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Abstract: Marine microorganisms have drawn great attention as novel bioactive natural product
sources, particularly in the drug discovery area. Using different strategies, marine microbes have
the ability to produce a wide variety of molecules. One of these strategies is the co-culturing of
marine microbes; if two or more microorganisms are aseptically cultured together in a solid or liquid
medium in a certain environment, their competition or synergetic relationship can activate the silent
biosynthetic genes to produce cryptic natural products which do not exist in monocultures of the
partner microbes. In recent years, the co-cultivation strategy of marine microbes has made more
novel natural products with various biological activities. This review focuses on the significant and
excellent examples covering sources, types, structures and bioactivities of secondary metabolites
based on co-cultures of marine-derived microorganisms from 2009 to 2019. A detailed discussion on
future prospects and current challenges in the field of co-culture is also provided on behalf of the
authors’ own views of development tendencies.
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1. Introduction

Although many industrial sectors have stopped their dependence on natural product (NP) drug
discovery programs, NPs are still of great interest to many pharmaceutical communities and are
important sources of bioactive compounds [1,2]. Marine microbes, as an important source of bioactive
NPs, have elicited widespread attention [3–5]. However, the discovery of novel marine microbial NPs
is becoming more difficult and the rate of rediscovery of known NPs is being gradually increased.
On the other hand, recent genomic sequencing has revealed the presence of numerous biosynthetic
gene clusters in some microbes that may be responsible for the biosynthesis of NPs which are not found
under classical cultivation conditions [6,7]. Therefore, many alternative strategies have been explored
to activate these silent and cryptic biosynthetic genes. The co-culturing of marine microbes involves
the culturing of two or more marine microbes together on/in certain conditions; microorganisms
can communicate with each other through direct or indirect contact, thereby stimulating the silent
gene clusters to produce special NPs [2,8] (Figure 1). This strategy can promote the production of
complex and novel skeletons with numerous stereocenters [9–11]. Hence, the co-culturing of marine
microbes draws widespread attention in the scientific community as a potential source of unknown
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bioactive substances classified as alkaloids, polyketides, anthraquinone, flavonoids, cyclopeptides, etc.
To exploit the NPs from the co-cultures of marine microbes and understand their medicinal significance,
this review summarizes successful examples involved in NPs of marine microbes based on co-cultures
from 2009 to 2019 (Table 1).
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Figure 1. The schematic diagram of novel and bioactive natural products (NPs) using co-cultures of
marine fungi−fungi, fungi−bacteria and bacteria−bacteria in direct or indirect contact.

Table 1. Summarized NPs identified from the co-culture of marine microbes: 2009–2019.

Classes The Number of
NPs Identified Date Bioactivities Co-Culture of Marine Microorganisms

Alkaloids
80 isolates

(1–80) 2010 and 2014–2019

Cytotoxicity,
enzyme

Inhibitors,
antimicrobial

activities

Fungi and fungi

A. sulphureus KMM 4640 and I. felina
KMM 4639

Aspergillus. sp. FSY-01 and FSW-02
P. citrinum SCSGAF 0052 and A.

sclerotiorum SCSGAF 0053
Phomopsis sp. K38 and Alternaria sp. E33

Fungi and bacteria

Penicillium sp. DT-F29 and Bacillus sp. B31
A. flavipes fungus and S. sp.

CGMCC4.7185
A. fumigatus MR2012 and

S. leeuwenhoekii C34
A. versicolor and B. subtilis,

Bacteria and bacteria

Streptomyces sp. CGMCC4.7185 and
B. mycoides

Saccharomonospora sp. UR22 and
Dietzia sp. UR66

Anthraquinones 13 isolates
(81–93) 2017–2019

Cytotoxicity and
antimicrobial

activities

Fungi and fungi

Asexual morph and sclerotial morph of
A. alliaceus

Fungi and bacteria

A. versicolor and B. subtilis

Bacteria and bacteria

Micromonospora sp. WMMB-235 and
Rhodococcus sp. WMMA-185
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Table 1. Cont.

