
RESEARCH ARTICLE

PDKit: A data science toolkit for the digital

assessment of Parkinson’s Disease

Cosmin StamateID, Joan Saez PonsID, David WestonID, George RoussosID*

Department of Computer Science and Information Systems, Birkbeck College, University of London, London,

United Kingdom

* g.roussos@bbk.ac.uk

Abstract

PDkit is an open source software toolkit supporting the collaborative development of novel

methods of digital assessment for Parkinson’s Disease, using symptom measurements cap-

tured continuously by wearables (passive monitoring) or by high-use-frequency smartphone

apps (active monitoring). The goal of the toolkit is to help address the current lack of algorith-

mic and model transparency in this area by facilitating open sharing of standardised meth-

ods that allow the comparison of results across multiple centres and hardware variations.

PDkit adopts the information-processing pipeline abstraction incorporating stages for data

ingestion, quality of information augmentation, feature extraction, biomarker estimation and

finally, scoring using standard clinical scales. Additionally, a dataflow programming frame-

work is provided to support high performance computations. The practical use of PDkit is

demonstrated in the context of the CUSSP clinical trial in the UK. The toolkit is implemented

in the python programming language, the de facto standard for modern data science appli-

cations, and is widely available under the MIT license.

Author summary

Parkinson’s Disease is the fastest growing neurological condition affecting millions of peo-

ple across the world. People with Parkinson’s suffer from a variety of symptoms that result

in diminished ability to move, eat, remember or sleep. Research in new treatments are

limited because the clinical tools used to assess its symptoms are subjective, require con-

siderable time to perform and specialised skills and can only detect coarse-grain changes.

To address this situation, clinicians are turning to smartphone apps and wearables to cre-

ate new ways to assess symptoms that are more sensitive to change and can be applied fre-

quently at home by patients and their carers. In this paper, we discuss PDkit, an open

source toolkit that we developed to help address this current lack of algorithmic and

model transparency. Adopting PDkit facilitates the open sharing of standardised methods

and can accelerate the development of new methods and system to assess Parkinson’s and

enables research groups to innovate. The toolkit provides funcionality that support data

ingestion, quality of information augmentation, feature extraction, biomarker estimation

and finally, scoring using standard clinical scales. The practical use of PDkit is demon-

strated via its use by the CUSSP clinical trial conducted in the UK.
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This is a PLOS Computational Biology Software paper.

Introduction

Parkinson’s is the second most common neurodegenerative disease across the globe with as

many as 10 million patients worldwide. Parkinson’s Disease (PD) is caused by the degenera-

tion of dopaminergic neurones, a group of neurones located in the mid-brain which are the

main source of dopamine in the human central nervous system [1]. They play a crucial role in

the control of voluntary movement, mood, reward, addiction, stress and critically, the reward

system that controls learning. Although the cause for the loss of dopaminergic neurones in PD

is not yet known, their selective degeneration results in the distinctive presentation of Parkin-

son’s commonly associated with a wide spectrum of motor and cognitive symptoms including

tremor, slowness of movement and freezing, muscular stiffness, poor postural stability, sleep-

related difficulties, depression and psychosis [2].

Since there is currently no cure, clinical care pathways for PD are focused on symptom

management, a life-long process that typically includes pharmacological treatment, physio-

therapy and, at the advanced stages of the disease, surgery [3]. A key ingredient of the pharma-

cological regime is medication with levodopa, prolonged use of which in most cases results in

patients developing side effects such as dyskinesias [4]. Moreover, symptoms are highly heter-

ogenous across and within patient profiles and PD progresses at different rates in different

individuals. The golden standard for the assessment of symptoms is the application of estab-

lished clinical measures by specialist practitioners, in particular the Universal Parkinson’s Dis-

ease Rating Scale (MDS-UPDRS) [5]. However, the limited sensitivity of these methods

restricts the effectiveness of motor symptom severity assessments. Data revealing individual

symptom variability and observed trends in particular are scarce, further restricting opportu-

nities to evaluate new treatments.

To address the challenges towards achieving sensitive, frequent and objective PD assess-

ment, digital methods have been increasingly considered over the past decade as a promising

complementary approach with distinct advantages. In particular, the wider availability of

smartphones and wearables offers the promise to enable the unsupervised, and at high-fre-

quency or continuous measurement of motor and non-motor performance across the global

patient population [6–8]. Mirroring patterns of contemporary data production in other

domains, digital assessment represents a paradigm shift in the clinical assessment of PD poten-

tially leading to the tremendous increase in the availability of patient performance data. In this

setting, manual analysis of data is no longer viable. Instead, it is imperative to adopt a soft-

ware-based approach so that outputs of clinical relevance can be computed automatically and

presented to researchers, clinicians and patients in an intuitive manner.

