons from CDT1 (amino acids (aa) 30-120) (present in G0 and G1; mCherry) and geminin (aa1–110) (present in S, G2, and M; monomeric
Azami-Green (mAG)).

B Representative contour maps of flow cytometry for FUCCI following the loss of NF2, PTPN14, TAOK1, CREBBP, and TP53.
C Ratio of G0/G1 (mCherry-CDT1+) to S/G2/M (mAG-Geminin+) from (A) and (B). Values are mean from 4 individually tested LV guides per gene at 21 days post-selection.
D G0/G1 and S/G2/M transit times using time-lapse microscopy and FUCCI. Differences in G0/G1 are statistically significant with P < 0.001 for targeted U5-NSCs and

P = 0.0006 for GSC-131 compared to NTC.

Data information: The data are presented as the mean � SD. Supporting information is provided in Appendix Fig S14. Significance was assessed using a two-tailed
Student’s t-test (C) or Mann–Whitney test (D).
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which captures both G0 and G1 subpopulations (Fig 7A; Dataset

EV8). In control NSCs, as expected, comparing G0/G1-sorted cells to

unsorted populations revealed down-regulation of genes involved in

cell cycle regulation, DNA replication, and mitosis (Fig 7A; Dataset

EV9). Overall comparisons between the KOs and non-targeting

control (NTC) U5-NSCs showed that KO of NF2 and PTPN14 were

most similar by unsupervised clustering and the most overall gene

changes, while TAOK1 KO was most similar to the controls (Fig 7B).
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However, a comparison of the overlapping up- or down-regulated

genes showed that TAOK1 KO up-regulated genes were more similar

to NF2 and PTPN14 KO than the other KOs (Appendix Fig S16A).

We next evaluated whether KO of the G0-skip genes were consis-

tent with previously published and suggested roles in the p53 path-

way (for TP53 and CREBBP) (Ito et al, 2001; Fischer, 2017) or the

Hippo-YAP signaling pathway (for NF2, PTPN14, and TAOK1)

(Zhang et al, 2010; Lin et al, 2013; Wilson et al, 2014; Plouffe et al,

2016). Evaluating p53 target genes, we found that only TP53 KO

significantly down-regulated the expression of high confidence p53

targets including BAX, CDKN1A/p21, RRM2B, and ZMAT3 (Fig 7C;

Appendix Fig S16B) (Fischer, 2017). However, none of the other

KOs showed inhibition of p53 targets or p53 itself, strongly suggest-

ing that the other G0-skip genes are not acting through p53-

dependent transcriptional activity.

Evaluation of 55 conserved HIPPO-YAP pathway transcriptional

targets (Cordenonsi et al, 2011) revealed that each KO, except for

CREBBP, showed significant enrichment for YAP targets with NF2

KO having increased expression of the largest subset (Fig 7C;

Appendix Fig S16C–E). Interestingly, NF2 KO activated one subset of

YAP targets important in the biological process of extracellular matrix

(ECM) organization, while TAOK1 KO activated a different subset of

YAP targets important in nuclear chromosome segregation, such as

during mitosis (Appendix Fig S16C–E). NF2 and PTPN14 KO shared

the most overlap in YAP target activation, including targets considered

universal Hippo-YAP targets (e.g., CTGF, CYR61, and SERPINE1).

Intriguingly, many of these Hippo-YAP target genes can be found in

the mesenchymal GBM gene signature and are also up-regulated as the

result of the GBM proneural-to-mesenchymal transition (e.g.,

ANGPTL4, COL1A1/2, CTGF, CYP1B1, ITGA1, LIF, and THBS1)

(Minata et al, 2019).

We next used the ccAF classifier to determine whether genes

associated with each phase change in G0/G1 populations after KO

of CREBBP, NF2, PTPN14, TAOK1, or TP53. We observed that

Neural G0 was significantly down-regulated in each KO (Fig 7D,

Appendix Fig S17), which included those expressed in quiescent

NSCs and others cited above with key roles in neural development

(e.g., CLU, HOPX, ID3, PTN, PTPRZ1, SOX2, and SOX4;

Appendix Fig S17B and C). By contrast, genes from the Late G1 clus-

ter, including, for example, CCND1 and MYC, were significantly up-

regulated in each KO, with TAOK1 KO cells additionally showing an

increase in cell cycle phases as well (Fig 7E; Appendix Fig S18A–C).

Examination of G0/G1-sorted populations from two GSC isolates

(0131-mesenchymal and 0827-proneural) showed similar trends,

with suppression of Neural G0 and G1 signatures and higher expres-

sion of S and G2/M genes (Appendix Fig S19).

For NSC KOs, we also performed a more in-depth analysis of

transcriptional changes of cell cycle genes and novel gene sets

(Appendix Fig S20). These included cell cycle genes that could be

causal for reprogramming G0/G1 dynamics, such as up-regulation

of G1 cyclins, E2F1/2 or down-regulation of CDKN1A/p21 and

CDKN1B/p27 (Appendix Fig S20A). We also noted that for both NF2

and PTPN14 KO, there was up-regulation of various Hippo-YAP

pathway members, including LATS2, TEAD1, and YAP1, suggesting

a possible feedback regulation of the pathway unique to NF2 and

PTPN14 (Appendix Fig S20B). TAOK1 KO, in contrast to other KOs,

strongly up-regulated > 40 key regulators of mitosis (e.g., AURKA,

BUB1, CCNB1/2, CDK1, and KIF11), suggesting it may act to inhibit

their precocious activation in G0/G1 or expression after completion

of mitosis (Appendix Fig S20C).

CREBBP KO, unique among KOs, caused up-regulation of key

nuclear-encoded mitochondrial genes, including members of the

NADH dehydrogenase complex, the succinate dehydrogenase

complex, and mitochondrial DNA polymerase (Appendix Fig S20D),

which are direct transcriptional regulatory targets of nuclear respira-

tory factors 1 and 2 (NRF1 and NRF2) (Kelly & Scarpulla, 2004).