Classes The Number of
NPs Identified Date Bioactivities Co-Culture of Marine Microorganisms

Cyclopeptides
6 isolates
(94–99) 2014 and 2019

Antifungal and
anti-proliferative

activities

Fungi and fungi

Phomopsis sp. K38 and Alternaria sp. E33
Aspergillus sp. BM and 05-BM-05ML

Fungi and bacteria

A. versicolor and B. subtilis

Macrolides
1 isolate

(100) 2018
Antitumor and

antibacterial
activity

Bacteria and bacteria

Saccharomonospora sp. UR22 and
Dietzia sp. UR66

Phenylpropanoids 23 isolates
(101–123)

2011, 2015 and 2019

Cytotoxic,
antifungal,

antibacterial and
anti-influenza

activities

Fungi and fungi

Phomopsis sp. K38 and Alternaria sp. E33
A. sydowii EN-534 and P. citrinum EN-535

Fungi and bacteria

A. versicolor and B. subtilis

Polyketides 12 isolates
(124–135)

2013, 2014 and 2018

Anti-proliferative,
cytotoxicity and

antifungal
activities

Fungi and fungi

Aspergillus sp. BM and 05 and BM-05ML
Penicillium sp. Ma(M3)V and Trichoderma

sp. Gc(M2)1

Fungi and bacteria

Penicillium sp. WC-29-5 and S. fradiae 007

Bacteria and bacteria

Janthinobacterium spp. ZZ145 and ZZ148

Steroids
5 isolates
(136–140)

2009, 2010 and 2014
Antiproliferative

activity

Fungi and fungi

Aspergillus sp. FSY-01 and FSW-02

Fungi and bacteria

Aspergillus sp. BM05 and an unknown
bacteria (BM05BL)

Terpenoids 2 isolates
(141–142) 2012 and 2017

Inhibition of
diatom N. annexa

and macroalga
U. pertusa

Fungi and bacteria

A. fumigatus MR2012 and
S. leeuwenhoekii C58

Bacteria and bacteria

S. cinnabarinus PK209 and Alteromonas sp.
KNS-16

Others
12 isolates
(143–154)

2013, 2016, 2017
and 2019

Antimicrobial,
toxicity,

cytotoxicity,
Hemolytic
activities

Fungi and fungi

Phomopsis sp. K38 and Alternaria sp. E33
P. citrinum SCSGAF 0052 and
A. sclerotiorum SCSGAF 0053

A. sulphureus KMM 4640 and I. felina
KMM 4639

Fungi and bacteria

A. versicolor and B. subtilis

2. Compounds Derived from the Co-Cultures of Marine Microorganisms

Co-culturing or mixed fermentation is considered an important technique of inducing secondary
metabolites hidden in the genomes of marine microbes by using appropriate physiological conditions,
chemical communication and competition of microbes. Consequently, it is considered an easy, cheap and
effective method [12,13]. This finding also explains the chemical communication and antagonism
between different marine microorganisms, such as the interactions between marine fungi−fungi,
fungi−bacteria and bacteria−bacteria, in which they act as signaling molecules, competitors or defense
agents [14]. Herein, the metabolites based on co-cultures of marine microbes were classified according to
their skeletons as alkaloids, anthraquinones, cyclopeptides, flavonoids, macrolides, phenylpropanoids,
polyketides, steroids, terpenoids and others from 2009–2019. These excellent examples were found from
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SciFinder, Science Direct, PubMed, Springer and other databases. Among them, the interactions between
marine fungi and bacteria were found to induce the most metabolites (Figure 2A), and the alkaloids
played a significant role in co-cultures of marine microbes (Figure 2B), no matter whether the mixed
cultivation was of marine fungi−fungi (Figure 2C), fungi−bacteria (Figure 2D) or bacteria−bacteria
(Figure 2E).Mar. Drugs 2020, 18, x 4 of 27 
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Figure 2. Numbers and the percentage of (A) isolates from the co-cultures of different marine microbes;
(B) different classes of NPs from the co-cultures of marine microbes. The classes, numbers and
proportions of NPs isolated from the co-cultures of marine (C) fungi and fungi, (D) fungi and bacteria,
(E) bacteria and bacteria.

2.1. Alkaloids

The nitrogenous alkaloids represented the most abundant class of compounds that were produced
by the co-cultures of marine microorganisms with diverse skeletons and biological activities [15,16].
Eighty alkaloidal metabolites were isolated and identified from different microbial environments
(Figure 2B), and the co-cultures of marine fungi–bacteria represented 51% of the total isolates (Figure 3).
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Figure 3. Alkaloids isolated from the co-cultures of marine fungi–fungi, fungi–bacteria
and bacteria–bacteria.