Nevertheless, despite the rapid proliferation of proposals for digital assessment methods, only

limited progress has been made towards establishing robust and generalisable digital endpoints

such that would match the expectations of medical regulators for use in clinical trials. To a cer-

tain extent, this is due to common challenges that other medical domains have faced early on in

the development of digital assessments: Small study samples, feature selection bias and failure to

replicate results due to differences in sensor placement and calibration, as well as lack of clarity

in the use of analytical techniques, have led to a fragmented research landscape that hinders the

development of effective techniques. PD studies have often failed to account for inter-rater vari-

ability leading to machine learning models also learning subjective bias. Moreover, the highly
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heterogeneous presentation of PD cannot be fully captured by monitoring only a small subset of

symptoms thus resulting in too blunt an instrument failing to capture critical symptoms and

hence being unable to define a deep phenotype at the individual level. Last but not least, digital

assessment studies are at high risk of providing over-optimistic results due to feature selection

bias if a large number of post hoc candidate digital features or machine learning algorithms are

tested within a limited size study resulting in highly unstable features that do not generalise.

To address the lack of algorithmic and model transparency in particular, we designed and

developed PDkit, a comprehensive software toolkit for the management and processing of

patient data captured continuously by wearables (passive monitoring) or by high-use-fre-

quency smartphone apps (active monitoring). The toolkit facilitates the application of a data

science methodology to the analysis of such data and in particular makes it possible to clearly

describe the computational steps involved. Our motivation is to provide an open and inclusive

framework that can be used to capture all steps of analytical processing in detail, thus provid-

ing a key ingredient towards clarity and reproducibility of findings. PDkit is implemented in

the python programming language, the de facto standard for modern data science applica-

tions, and is made available as free/open source software under the MIT license, which permits

all uses without restrictions.

In developing PDkit, we draw inspiration by the successes of similar initiatives in other

areas of digital healthcare, which achieved breakthroughs by adopting an open approach such

as the ADNI initiative in Alzheimer’s for fMRI imaging [9] and the SPM software toolkit for

the analysis of brain imaging data sequences [10] among others. Specifically, using PDkit as an

enabler of a Digital Health Technology (DHT) processing pipeline in Parkinson’s, has the fol-

lowing advantages:

• It supports the development and open sharing of standardised methods that allow the com-

parison of results from multiple centres and hardware variations.

• It provides access to advanced knowledge and domain expertise relating to software engi-

neering, signal processing and machine learning algorithms. Hence, it reduces the costs of

bespoke software development in DHT-based exploratory research and clinical studies, espe-

cially those related to software implementation and verification.

• It enhances confidence in the computational outcomes produced in studies, due to the fact

that the software is tested by a large user community.

• It provides concise, domain-specific programming abstractions specifically targeting Parkin-

son’s, thus eliminating the need to write repetitive code.

• Contrary to proprietary software, it provides the ability to inspect the algorithms employed

and their implementation, thus facilitating the in-depth exploration of the results generated

and of any clinical inferences made.

By releasing PDkit as open source software, our long-term goal is to support therapeutic

development and cost-effective clinical trial evidence collection. In particular, we endeavour to

facilitate the explicit definition of clinical outcome measures and to help identify the advantages

and limitations of specific quantitative metrics of disease progression so that the research com-

munity can converge on effective generalisable digital digital endpoints suitable for clinical trials.

Design and implementation

PDkit has two core ingredients: first, it adopts the information-processing pipeline abstraction,

a well-established data science design pattern, specifically tailored to the assessment of
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Parkinson’s (as depicted in Fig 1). PDkit pipelines start with a data ingestion stage designed to

consume wearable and smartphone app measurements in a wide variety of formats, followed

by quality of information tests, feature extraction, biomarker estimation and finally scoring

using standard clinical scales such as MDS-UPDRS. Each pipeline can be terminated at any

intermediate processing stage as appropriate for a particular investigation. Each stage, typically

implemented as a distinct python class, provides information export and import so that inter-

mediated results can be extracted easily and so as to permit the execution of the pipeline in a

staggered manner.