Finally, to more directly confirm reprogramming of G0/G1 popu-

lation in a G0-skip mutant, we applied the ccAF classifier to scRNA-

seq profiles from CDT+ G0/G1-sorted hNSCs with KO of TAOK1 and

compared that to WT sorted scRNA-seq profiles (Fig 7F and G). The

percentage of Neural G0 phase classified cells in CDT+ WT was

16.3% and was significantly reduced to 4.1% in CDT+ TAOK1 KO

(P-value < 2.2 × 10�16; Fig 7G). The S phase classified cells were

also significantly decreased in CDT+ WT versus CDT+ TAOK1 KO

cells (from 2.7% to 0.67%; P-value = 9.9 × 10�7). On the other

hand, the Late G1 classified cells were significantly increased (from

5.8 to 17.0%; P-value < 2.2 × 10�16), as were cells in the M/Early

G1 (from 11.2 to 18.8%; P-value = 8.3 × 10�13) and G2/M (from

1.0 to 1.6%; P-value = 0.036). The expansion of the M/Early G1 in

TAOK1 KO cells could explain the increase in mitotic genes

observed in the bulk G0/G1 RNA-seq data in TAOK1 KO cells

(Fig 7F), suggesting that TAOK1 helps attenuate the expression of

mitotic genes from the previous cell cycle. The highly significant

drop in Neural G0 cells and redistribution to the mitotic adjacent

Late G1 and M/Early G1 phases supports the hypothesis that NSC

G0-skip mutants lose a significant fraction of the Neural G0

▸Figure 7. Transcriptional reprogramming of G0/G1 following loss of G0-skip genes.

A Schematic of G0/G1 sorting for gene expression analysis: mCherry-CDT1+ U5-NSCs (red box), heat maps of log2(fold-change) between G0/G1 NTC the significantly
altered genes (FDR < 0.05) between WT unsorted U5-NSCs and non-targeting control (NTC) and WT G0/G1 U5-NSCs, and gene ontology analysis (Young et al,
2010) of some of the top biological processes down-regulated and reactome groups (Yu & He, 2016) up-regulated in the G0/G1-sorted cells. Full list in Datasets
EV10 and EV11.

B Dendrogram of unbiased hierarchical clustering of gene expression from G0/G1-sorted U5-NSCs with the number genes up (green) and down (red) regulated
(FDR < 0.05) in each KO compared to NTC. Complete results in Dataset EV10.

C Heat map of log2FC compared to NTC for key genes changed in G0/G1 in following loss of TP53, NF2/PTPN14, TAOK1, and/or CREBBP, including genes from TP53
targets, YAP targets, the cell cycle, Hippo signaling, and electron transport genes. White dots indicate FDR < 0.05.

D, E Significance of overlap of the down (D)- and up (E)-regulated genes from bulk RNA sequencing of G0/G1-sorted cells with the single-cell cluster definitions (up-
regulated genes). Significance assessed through hypergeometric enrichment test P-values. RF = representation factor.

F Fraction of cells classified by ccAF into the cell cycle phases for scRNA-seq profiles from CDT+ sorted WT and sgTAOK1 U5-NSCs.
G Comparison of the proportions of each cell cycle phase between CDT+ sorted WT and sgTAOK1 U5-NSCs. Significance was assessed using the proportion test.

*≤ 0.05; **≤ 1 × 10�6.
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subpopulation and reprogram G1 transcription networks to promote

entry into G1-S.

Discussion

We used scRNA-seq profiling and functional genomics screens to

understand a fundamental difference between the in vitro self-

renewal pattern of hNSCs and hGSCs. NSCs display a slower

doubling rate due to a slower and variable length transit through

G0/G1 even though hNSCs and hGSCs are isolated and grown in the

same defined culture conditions. The rest of the cell cycle timing is

uniform (as shown in the cell cycle phase time analysis of Fig 6B).

By contrast, the GSCs have a uniform transit time through each

phase of the cell cycle, including G0/G1, which results in a faster

doubling rate. This result is perhaps not surprising given the known

roles of oncogenic drivers to effect entry into the cell cycle

(Hanahan & Weinberg, 2000, 2011). However, we probed this dif-

ference by transcriptionally resolving the NSC cell cycle into seven

phases using scRNA-seq: G1, Late G1, S, S/G2, G2/M, M/Early G1,

and a quiescence-like state Neural G0. We found that Neural G0 is

highly enriched for markers of adult NSC quiescence. Through

phenotypic assays and identification of fast growing "G0-skip"

mutants, we determined that it is NSCs’ ingress into and variable

egress out of Neural G0 that determines the length of their cell cycle.

Thus, Neural G0 is a transient quiescent state, which is diminished

in GSCs in vitro (i.e., grade IV glioma isolates).

The scRNA-seq profiling of NSCs demonstrated that the current

gold standard scRNA-seq cell cycle classifier (i.e., ccSeraut) did not

adequately account for our de novo cell clusters including, Neural

G0. Therefore, we created a new ccAF cell cycle classifier using a

neural network-based approach. We validated the classifier by accu-

rately classifying gold standard studies for Neural G0, S, and M

phases of the cell cycle. The new classifier better accounts for our

hNSCs cell cycle phases as judged by RNA velocity, gene expression

vectors, and cyclin/CDK expression. It also better represents cell

cycle phases in non-neuroepithelial-derived cell types, including

HeLa and 293T cells, where Neural G0 subpopulations are absent.

Moreover, ccAF accurately resolved populations of quiescent and

activated adult NSCs from scRNA-seq data. The classifier also identi-

fied candidate Neural G0 populations among neural progenitors

during fetal brain development, which generally diminish during

differentiation. Finally, we have made the ccAF classifier available

in a variety of useful forms (see Data Availability). Thus, ccAF is a

useful tool for scRNA-seq classification of neuroepithelial- and non-

neuroepithelial-derived cell types and for identifying novel subpopu-

lations in a variety of biological contexts in actively dividing cell

populations.

Application of ccAF to human glioma single-cell and bulk tran-

scriptome profiles also revealed exciting insights into the structure

of low- and high-grade glioma tumor populations. First, we again

observed that ccAF does a better job at classifying cell cycle subpop-

ulations for glioma than ccSeraut. The ccAF can classify G0/G1

populations into Neural G0, G1, and M/Early G1 across different

developmental subtypes. Second, ccAF and Neural G0 expression

patterns revealed a general trend that less aggressive grade II and III

tumors have higher proportions of Neural G0 categorized cells than

grade IV GBMs. Moreover, increased expression of Neural G0 genes

was associated with better patient prognosis, negatively correlated

with the proliferative state in gliomas, and was independent of

tumor grade and IDH1/2 mutation status. Additionally, the Neural

G0 state was shown to account for survival variance that is indepen-

dent from active cell cycling, which means that the Neural G0 state

is not simply the antithesis of active cell cycle states. Instead, the

Neural G0 state has novel biological mechanisms regulating flow

into and out of the G0 state that go beyond the biology of the active

cell cycle. These results are consistent with Neural G0 acting as a

barrier to progression in low-grade gliomas by promoting a longer

pause between cell cycles, which is overcome in secondary gliomas.