2.1.1. Alkaloids Derived from the Co-Cultures of Different Marine Fungi

Several studies of co-cultures of fungal–fungal interactions from different marine sources were
summarized as follows; 26 alkaloids were isolated and identified (Figures 2C and 3). The mixed
fermentation of marine-derived fungi Aspergillus sulphureus KMM 4640 from muddy sand of the
eastern Sakhalin shelf (Sea of Okhotsk, 26 m depth) and Isaria felina KMM 4639 from sediments
(South China Sea, Vietnam shores, 10 m depth), led to the production of five novel prenylated
indole alkaloids, 17-hydroxynotoamide D (1), 17-O-ethylnotoamide M (2), 10-O-acetylsclerotiamide
(3), 10-O-ethylsclerotiamide (4) and 10-O-ethylnotoamide R (5) together with known compounds
(-)-notoamide B (6), notoamide C (7), dehydronotoamide C (8), notoamide D (9), notoamide F (10),
notoamide Q (11), 17-epi-notoamide Q (12), notoamide M (13) and sclerotiamide (14) (Figure 4) [17].
Among them, compounds 1–5 were only produced in the co-culturingprocess.

Compounds 2, 6, 8, 13 and 14 inhibited the proliferation of the human prostate cancer cells
22Rv1 at 100 µM. Notably, 2 and 13 drastically reduced the viability of 22Rv1 prostate cancer cells at
10 µM by 25% and 55%, respectively. 22Rv1 cancer cell lines were resistant to hormone therapy at
conventional chemotherapy including two new 2nd generation drugs enzalutamide and abiraterone
owing to the presence of the androgen receptor splice variant-7 (AR-V7). Therefore, the active NPs
drugs in these cells might be further investigated in the treatment of different human drug-resistant
prostate cancer. 6 and 7 displayed weak cytotoxicity against HeLa and L1210 cell lines with half
maximal inhibitory concentration (IC50) in the range of 22–52 µg/mL [18]. Although 6 and 7 had
the similar structure with 9, compound 9 did not display the similar cytotoxic activity against HeLa
and L1210 cell lines. The significant difference in cytotoxicity might be attributed to the possible
existence of pyrroloindole system in 9 rather than the dihydroxypyrano-2-oxindole ring system of 6
and 7 [18,19]. In addition, compounds 1, 2, 5, 9, 13 and 14 did not exhibit any cytotoxicity against
human non-malignant (HEK 293 T and MRC-9) or malignant (PC-3, LNCaP, and 22Rv1) cell lines at
concentrations up to 100 µM for 48 h [17].

The co-fermentation of marine mangrove epiphytic fungi Aspergillus sp. FSY-01 and FSW-02
collected from a rotten fruit of mangrove Avicennia marina in Zhanjiang, Guangdong Province, China,
yielded a new alkaloid, aspergicin (15), together with two known secondary metabolites, neoaspergillic
acid (16) and aspergicine (17) (Figure 5) [20,21]. Notably, compounds 17 and 15 are chemically
isomers, and consequently aspergicine (17) may be the precursor of aspergicin (15) through a proton 1,
2-shift [22].
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Compounds 15 and 16 showed potent inhibitory activities against three Gram-positive bacteria,
Bacillus subtilis (MIC, minimum inhibitory concentration that inhibits the growth of microbes by 80%,
15.62 and 1.95 µg/mL), Staphylococcus epidermidis (MIC 31.25 and 0.49 µg/mL) and Staphylococcus aureus
(MIC 62.50 and 0.98 µg/mL), and three Gram-negative bacteria, Escherichia coli (MIC 31.25 and
15.62 µg/mL), Bacillus proteus (MIC 62.50 and 7.80 µg/mL) and Bacillus dysenteriae (MIC 15.62 and
7.80 µg/mL), respectively [22].