The second ingredient in the design of PDkit is support for two alternative programming

models: a standard python programming interface and also an alternative dataflow program-

ming model supported seamlessly via the core API specification. The motivation for adopting

this approach is our desire to balance the need for a low barrier of entry for developers so as to

encourage the adoption of this toolkit; and at the same time, to cater to modern scalable infor-

mation processing architectures, which are critical in deploying digital assessments at popula-

tion scale. Moreover, the combination of an information pipeline approach and an adaptable

programming model enables PDkit to effectively support both active and passive monitoring

within an integrated framework.

Data ingestion

Considering each stage of the PDkit pipeline sequentially (from left to right), the data ingestion

step supports a range of sensor modalities and data formats. Active monitoring, typically

implemented as a smartphone app, is carried out in distinct measurement sessions resulting in

a data file set containing timed sensor measurements. There is currently no widely adopted

standard for the encoding of such data, hence each app adopts a custom approach: the mPower

app [7] for example uses a proprietary JSON schema while the cloudUPDRS [8] and Hopkins

PD [11] apps employ a simple flat CSV-formatted (comma separated values) text file. For the

current list of supported apps please refer to the online documentation of PDkit available on

Read-the-Docs [12]. Passive monitoring using wearables typically employs a gateway device,

in most cases a smart home hub such as the Apple HomePod and Amazon Echo, or a smart-

phone for data streaming over a low-power wireless interface (typically Bluetooth Low

Energy). The gateway subsequently employs one of several streaming protocols to relay the

measurements for further processing in near real-time. To this end, popular streaming

Fig 1. PDkit pipepline. PDkit information-processing pipeline for Parksinon’s.

https://doi.org/10.1371/journal.pcbi.1008833.g001
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approaches include MQTT [13] and publish-subscribe schemes [14] with both approaches

currently supported by PDkit, the latter via the Google Pub-Sub API [15].

Regardless of the data input mode (batch or streaming) and format, ingested raw data is

converted and stored internally in standardised symptom-specific PDkit representation.

Symptom-specific time series representations are derived from Pandas [16], a popular specifi-

cation for python-based data science applications, and include reaction, gait, tremor, and tap-

ping measurements incorporated in python classes such as TremorTimeSeries and

FingerTappingTimeSeries for tremor and finger tapping measurements correspond-

ingly. The exception to this are voice samples, which are treated as binary large objects. PDkit

is designed to be inherently extensible so that connectors to additional data files and streaming

formats can be easily added as required.

Quality of information

Having converted raw sensor measurements to PDkit native representations, the next process-

ing stage is to assess, and when necessary improve, the quality of the data recorded. Tests relate

to typical data integrity checks such missing and out of range values or other outliers caused

by transmission errors or sensor malfunction, consistent indexing and standardised labelling.

A second group of QoI transformations relate to time series resampling to normalise fluctua-

tions in measurement regularity, which for example would hinder the application of Fast Fou-

rier Transforms (FFT), and downsampling for data reduction and improved manageability.

Finally, a third group of processing functions relate to improvements in the relevance of obser-

vations such as bilateral truncation of time series to account for start up and cool down effects

in test performance and verification of movement correctness in the case of active monitoring

to validate unsupervised data collection [17] as well as the injection of higher-order quality fea-

tures such as data augmentation and signal segmentation [18].

Feature extraction

The next stage in the pipeline involves the extraction of distinctive data features for each symp-

tom datatype using processor classes such as VoiceProcessor and GaitProcessor.

For a typical active monitoring session, PDkit can calculate over 800 different features reflect-

ing the plethora of signal processing and machine learning techniques suggested in the litera-

ture. There are two schools of thought regarding methods to generate and select features: One

approach suggests that features employed for symptom assessment should reflect biomedical

intuition based on clinical experience as well as what is important to patients, with the oppos-

ing view exhorting the advantages of a purely data-driven approach. PDkit caters to both view-

points for example providing implementations of most standard bio-inspired features found

in the literature for PD. To further illustrate this approach, note that a popular feature used to

characterise kinetic tremor and tremor at-rest is calculated as the cumulative magnitude of the

scalar sum acceleration across three axes for all frequencies between 2 Hz and 10 Hz. To calcu-

late this metric, PDkit obtains the tremor power spectrum by first filtering the tremor time

series with a Butterworth high-pass second order filter at 2 Hz and subsequently applying an