In GBM tumors, the Neural G0 subpopulation contained putative

glioma stem-like cells (as revealed by the scheme derived from

Bhaduri et al, 2020), which represent 9.6% of the total tumor popu-

lation. The mesenchymal subpopulation had the fewest Neural G0

classified cells (~40%), which is still a significant portion. These

results are consistent with Neural G0 cells acting as a stem cell

reservoir for non-mesenchymal subtypes, while mesenchymal/Neu-

ral G0 co-classified cells may capture cells that are in the process of

undergoing proneural-to-mesenchymal transitions (Bhat et al, 2013;

Halliday et al, 2014; Segerman et al, 2016). Future studies are

warranted to determine whether the Neural G0 classified subpopula-

tion contains terminally differentiated neoplastic cells, as it is diffi-

cult to assess given that tumor driver genes tend to interfere with

lineage commitment.

The Neural G0 state is not exclusive to the neuroepithelial

lineage (i.e., astrocytes, OPCs, RGs, and glioma cells). Instead,

each Neural G0 cell is enriched for a portion, but not all, of the

158 genes present in the hNSCs’ Neural G0, which helps distin-

guish it from G1 and other cell cycle phases. Thus, Neural G0

represents a mixed state that incorporates elements of qNSC and

other neural progenitors, which likely results from the multipo-

tency of fetal hNSCs combined with the effects of their ex vivo

culture environment. G0-like states for non-neuroectoderm cells

might be identified using an alternative set of developmental

markers (e.g., Mesoderm G0).

With regard to the function, one possibility is that Neural G0

provides a compartment for the maintenance of neurodevelopmen-

tal potential. That is, it could allow time for reinforcing transcrip-

tional and epigenetic programs associated with neurodevelopment

gene expression. Consistent with this possibility, Neural G0 genes

are up-regulated in quiescent NSCs in vivo and diminished during

neural differentiation programs during corticogenesis or by KO of

G0-skip genes in CDT+ NSCs. Moreover, multiple Neural G0 genes

significantly enriched in NSCs and glioma Neural G0 cells are

known to help maintain "stemness". For example, HEY1 and

TTYH1, are both key players in the Notch signaling pathway in

NSCs and help maintain the NSC identity in vivo (Kim et al, 2018;

Than-Trong et al, 2018). PTN and its target PTPRZ1 also may help

promote stemness, signaling, and proliferation of neural progenitors

and glioma tumor cells (Fujikawa et al, 2016, 2017; Zhang et al,

2016b). Moreover, FABP7 expression and activity have been associ-

ated with lipid metabolism in slow-cycling GBM tumor cells

(Hoang-Minh et al, 2018), consistent with Neural G0 state. Other

functions for Neural G0 could include time for repair of DNA lesions

that persist from the previous cell cycle (Arora et al, 2017; Barr

et al, 2017), oxidative stress/mitochondrial maintenance (Mohrin &

Chen, 2016), or regulation of structural RNAs (e.g., rRNAs, tRNAs)
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(Roche et al, 2017). Future studies will be required to address these

and other possibilities.

Lastly, we found that KO of five genes, CREBBP, NF2, PTPN14,

TAOK1, or TP53, diminish Neural G0 in vitro in hNSCs. Gene

expression changes in G0/G1 populations of KOs confirmed a

reduction of Neural G0 genes and characteristic gene expression

changes associated with the p53 transcriptional network, Hippo-

YAP targets, cell cycle gene regulation, and many novel targets

and pathways, including those downstream of CREBBP and

TAOK1. Interestingly, in glioma, Hippo-Yap pathway activity has

been shown to significantly increase with grade and is associated

with shortened patient survival (Orr et al, 2011; Zhang et al,

2016a). Moreover, proneural tumors exhibit the lower Hippo-Yap

pathway activity while mesenchymal tumors, the highest (Orr

et al, 2011; Guichet et al, 2018). These data fit well with this

pathway diminishing Neural G0 gene expression to promote a

mesenchymal transition in more aggressive GBM cells (Bhat et al,

2013; Halliday et al, 2014; Segerman et al, 2016). However, it is

less clear whether p53 would have a similar role in promoting

G0-like states in tumors. TP53 is among the most frequently

altered genes in lower grade gliomas (26–74%) and in GBM

(~30%) tumors (TCGA data; cbioportal). There are many exam-

ples of p53-independent pathways that regulate G0 ingress/egress

in tumor contexts (e.g., Chen et al, 2012; Brown et al, 2017).

Consistent with this possibility, p27, but not p53-inducible p21,

expression is significantly associated with longer-term survival in

gliomas (Kirla et al, 2003). Thus, in in vitro hNSCs, low-level

cellular stresses or DNA damage may trigger partial p53 activa-

tion and a transient p21-dependent G0-like state via CDK2 inhibi-

tion, as has been reported for other cell types (Spencer et al,

2013). Regardless of whether p53 functions in this capacity

in vivo, other pathways affecting G0 ingress/egress (e.g., microen-

vironmental signaling and transcriptional gene network pathways)

will ultimately converge on the same set of regulatory events

affecting cell cycle engine activity (e.g., raising or lowering

CyclinE/A/CDK2 activity). Thus, our results have relevance as a

model of G0-like states and Neural G0 gene expression. Further,

other G0-skip genes CREBBP, NF2, PTPN14, and TAOK1 function

independently of p53 (since they do not affect p53 target genes)

and, thus, when mutated attenuate G0 through other mecha-

nisms, including affecting transcription of key cell cycle targets

(e.g., CCNA2, CCND1, CDKN2C, and MYC). Future studies will be

required to address how these genes and pathways might affect

G0-like states in NSCs and tumors.

Collectively, our data reveal Neural G0 is a cellular state shared

by multiple neural epithelial-derived stem and progenitor cell types,

which likely plays key roles in neurogenesis and glioma tumor

development and recurrence.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

U5-NSC human fetal neural stem cells Jackson Lab B6.129P2Gpr37tm1Dgen/J

0131 GSC human adult glioma stem cells Son et al (2009) Cell 4: 440–452 0131

0827 GSC human adult glioma stem cells Son et al (2009) Cell 4: 440–452 0827

Recombinant DNA

mCherry-CDT1(aa30–120) Dr. Atsushi Miyawaki FUCCI

mAG-Geminin(aa1–110) Dr. Atsushi Miyawaki FUCCI

Antibodies

Anti-CREBBP (WB, 1:500) Cell Signaling 7389

Anti-NF2 (WB, 1:200) Santa Cruz SC-332

Anti-Beta-Actin (WB,1:1,000) Cell Signaling 3700

Anti-H4 (WB, 1:2,000) Abcam 17036-100

Anti-phosphorylated RB (Ser807/811) (IF, 1:1,600) Cell Signaling 8516

Anti-Rabbit AF647 (2°, IF, 1:200) Fisher A21245

Anti-GFAP (IF, 1:1,500) Millipore AB5804

Anti-b-tubulin III (TUJ1) (IF, 1:400) Chemicon MAB1637

Anti-Nestin (IF, 1:250) Santa Cruz sc-23927

Anti-Sox2 (IF, 1:200) Cell Signaling 3579S

Anti-Mouse AF488 (2° IF, 1:200) Fisher A11001

Anti-Rabbit AF568 (2° IF, 1:200) Fisher A11011
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

Oligonucleotides and other sequence-based reagents

PCR primers This study Table EV9

Guide sequences This study Table EV9

Chemicals, Enzymes and other reagents

Chromium Next GEM Single Cell 30 kit 10X Genomics CAT#1000269

Software

CellRanger https://support.10xgenomics.com/
single-cell-gene-expression/software/
pipelines/latest/what-is-cell-ranger

scRNA-seq Alignment and QC

Seurat v2.3.4 (R) https://satijalab.org/seurat/install.html
#previous

scRNA-seq analysis

Seurat v3.1.2 (R) https://satijalab.org/seurat/install.html#cran scRNA-seq analysis

scanpy v1.5.1 (Python) https://scanpy.readthedocs.io/en/stable/ scRNA-seq analysis

Other

Chromium Controller 10× Genomics scRNA-seq

TapeStation Agilent Library QC

Qubit 2.0 Fluorometer Fisher Library QC

HiSeq 2500 Illumina Sequencing

Methods and Protocols

Cell culture
The U5 fetal human NSC line (Bressan et al, 2017) and adult

0131-mesenchymal and 0827-proneural human GSC lines (Son

et al, 2009) were grown in NeuroCult NS-A basal medium (Stem-

Cell Technologies) supplemented with B27 (Thermo Fisher), N2

(2× stock in Advanced DMEM/F-12 (Fisher) with 25 lg/ml insulin

(Sigma), 100 lg/ml apo-Transferrin (Sigma), 6 ng/ml proges-

terone (Sigma), 16 lg/ml putrescine (Sigma), 30 nM sodium

selenite (Sigma), and 50 lg/ml bovine serum albumin (Sigma),

and EGF and FGF-2 (20 ng/ml each) (Peprotech) on laminin

(Sigma or Trevigen)-coated polystyrene plates and passaged

according to previously published protocols (Pollard et al, 2009).

Cells were detached from their plates using Accutase (Thermo

Fisher). 293T (ATCC) cells were grown in 10% FBS/DMEM

(Invitrogen).

Flow cytometry
FUCCI constructs (RIKEN, gift from Dr. Atsushi Miyawaki) were

transduced into wild-type U5-NSCs and sorted sequentially for

the presence of mCherry-CDT1(aa30–120) and S/G2/M mAG-

Geminin(aa1–110) on an FACSAria II (BD). Normal growth was

verified post-sorting and then the FUCCI U5-NSCs were trans-

duced with individual sgRNA-Cas9 (4 independent guides per

gene) and selected with 1 lg/ml puromycin. Cells were grown

out for 21 days with splitting every 3–4 days and maintaining

equivalent densities. Cells were counted (Nucleocounter NC-100;

Eppendorf) and plated 3 days before analysis on an LSR II (BD).

Controls cultured in the same conditions included cells trans-

duced with guides against 3 non-growth limiting genes, including

GNAS1, and showed equivalent FUCCI ratios. Results were

analyzed using FlowJo software.

Single-cell RNA sequencing sample preparation
Single-cell RNA sequencing was performed using 10× Genomics’

reagents, instruments, and protocols. scRNA-seq libraries were

prepared using GemCode Single Cell 30 Gel Bead and Library Kit.

FUCCI U5-NSCs (both with and without lentiviral TAOK1 KO,

> 14 days outgrowth) were harvested and half the cells were

sorted using the FACSAria II (BD) for cells singly positive for

mCherry-CDT1 FUCCI. Sorted cells were kept on ice before

suspensions were loaded on a GemCode Single Cell Instrument to

generate single-cell gel beads in emulsion (GEMs) (target recov-

ery: 2,500 cells). GEM-reverse transcription (RT) was performed

in a C1000 Touch Thermal cycler (Bio-Rad), and after RT, GEMs

were broken and the single-strand cDNA was cleaned up with

DynaBeads (Fisher) and SPRIselect Reagent Kit (Beckman Coul-

ter). cDNA was amplified, cleaned up, and sheared to ~200 bp

using a Covaris M220 system (Covaris). Indexed sequencing

libraries were constructed using the reagents in the GemCode

Single Cell 30 Library Kit, following these steps: (i) end repair and

A-tailing; (ii) adapter ligation; (iii) post-ligation cleanup with

SPRIselect; and (iv) sample index PCR and cleanup. Library size

distributions were validated for quality control using a 2200

TapeStation (Agilent). The barcoded sequencing libraries were

quantified by a Qubit 2.0 Fluorometer (Fisher) and sequenced

using HiSeq 2500 (Illumina) with the following read lengths:

98 bp Read1, 14 bp I7 Index, 8 bp I5 Index, and 10 bp Read2.

Sequencing data can be accessed at the NCBI Gene Expression

Omnibus (GSE117004).

Discovery of cell cycle phases from U5-hNSC scRNA-seq profiles
CellRanger (10× Genomics) was used to align, quantify, and provide

basic quality control metrics for the scRNA-seq data. Using Seurat

version 2.3.0, the scRNA-seq data from wild-type U5 cells

and sgTAOK1 knockout cells were merged and analyzed. Both
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scRNA-seq data were loaded as counts, normalized, and then scaled

while taking into account both percent of mitochondria and the

number of UMIs per cell as covariates. The union of the top 1,000

most variant genes from each dataset was used in canonical correla-

tion analysis (CCA) to merge the two datasets via alignment of their

subspace. Clusters of cells were identified using a shared nearest

neighbor (SNN) modularity optimization-based clustering algo-

rithm. Marker genes for each cluster were identified as differentially

expressed genes, and the determination of 8 clusters was based on

the discovery of strong markers for 6 of the eight clusters (both the

G1 and G1/other clusters did not have significantly up-regulated

marker genes).

Determining the identity of the cell cycle phases
The identity of clusters was determined primarily through the

expression of cyclins and cyclin-dependent kinases and secondarily

through the function of other marker genes. A tSNE visualization

was generated with a perplexity setting of 26. Functional enrichment

was calculated using the TopGO package in R for GO biological

process terms, and significant associations were identified with BH-

corrected P-values ≤ 0.05. CycleBase 3.0 genes with cell cycle arrest

phenotypes when a gene is knocked down or knocked out for

each arrested phase (G0/1 arrest = CMPO:0000173, S arrest =

CMPO:0000204, G2 arrest = CMPO:0000203, and M arrest =

CMPO:0000196) were intersected with the U5-hNSC cell cycle clus-

ter marker gene lists. The cell cycle classifying CellCycleScoring

function in Seurat (ccSeurat) was used to infer the cell cycle state of

all U5-hNSCs for comparison. Significance was assessed using the

hypergeometric distribution, and P-values were corrected for multi-

ple hypothesis tests with the Benjamini–Hochberg FDR method.