FFT to the filtered waveform data. Similarly, the assessment of the pronation-supination

movements and leg agility tests, requires the estimation of the frequency and power of move-

ment. To obtain these, the PDkit first removes the DC offset and then applies a Butterworth

low-pass second order filter at 4 Hz to exclude most of the tremor. Finally, the power of move-

ment is calculated as the total amplitude between 0 and 4 Hz and the frequency derived from

the power spectrum.
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PDkit caters to the data-driven approach through the implementation of a wide range of

time series and voice characteristics that are commonly used in analyses of similar data but are

not necessarily associated to clinical observations. Several of these calculations are inherited by

incorporating third party python modules notably, TSFRESH for time series [19] and Praat

[20] for voice analysis. Similar to all PDkit elements, feature extraction is implemented in an

extensible manner so that additional feature extraction techniques can be easily incorporated.

Digital biomarkers

A key requirement for predictive analytics for disease progression and patient stratification is

the identification of digital biomarkers with strong inferential properties, that is, indicators

that match higher-level clinical insights obtained from the combination of carefully selected

lower-level signal characteristics captured by sensors. To this end, PDkit supports two distinct

types of biomarkers: standard digital biomarkers as typically encountered in the literature,

which correspond to a unitary (in time) set of measurements of symptoms, and typically

expressed in the form of a feature vector as typically employed in data science within a stan-

dard feature engineering approach. The second, and arguably more interesting type of bio-

marker, are so-called longitudinal biomarkers that result from the accumulation of features

extracted from repeated measurement of symptoms over an extended period of time. For

example, a longitudinal digital biomarker can be constructed by calculating the descriptive sta-

tistics of the distribution of the same feature (such as power of the dominant tremor fre-

quency) using measurements of the same symptom (such as kinetic tremor of the left hand)

sampled at various times during a week-long monitoring session. Such longitudinal biomark-

ers are of increasing interest for the effective assessment of PD [21] due to increasing evidence

of their ability to cope with heterogenous disease presentation typical in PD. In this case,

instead of focusing on individual snapshots in time, longitudinal biomarkers capture the

aggregate characteristics of their statistical distribution which appear to provide a more consis-

tent and sensitive way to characterise disease presentation.

Clinical scores

The final processing stage in the PDkit pipeline involves training a predictive model of scoring

with a clinical rating scale. In keeping with the inclusive approach adopted, PDkit again sup-

ports two alternatives: first, a data-driven methodology employing a repository of patient data

and suitable clustering algorithms is used to discover mappings between biomarkers and their

corresponding grades in the rating scale. Alternatively, when clinical labelled data are available,

a supervised machine learning approach can be adopted using class ClinicalUPDRS that

employs a family of classifiers to generate rating scale level inferences. In either case, at the end

of this processing stage it becomes possible to receive new passive or active sensor measure-

ments and convert them fully automatically to a clinical MDS-UDPRS score without the

involvement of a human rater. As a consequence, a PDkit-based model can be employed for

the end-to-end automatic assessment of patients thus leading to a variety of applications that

depend in such automation for example monitoring disease progression, tracking responses to

medications and treatments, and patient stratification. Currently, only MDS-UPDRS grading

is supported as this is the most common rating scale in use and the only recognised by the

FDA and EMA for clinical studies, however other rating scales can be easily accommodated

due to the extensible design of the toolkit. It is envisioned that PDKit can be used not just for

the development of effective biomarkers but also for clinical outcome assessments in that there

is potential to replace the MDS-UPDRS clinician-reported outcome.
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Implementation and release

PDkit was developed with support by the M.J. Fox Foundation for Parkinson’s Research under

their computational science programme. Throughout its development it has been available as

open source under the MIT License, with the first official release v1.0 becoming available in

October 2018. At the time of writing the current release is v1.3.2 incorporating additional sup-

port for voice assessments and Hopkins PD/OPDL result datasets. The dataflow programming

model is implemented using Apache Beam [22]. The methods implemented within PDKit

have been carefully curated and where relevant the citations are provided.

Since the release of version 1.0, the toolkit has been downloaded over 75, 000 times through

the PyPI repositories, which allow easy installation of python language modules. Although

PyPI downloads are inherently anonymous and thus not possible to identify specific uses and

user groups, the development team is independently aware that PDkit is actively used in Par-

kinson’s clinical studies by universities and commercial companies in Belgium (Leuven), Ger-

many (Meinheim), France (Grenoble), Italy (Milan), U.K. (London) and the USA (Miami).