Significant enrichments were identified with intersected gene lists

greater than 0 and with BH-corrected P-values ≤ 0.05.

Resolving the flow of cells through the cell cycle
Network analyses were used to determine the connections between

the phases of the cell cycle. First, the cluster medioids (mean

expression for each gene across all the cells from a cluster) were

used to compute the Canberra distance measure. In a cycle like a

cell cycle, it is expected that on average there will be 2 edges

between each cell cycle state. A distance cutoff of 240 led to 2.28

connections per cluster was used to turn the distance matrix into a

network (Futreal et al, 2004).

RNA velocity was used to determine the trajectories of cells

through the two-dimensional tSNE embedding using the Python

packages scanpy and scVelo (Bergen et al, 2020). A loom file was

exported from the U5 hNSC Seurat object and imported into Python

using scanpy and scVelo. The RNA velocity was computed while

grouping the cells based on the cell cycle phases. Then, a velocity

graph was inferred, and the velocity was plotted as RNA velocity

streamlines overlaid onto the tSNE embedding.

Building the ccAF cell cycle classifier
The top 1,536 most variant genes (Ensembl gene identifiers) from

the integrated U5 dataset were used to train each classifier. The

ccAF classifier was evaluated using 100-fold cross-validation using

a hold-out of 1,000 cells for each iteration. Comparisons were

made between classification methods using F1 scores (where an F1

score is a metric that integrates precision and recall and reaches

its maximum value at 1), and error rates were computed using

scikit-learn in Python after each iteration. The classification meth-

ods tested were all Python-based and included (i) support vector

machine with reject option (SVMrej; classification cutoff ≥ 0.7), a

general-purpose classifier from the scikit-learn library; (ii) random

forest (RF), a general-purpose classifier from the scikit-learn

library; (iii) k-nearest neighbor (KNN) from the scanpy ingest

method (Wolf et al, 2018); and (iv) neural network (NN) ACTINN

(Ma & Pellegrini, 2020). Sensitivity analyses were performed by

randomly excluding a defined percentage of classifier genes,

conducting 100-fold cross-validation, and recording the error rate

after each iteration.

Validating S and M phase ccAF classifications using a gold
standard dataset
The ccAF classifier was evaluated using a gold standard dataset of

1,134 most cyclic genes from Whitfield et al, 2002 (Whitfield et al,

2002) (http://genome-www.stanford.edu/Human-CellCycle/HeLa/).

The DNA microarray expression data were quantile normalized, the

ccAF classifier was applied, and F1 scores and error rates were

computed using the scikit-learn library in Python.

Validating the G0 state using gold standard scRNA-seq
profiling studies
Three different gold standard mouse studies (Llorens-Bobadilla

et al, 2015, GSE67833; Dulken et al, 2017, PRJNA324289) that

experimentally determined G0 state using flow-sorting on estab-

lished G0 markers were classified using ccAF. First, each dataset

was converted from mouse Ensembl gene IDs to human Ensembl

gene IDs using homology. The classifier was applied and then

confusion matrices and statistics were computed that allowed

comparison of the experimental and predicted G0 states.

Application of ccAF to neuroepithelial and other scRNA-seq
profiling studies
The ccAF classifier was applied to neuroepithelial development

scRNA-seq profiles from Nowakowski et al, 2017 (http://bit.ly/corte

xSingleCell). It was also applied to HEK293T cells from a barnyard

assay conducted by 10× (https://support.10xgenomics.com/single-

cell-gene-expression/datasets/3.0.2/5k_hgmm_v3_nextgem) to assess

the ability to apply the classifier to non-neuroepithelial scRNA-seq

profiles. A total of 3,468 HEK293T cells were selected from the barn-

yard based on the expression of human transcripts and no expres-

sion of mouse transcripts. The classifier was applied and then

confusion matrices and statistics were computed that allowed

comparison of the experimental and predicted G0 states.

Application of ccAF to tumors
The ccAF was applied to seven studies of glioma primary patient

tumor scRNA-seq: (i) grade II oligodendrogliomas that are IDH1

mutant from Tirosh et al, 2016—GSE70630; (ii) grade III astrocy-

tomas that are IDH1 mutant from Venteicher et al, 2017—

GSE89567; (iii) grade IV glioblastomas that are IDH wild type from

Darmanis et al, 2017—GSE84465; (iv) grade IV glioblastomas that

are IDH wild type from Neftel et al, 2019—GSE131928; (v) grade IV

glioblastomas that are IDH wild type from Bhaduri et al, 2020—

PRJNA579593; (vi) grade IV glioblastomas that are IDH wild type

from Wang et al, 2020—GSE139448; (vii) diffuse midline glioma
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with H3K27M from Filbin et al, 2018—GSE102130. We also applied

the classifier to head and neck squamous cell carcinoma (HNSCC)

tumors from Puram et al, 2017—GSE103322. scRNA-seq profiles

and patient meta-data were collected, normalized and scaled if

necessary, filtered to only neoplastic cells, and saved as loom files

to be loaded into scanpy for classification.

Each GBM dataset went through this analysis pipeline:

1 Raw count data were used when available otherwise processed

data were used. Data were input into Seurat V3 and the stan-

dard scRNA-seq analysis pipeline was applied and, if neces-

sary, normalization and scaling were performed. The quality

of each cell was assessed for studies starting with count data

by plotting the number of UMIs/counts per cell versus percent-

age of mitochondrial gene expression. Cutoffs were determined

from these plots to remove damaged cells or barcodes mapping

to more than one cell.

2 Meta-data were loaded into R and imported into the Seurat

meta.data object for later comparisons.

3 A UMAP embedding and de novo clustering were applied to all

cells from each dataset.

4 Neoplastic cells were enriched for by removing cells that

belonged to a de novo cell cluster expressing genes from a

terminally differentiated cell type: oligodendrocytes (MBP and

PLP1) (Val�erio-Gomes et al, 2018); astrocytes (ETNPPL)

(Zhang et al, 2016c); neurons (RBFOX) (Herculano-Houzel &

Lent, 2005); or immune cells (AIF1, CD14, CX3CR1, PTPRC).

5 Neoplastic cell identify was validated using the inferCNV algo-

rithm applied with the terminally differentiated cells defined in

step 4 as the reference (Patel et al, 2014).

6 The GBM subtypes (CL = classical, MS = mesenchymal, and

PN = proneural) were inferred using single sample GSEA for

GBM (ssGSEA.GBM) from Wang et al, 2017 (Wang et al,

2017). The subtype calls for each cell were loaded up into

Seurat object meta.data.

7 A loom file was written out for each glioma Seurat object so

that the data could be loaded into Python where the ccAF clas-

sifier could be applied.

8 The loom file was loaded up into scanpy in Python. If neces-

sary gene IDs were converted into Ensembl human IDs.

9 The ccAF classifier was applied to each glioma dataset and

stored back into the scanpy object.

10 Downstream analysis integrating ccAF predictions with GBM

subtype and other analyses were then conducted.

Discovering GBM neoplastic cell-specific Neural G0 marker genes
The ccAF-predicted cell cycle states were imported back into the

Seurat objects for each of the four GBM scRNA-seq profiling stud-

ies. The T-statistic-based differentially expressed marker gene

discovery function in Seurat was used to identify genes up-

regulated in Neural G0 relative to all other ccAF cell cycle states

(average log fold-change ≥ 0.3; FDR adjusted P-value ≤ 0.05;

Dataset EV5). The marker gene lists for each GBM scRNA-seq

profiling study were compared and the marker genes common

across all four studies are reported. Gene–gene association

networks were generated and visualized using the GeneMANIA

webtool (Warde-Farley et al, 2010). Previously, GBM-associated

genes from the DisGeNET database (Pi~nero et al, 2015) were

selected based on the same criteria as (Plaisier et al, 2016). The

previously GBM-associated genes were intersected with GBM

neoplastic cell-specific Neural G0 marker genes, and the signifi-

cance of the enrichment of the overlap was assessed using a

hypergeometric P-value.

Classifying putative GBM stem-like cells in GBM tumors
Putative GBM stem-like cells were classified using the logic

provide by Bhaduri et al, 2020: expressing PROM1, FUT4, or

L1CAM, in conjunction with SOX2, and not expressing TLR4. This

was formulated into a logical expression for application to

scRNA-seq count data: (FUT4 > 0 or L1CAM > 0 or PROM1 > 0)

and SOX > 0 and TLR4 == 0. This logic was applied to every cell

in the GBM studies, and cells passing this logic were classified as

putative GBM stem-like cells. Significance of overlap between the

putative GBM stem-like cells and the ccAF classified cell cycle

states was computed using the hypergeometric test.

Deriving eigengenes for Neural G0 and the cell cycle and
association with patient survival
Gene expression matrices of Neural G0 marker genes and cell cycle

genes (G2M genes from ccSeurat) were summarized into a single

vector using the first principal component corrected for sign, which

is referred to as the eigengene. Eigengenes for Neural G0 marker

genes and cell cycle genes were calculated across all 688 low-grade

glioma (LGG) and GBM patient tumors from The Cancer Genome

Atlas (Brennan et al, 2013). A Pearson correlation in R was used to

compare the Neural G0 and cell cycle eigengenes. Patient survival

and the commonly mutated IDH1 and IDH2 gene mutations were

collected into a meta-data matrix for survival analyses. Survival

analyses were conducted in R using the survival package with the

following conditions:

1 The Cox proportional hazards regression method was used to

determine whether Neural G0 eigengene was still a significant

predictor of patient survival with the covariates tumor grade

and IDH1/2 status.

2 The top 25% and bottom 25% of patient expression for all

patients based on Neural G0 eigengene were compared against

patient survival using Kaplan–Meier plot and a G-q Harring-

ton–Fleming P-value. Increased survival time was calculated

based on the difference in observed time to 50% survival and

converted to years.

3 The top 25% and bottom 25% of patient expression for only

patients with grade III tumors based on Neural G0 eigengene

were compared against patient survival using Kaplan–Meier

plot and a G-q Harrington–Fleming P-value. Increased survival

time was calculated based on the difference in observed time

to 50% survival and converted to years.

CRISPR-Cas9 screening
For large-scale transduction, NSC cells were plated into T225 flasks

at an appropriate density such that each replicate had 250–500-

fold representation, using the two previously published CRISPR-

Cas9 libraries (Shalem et al, 2014; Doench et al, 2016) (Addgene)

or a custom-synthesized sgRNA library (Twist Biosciences) target-

ing 1,377 genes derived from (Toledo et al, 2015). NSCs and GSCs

were infected at MOI < 1 for all cell lines. Cells were infected for
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48 h, followed by selection with 1–2 lg/ml (depending on the

target cell type) of puromycin for 3 days. Post-selection, a portion

of cells were harvested at Day 0 time point. The remaining cells

were then passaged in T225 flasks maintaining 250–500-fold repre-

sentation and cultured for an additional 21–23 days (~10–15 cell

doublings) or 10 days. Genomic DNA was extracted using QiaAmp

Blood Purification Mini or Midi kit (Qiagen). A two-step PCR

procedure was performed to amplify sgRNA sequence. For the first

PCR, DNA was extracted from the number of cells equivalent to

250–500-fold representation (screen-dependent) for each replicate

(2–4 replicates) and the entire sample was amplified for the guide

region. For each sample, ~100 separate PCRs (library and represen-

tation dependent) were performed with 1 lg genomic DNA in each

reaction using Herculase II Fusion DNA Polymerase (Agilent) or

Phusion High-Fidelity DNA Polymerase (Thermo Fisher). After-

ward, a set of second PCRs was performed to add on Illumina

adaptors and to barcode samples, using 10–20 µl of the product

from the first PCR. Primer sequences are in Dataset EV10. A

primer set was used to include both a variable 1–6 bp sequence to

increase library complexity and 6 bp Illumina barcodes for multi-

plexing of different biological samples. The whole amplification

was carried out with 12 cycles for the first PCR and 18 cycles for

the second PCR to maintain linear amplification. The resulting

amplicons from the second PCR were column-purified using

Monarch PCR & DNA Cleanup Kit (New England Biolabs; NEB) to

remove genomic DNA and first-round PCR product. Purified prod-

ucts were quantified (Qubit 2.0 Fluorometer; Fisher), mixed, and

sequenced using HiSeq 2500 (Illumina). Bowtie was used to align

the sequenced reads to the guides (Langmead et al, 2009). The R/

Bioconductor package edgeR was used to assess changes across

various groups (Robinson et al, 2010). For the tiling library, only

guides that mapped once to the genome and are within the gene’s

coding region were considered for further analysis.

Raw and mapped data files are available at the Gene Expression

Omnibus database (GSE117004).

Individual lentiviral-sgRNA assembly for validation
For retests, individual or pooled sgRNA were cloned into lenti-

CRISPR v2 plasmid. Briefly, DNA oligonucleotides were synthesized

with sgRNA sequence flanked by the following:

50: tatatcttGTGGAAAGGACGAAACACCg
30: gttttagagctaGAAAtagcaagttaa

PCR was then performed with the ArrayF and ArrayR primers

(Dataset EV10). The PCR product was gel-purified using the Zymo-

Clean Gel DNA recovery kit (Zymo Research). Gibson Assembly

Master Mix (NEB) was used to clone the PCR product into lenti-

CRISPR v2 plasmid (Sanjana et al, 2014). The ligated plasmid was

then transformed into Stellar Competent cells (Clontech) and

streaked onto LB agar plates. The resulting clones were grown up

and sequence verified (GeneWiz).