Results

As noted earlier, a key motivation in the development of PDkit is the recognition that digital

assessments of motor severity could significantly improve the sensitivity of clinical trials and

personalise treatment in PD but face considerable challenges before they can be widely

adopted. The ability of digital biomarkers in particular to capture individual change across the

heterogeneous motor presentations typical of PD, remains inadequately explored against cur-

rent gold-standard clinical reference standards. To determine the validity and accuracy of sub-

ject-level smartphone-based measures of severity in PD across a number of motor subitems, in

October 2016 we initiated The CloudUPDRS Smartphone Software in Parkinson’s Study

(CUSSP) in collaboration with the UCL Institute of Neurology and the outpatient departments

of the National Hospital for Neurology and Neurosurgery and Homerton University Hospital

in the UK [23].

CUSSP was a prospective, dual-site, crossover-randomised study comparing structured sin-

gle-time-point smartphone-based and multiple blinded clinical rater assessments of motor

severity with recruitment completed in May 2019. In total, sixty adults were enrolled with

early to mid-stage idiopathic PD without dementia. The study protocol included the video-

taped administration of the 33-item Part III of MDS-UPDRS and a 16-item smartphone-based

assessment using the cloudUPDRS app [8] in randomised order. The primary outcome was

the degree to which subject-level smartphone-based measures calculated using a study-specific

PDkit pipeline (the index test) predicted subject-level Part III MDS-UPDRS subitems as

assessed by three blinded clinical raters (the reference-standard). This was quantified as the

leave-one-subject-out cross-validation (LOSO-CV) predictive accuracy of a range of features

and machine learning algorithms implemented using PDkit.

CUSSP data analysis using PDKit

In order to demonstrate how a practitioner might use PDKit, we briefly sketch how the statisti-

cal analysis of the raw data obtained from the smartphone app was performed within CUSSP.

We focus on one subitem, tremor, specifically the kinetic tremor of the left hand. The analyses

presented below can be found in the Jupyter Notebooks entitled 01—TremorProcessor
and 05—ClinicalUPDRS and sample data files are provided in the tests/data directory

of the source code distribution.

Initialisation and data ingestion. The raw data comprises timestamped 3D accelerometer

readings recorded at the maximum sampling rate supported by each smartphone used (50 Hz
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in the case of the sample file below) and is stored in comma separated format recorded by the

cloudUPDRS app. This data is ingested using the load method from the TremorTime-
Series class. Note that the APIs provided by PDKit follow an object-oriented approach in

order to clearly organise the diverse set of available functionality. This method returns the data

in a Pandas dataframe. Intermediate data structures used in PDKit are represented using stan-

dard Pandas dataframe or timeseries, this ensures that practitioners are not ‘locked-in’ to

using only the methods available from within PDKit and are able to conveniently incorporate

their own extensions. In addition displaying results can be achieved simply by using standard

graphics libraries such as matplotlib and seaborn directly on these data structures. This is use-

ful for a wide variety of tasks including exploratory analysis and sanity checking.

import pdkit
filename = ‘T-KINETIC_TREMOR_OF_HANDS-LEFT_HAND-_2458.csv’
ts = pdkit.TremorTimeSeries().load(filename)
Feature extraction. As described earlier, one relevant feature for tremor is the cumulative

magnitude of the scalar sum acceleration across three axes over a specific range of frequencies.

This value is computed using methods from the TremorProcessor class as follows: resam-

ple the original signal using to ensure uniform spacing of samples in the time domain, apply a

high pass filter using, convert data to the frequency domain, and, finally we calculate the spe-

cific feature:

tp = pdkit.TremorProcessor()
resampled_data_frame = tp.resample_signal(ts)
filtered_data_frame = tp.filter_signal(resampled_data_frame)
fft_data_frame = tp.fft_signal(filtered_data_frame)
amplitude, frequency = tp.amplitude_by_fft(fft_data_frame)
To promote economy of expression and clarity, the above steps can alternatively be carried

out in a single step using PDkit as they represent a common processing pipeline employed

extensively in the literature:

tp = pdkit.TremorProcessor()
amplitude, frequency = tp.amplitude_by_fft(ts)
Clinical scoring. Aggregate results computed through the above feature extraction pro-