Lentiviral production
For virus production, lentiCRISPR v2 plasmids (Sanjana et al,

2014) were transfected using polyethylenimine (Polysciences) into

293T cells along with psPAX and pMD2.G packaging plasmids

(Addgene) to produce lentivirus. Lentivirus particles for the

whole-genome CRISPR-Cas9 libraries were produced in 25 ×

150 mm plates of 293T cells seeded at ~15 million cells per plate.

Fresh media was added 24 h later and viral supernatant was

harvested 24 and 48 h after that. For screening, virus was

concentrated 1,000× following ultracentrifugation at 6,800× g for

20 h. For validation, lentivirus was used unconcentrated at an

MOI < 1.

Viability and proliferation assays
Cells were infected with lentiviral gene pools containing 3–4 sgRNAs

per gene or with lentivirus containing a single sgRNA to the respec-

tive gene (Dataset EV10). Initial cell density was carefully controlled

for each experiment by counting cells using a Nucleocounter NC-

100 (Eppendorf) and cells were always grown in subconfluent

conditions. For viability assays, following selection, cells were

outgrown for 7–10 days, harvested, counted, and plated in triplicate

onto 96-well plates coated with laminin in dilution format starting

at 1,000 cells to 3,750 cells per well (cell density depended on cell

isolate and duration of assay). Cells were fed with fresh medium

every 3–4 days. After 7–12 days under standard growth conditions,

cell proliferation rates were measured using Alamar blue reagent

according to the manufacturer’s instructions (Invitrogen). For analy-

sis, sgRNA-containing samples were normalized to their respective

non-targeting control (NTC) samples. For doubling time assays,

cells infected with individual sgRNAs or NTC were routinely

cultured (split every 3–5 days) and counted at each split (Nucleo-

counter NC-100; Eppendorf). The overall growth of each well

containing an individual sgRNA was calculated and compared to

the NTC well. Comparisons between multiple experiments were

normalized.

Competition experiment
NSCs were infected with lentiviral gene pools containing 3–4

sgRNAs per gene, puromycin-selected, and mixed with NSCs

infected with lentiviruses containing turboGFP at an approximate

1:9 ratio, respectively. Cultures were outgrown for 23–31 days, and

flow analysis (FACS Canto; Becton Dickinson) was conducted every

7–8 days for GFP expression. Flow analysis data were analyzed

using FlowJo software. For each sample, the GFP- population for

each time point was normalized to its respective Day 0 GFP- popula-

tion and the NTC (competition index).

Time-lapse microscopy
U5-hNSCs were infected with lentiviral gene pools containing 3–4

sgRNAs per gene or with individual sgRNAs, puromycin selected,

outgrown for > 13 days, and plated onto 96-well plates or 24-well

plates. Plates were then inserted into the IncuCyte ZOOM (Essen

BioScience), which was in an incubator set to normal culture condi-

tions (37° and 5% CO2), and analyzed with its software. For the cell

confluency experiment, phase images were taken every hour for

72 h. For the FUCCI cell cycle experiment, images were taken every

10–15 min for 72–120 h. Cell cycle transit time for G0/G1

(mCherry-CDT1(aa30–120)+) and S/G2/M (mAG-Geminin(aa1–

110)+) was manually scored by three different observers in actively

dividing cells (those that could be followed from mitosis to mitosis).

Each KO was scored by at least 2 independent observers and consis-

tency between scorers was checked through shared analysis of a

standard.
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Western blotting
Cells were harvested, washed with PBS, and immediately either

lysed or snap-frozen and stored at �80°C until lysis. Cells were

lysed with modified RIPA buffer (150 mM NaCl, 50 mM Tris, pH

7.5, 2 mM MgCl2, 0.1% SDS, 2 mM DDT, 0.4% deoxycholate, 0.4%

Triton X-100, 1X complete protease inhibitor cocktail (complete

Mini EDTA-free, Roche) and 1 U/µl benzonase nuclease (Novagen)

at room temperature for 15 min. Cell lysates were quantified using

Pierce 660 nm protein assay reagent and proteins were loaded onto

SDS-PAGE for Western blot. The Trans-Blot Turbo transfer system

(Bio-Rad) was used according to the manufacturer’s instructions.

See Dataset EV10 for antibodies and dilutions. An Odyssey infrared

imaging system was used to visualize blots (LI-COR) following the

manufacturer’s instructions.

Immunofluorescence and CDK2 activity
U5-NSCs were plated on acid-washed glass coverslips (phosphory-

lated Rb and CDK2 activity) or 96-well imaging plates (differentia-

tion; Corning). They were fixed overnight in 2% paraformaldehyde

(USB) at 4°C, washed with Dulbecco’s phosphate-buffered saline

(DPBS) (with calcium and magnesium) (Fisher), and blocked and

permeabilized with 5% goat serum (Millipore), 1% bovine serum

albumin (Sigma), and 0.1% Triton X-100 (Fisher) in DPBS for

45 min at room temperature. Samples were stained with primary

antibody diluted in 5% goat serum in DPBS overnight at 4°C,

washed with DPBS, and stained with secondary antibody (diluted

1:200 in 5% goat serum in DPBS) at 37°C for 45 min. See Dataset

EV10 for antibodies and dilutions. Samples were washed with

DPBS, dyed with 100 ng/ml 40,6-diamidino-2-phenylindole (DAPI)

diluted in DPBS for 20 min at room temperature, and washed with

DPBS. Coverslips were preserved using ProLong Gold Antifade

Mountant (Fisher) and inverted on glass slides. For differentiation,

images were acquired on Nikon Eclipse Ti using NIS-Elements soft-

ware (Nikon).

Phosphorylated Rb and CDK2 activity image analysis
Cells were transduced with mVenus-DNA helicase B (DHB) (amino

acids 994–1,087) (Hahn et al, 2009) (gift from Dr. Sabrina Spencer)

and the mCherry-CDT1 FUCCI and sorted on a FACSAria II flow

cytometer (BD). Cells were outgrown to ensure normal growth and

then transduced with individual sgRNA-Cas9. After > 10 days

outgrowth, cells were counted and plated, grown for 2 days, and

stained for phosphorylated Rb and imaged on a TISSUEFAXS micro-

scope (TissueGnostics), 54 fields per KO or NTC. Cells were

analyzed using CellProfiler (Kamentsky et al, 2011). G0/G1 nuclei

were identified by the presence of the CDT1 FUCCI reporter (25–120

pixel diameter, Global/Otsu thresholding, and distinguishing

clumped objects by shape). CDK2 activity was defined by the cyto-

plasmic to the nuclear ratio of the mVenus-DHB reporter, with the

cytoplasmic intensity of the DHB reporter defined as the upper quar-

tile intensity of a 2-pixel ring around the CDT1-defined nucleus due

to the irregular shape of the U5-NSCs.

p27 reporter
The p27 reporter was constructed after Oki et al (2014), using a p27

allele that harbors two amino acid substitutions (F62A and F64A)

that block binding to cyclin/CDK complexes but do not interfere

with its cell cycle-dependent proteolysis. This p27K� allele was

fused to mVenus to create p27K�-mVenus. To this end, the p27

allele and mVenus were synthesized as gBlocks (IDT) and cloned

via Gibson assembly (NEB) into a modified pGIPz lentiviral expres-

sion vector (Open Biosystems). Lentivirally transduced cells were

puromycin-selected and validated using mCherry-CDT1 FUCCI and

HDAC inhibitor treatment (48 h of 5 lM apicidin (Cayman)) to

induce G0/G1 arrest using FACS (LSR II from Becton Dickinson and

FlowJo software).

Bulk RNA sequencing expression analysis
For G0/G1 NSC, cells singly positive for mCherry-CDT1 FUCCI

were sorted on a FACSAria II (BD) directly into TRIzol reagent

(Life Technologies). For differentiating cells, cells were sparsely

plated and cultured with growth medium without EGF or FGF-2

for 7 days before being lysed with TRIzol reagent. For both, 2

replicates per condition were harvested. RNA was extracted using

Direct-zol RNA MiniPrep Plus (Zymo Research). Total RNA integ-

rity was checked and quantified using a 2200 TapeStation (Agi-

lent). RNA-seq libraries were prepared using the KAPA Stranded

mRNA-seq Kit with mRNA capture beads (KAPA Biosystems)

according to the manufacturer’s guidelines. Library size distribu-

tions were validated using a 2200 TapeStation (Agilent). Addi-

tional library QC, blending of pooled indexed libraries, and

cluster optimization were performed using the Qubit 2.0 Fluorom-

eter (Fisher). RNA-seq libraries were pooled and sequencing was

performed using an Illumina HiSeq 2500 in Rapid Run mode

employing a paired-end, 50 base read length (PE50) sequencing

strategy.

Bulk RNA sequencing data analysis
RNA-seq reads were aligned to the UCSC mm10 assembly using

Tophat2 (Trapnell et al, 2012) and counted for gene associations

against the UCSC gene database with HTSeq (Anders et al, 2015).

Differential expression analysis was performed using R/Bioconduc-

tor package edgeR (Robinson et al, 2010). Samples for G0/G1 bulk

RNA-seq were collected in two batches, so batch-dependent genes

were removed before analysis (inter-batch P-value < 0.01 by

Wilcoxon–Mann–Whitney). To ensure that no genes were elimi-

nated that may be regulated specific to a particular knockout, genes

with a CPM variability > 2-fold compared to the internal batch

control and an expression greater than 1 CPM in at least one sample

were retained. Differentially expressed genes (DEG) at the transcrip-

tion level were found using a statistical cutoff of FDR < 0.05 and

visualized using R/Bioconductor package pheatmap. Kolmogorov–

Smirnov tests were conducted in R using the function ks.test from

the stats package. Raw sequencing data and read count per gene

data can be accessed at the NCBI Gene Expression Omnibus

(GSE117004).

Gene ontology analysis
Gene Ontology (GO)-based enrichment tests were implemented

using GOseq (v 1.23.0) (Young et al, 2010), which corrects for gene

length bias. Gene lists were also analyzed for pathways using the R/

Bioconductor package ReactomePA (v 1.15.4) (Yu & He, 2016). The

analysis used all genes either up or down-regulated with a

FDR < 0.05 compared to NTC. GO terms with adjusted P-values

< 0.05 were considered significantly enriched. Venn diagrams were

generated on http://bioinformatics.psb.ugent.be/webtools/Venn/.
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Analyses of CDT+ sorted scRNA-seq profiles from WT and
sgTAOK1 KO
The ccAF classifier was applied to CDT+ sorted scRNA-seq profiles

from WT and TAOK1 knockout (sgTAOK1). The scRNA-seq data

were preprocessed and normalized as was done for the non-sorted

scRNA-seq profiles, saved as loom files, and loaded into scanpy

for classification by ccAF. The significance of differences in

proportions was tested using the 2 population proportion test

(prop.test) in R.

Statistics and reproducibility
Data are presented as the mean or median � standard deviation

(SD) or standard error of the mean (SEM), as specified in the

Figure legends. Statistics were performed using GraphPad Prism 7.0

or analysis-specific functions in R and Python. All statistical tests

are specified in Figure legends. The number of independent experi-

ments is indicated in the Figures, Figure legends, or Methods. The

significance of enrichment was assessed using the hypergeometric

distribution, and P-values were corrected for multiple hypothesis

tests with the Benjamini–Hochberg FDR method. Significant enrich-

ments were identified with intersected gene lists greater than 0 and

with BH-corrected P-values ≤ 0.05.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• Overarching super series of all data in Gene Expression Omnibus

—GSE117004 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE117004), which contains:

a. U5 and U5-sgTAOK1 scRNA-seq data: Gene Expression

Omnibus—GSE117003 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE117003)

b. CRISPR-Cas9 knockout outgrowth screen in U5 sgRNA data:

Gene Expression Omnibus—GSE117002 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE117002)

c. U5 and knockout bulk RNA-seq data: Gene Expression

Omnibus - GSE116970 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE116970)

• Data used to conduct analyses: figshare.com—Neural G0: a

quiescent-like state found in neuroepithelial-derived cells and glioma

(https://figshare.com/projects/Neural_G0_a_quiescent-like_state_f

ound_in_neuroepithelial-derived_cells_and_glioma/86939)

• Code used to conduct analyses: github.com - U5_hNSC_Neu-

ral_G0 (https://github.com/plaisier-lab/U5_hNSC_Neural_G0)

• Walkthrough of code and analyses: pages.github.io

U5_hNSC_Neural_G0 (https://plaisier-lab.github.io/U5_hNSC_Ne

ural_G0/)

Additionally, this work generated the ccAF classifier which is

available in multiple forms:

• ccAF code: github.com – ccAF (https://github.com/plaisier-lab/ccAF)

• ccAF pypi.org package – ccAF (https://pypi.org/project/ccAF/1.0.1/)

• ccAF installed as a Docker image – cplaisier/ccaf (https://hub.doc

ker.com/r/cplaisier/ccaf)

Expanded View for this article is available online.
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