cess (in the example below summarised in a spreadsheet) can be used to build a classifier to

predict MDS-UPDRS Part III subitem ratings. When the test data are labelled by an experi-

enced clinician, supervised classification can be employed aiming to match the performance of

a human rater:

clinical_UPDRS = pdkit.Clinical_UPDRS(labels = ‘updrs_scores.
csv’, features)
clinical_UPDRS.predict(measurement)
To train the classifier two parameters are required: a dataframe of features and the name of

the file that contains the corresponding clinical assessment. Predictions are carried out using

the predict method. The typical performance evaluation scenario which requires that leave-

one-subject-out cross-validation is carried out, can be achieved by combining the code above

and the well known python package sklearn.

CUSSP results

Data analysed included 990 smartphone tests and 2, 628 blinded Part III MDS-UPDRS subi-

tem ratings. A fully pre-specified LOSO-CV analysis averaged over all 16 subtests classified

70.3%– with Standard Error of Mean (SEM) 5.9% of subjects into a similar category to a

blinded clinical rater. This outperformed constant (58.0%; SEM 7.6%) and random (36.7%;
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SEM 4.3%) baseline models. Post hoc optimisation of PDkit classifier and feature selection

improved performance further to 78.7% (SEM 5.1%). Individual subtests had a variable

LOSO-CV accuracy ranging between 53.2%–97.0% due to variation in category balance across

subtests and variable classifier learning. These results strongly suggest that smartphone-based

measures of motor severity have predictive value for clinical measures at the subject-level with

substantial variability observed depending on the body part or clinical feature tested. An illus-

tration of item-level performance can be seen in Fig 2 and full study details in [23].

Availability and future directions

PDkit is available as open source software on GitHub [24] as well as a packaged python module

via the Python Package Index (PyPI) repository [25] to facilitate easy installation for most

users (cf. S1 Compressed ZIP File. To support uptake, we have published extensive documen-

tation on Read-the-Docs [12] as well as a comprehensive collection of Jupyter Notebooks dem-

onstrating the key elements of functionality of the toolkit. Notebooks are intended to

demonstrate key use case studies of the toolkit using sample data sets from the cloudUPDRS

[8] and mPower [7] projects (sample data also released on the PDkit GitHub repository). Sam-

ple analyses can be executed both natively or via popular notebook hosting sites for collabora-

tive research such as Google’s Collaboratory (cf. colab.research.google.com) to further depress

the initial learning curve. Additional data can be obtained by interested researchers under

license via the Sage Bionetworks Digital Health Data Repository and the OPDC Project at the

University of Oxford [6]. These datasets are fully supported by PDkit and thus can be ingested

directly using the notebooks.

Going forward, the PDkit development team aims to continue to provide support to all

groups and individuals expressing an interest to explore the use of the toolkit or to contribute

additional or novel methods and techniques. Of particular interest is to support further smart-

phone or wearable-based studies designed to mitigate against subjective and feature selection

bias and assessing performance across a range of motor presentations to avoid overly optimis-

tic performance estimates. In this regard, a particular area where PDkit can make a significant

contribution is to increase the transparency of algorithms employed for the extract of digital

biomarkers. This is also a key priority identified by the Critical Path for Parkinson’s initiative

[26] and PDkit has engaged in collaborative work to help reach this goal.

Conclusion

In this paper, we provided an overview of PDkit, a python-based open source toolkit for the

digital assessment of symptoms of Parkinson’s Disease. The use of PDKit in the analysis of

CUSSP made it straightforward to perform not just the analysis based on pre-specified features

that used a standard statistical classifier, but to also subsequently perform a very broad explor-

atory analysis over a large number of features and classifiers. Furthermore, we believe that

Fig 2. CUSSP study results of PDkit predictive performance. Item-level performance based on LOSO-CV

calculations for four tremor tests conducted using the cloudUPDRS app.

https://doi.org/10.1371/journal.pcbi.1008833.g002
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PDkit provides a key ingredient towards enhancing algorithmic transparency of digital assess-

ments for PD through open sharing of analytical methodologies and their concrete implemen-

tation as software artefacts. This open and inclusive process can help establish the tradeoffs

involved in alternative proposals and thus build consensus on which candidate methods can

deliver effective mobile and wearable digital assessments for clinical use.

Supporting information

S1 Compressed ZIP File. PDkit source archive. Exported from current GitHub repository

including source code, data and documentation.

(ZIP)
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