Marine fungi Aspergillus sclerotiorum SCSGAF 0053 and Penicillium citrinum SCSGAF 0052 were
isolated from the gorgonian corals Muricella flexuosa collected from South China Sea, Sanya (18◦11′ N,
109◦25′ E), Hainan Province, China [23]. Due to the mixed fermentation of marine fungi, a red
pigment appeared in the mixed fermentation broth could not be observed in any strain cultured
separately. This special phenomenon suggested that a novel biosynthesis route was activated.
Four novel alkaloids were obtained, including one oxadiazin derivative sclerotiorumin C (18),
a pyrrole derivative 1-(4-benzyl-1H-pyrrol-3-yl) ethanone (19), aluminumneohydroxyaspergillin
(20) and ferrineohydroxyaspergillin (21), together with one known compound ferrineoaspergillin (22)
(Figure 6) [23]. Compounds 18–21 were only produced in the co-culture process.
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Compound 20 exhibited potent toxicity towards brine shrimp with medium lethal concentration
(LC50) value of 6.1 µM and high selective cytotoxicity towards histiocytic lymphoma U937 cell line
with an IC50 value of 4.2 µM. 19, 21, and 22 showed moderate toxicity against brine shrimp with LC50

values of 46.2, 11.5 and 27.8 µM, respectively. 21 and 22 possessed mild cytotoxicity against U937 with
IC50 values of 42.0 and 48.0 µM, respectively. These results suggested that the aluminum complex
skeletons of compounds showed more potent toxicity and cytotoxicity than ferricomplex structures of
compounds [23–26]. Moreover, aspergillic acid and 16 also showed more potent inhibitory activities
than neohydroxyaspergillic acid and hydroxyaspergillic acid against B. subtilis, E. coli, S. aureus and
Candida albicans [27].

The co-culture of mangrove fungi Phomopsis sp. K38 and Alternaria sp. E33 led to the identification
of one new diimide derivative, (-)-byssochlamic acid bisdiimide (23) and a novel nonadride derivative,
(-)-byssochlamic acid imide (24) (Figure 7) [28,29]. Ebada et al. (2014) investigated the mycelial extract
of a co-cultivation of marine fungal strains Aspergillus. BM-05 and BM-05ML, and identified two
alkaloids, protuboxepin A (25) and oxepinamide E (26) (Figure 7) [30]. 23–24 were only found in the
co-culture process.Mar. Drugs 2020, 18, x 7 of 27 
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Compound 23 exhibited moderate inhibitory activity against HepG2 and Hep-2 with IC50 values of
51 µg/mL and 45 µg/mL, respectively. 24 had moderate antifungal activities against Fusarium oxysporum
and Fusarium graminearum with MIC values of 60 µg/mL and 50 µg/mL, respectively [28,29,31].
25 possessed anti-proliferative activity against human breast cancer adenocarcinoma MDA-MB-231,
human acute promyelocytic leukemia HL-60, hepatocellular carcinoma Hep3B, chronic myelogenous
leukemia K562 and rat fibroblast 3Y1 cell lines with IC50 values of 130, 75, 150, 250 and 180 µM,
respectively [32,33]. 26 showed transcriptional activation on liver X receptor α (LXRα) with a half
maximal effective concentration (EC50) value of 12.8 µM. It was known that LXR was an important
target in drug discovery; LXR agonists had been proven to exhibit remarkable therapeutic effects on
diabetes, atherosclerosis, Alzheimer’s disease and anti-inflammation. Therefore, 26 was worthy of
consideration as a potential lead compound for drug discovery [34].

2.1.2. Alkaloids Derived from the Co-Cultures of Marine Fungi and Bacteria

The alkaloids derived from the co-culture of marine fungi and bacteria were tallied to be 41 isolates
(Figures 2D and 3) and can be described as follows; prenylated 2,5-diketopiperazines (2,5-DKPs) were
isolated from the co-culture of marine Penicillium sp. DT-F29 isolated from marine sediments of Dongtou
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country, China, and Bacillus sp. B31 collected from marine sediments of Changzhi Island, China [35],
including ten novel metabolites, 12-β-hydroxy-13-butoxyethoxyfumitremorgin B (27), diprostatin A
(28), 12-hydroxy-13α-ethoxyverruculogen TR-2 (29), hydrocycloprostatin A (30), 12-β-hydroxy-13α-
butoxyethoxyverruculogen TR-2 (31), hydrocycloprostatin B (32), 26-α-hydroxyfumitremorgin A (33),
25-hydroxyfumitremorgin B (34), 12-β-hydroxy-13α-methoxyverruculogen (35), 25-hydroxyfumitremorgin
A (36) and thirteen known isolates, verruculogen TR-2 (37), 12-α-hydroxy-13-α-prenylverruculogen
TR-2 (38), 12-hydroxyverruculogen TR-2 (39), 13-prenyl fumitremorgin B (40), 12-β-hydroxy-13-α-
methoxyverruculogen TR-2 (41), cycloprostatin C (42), cyclotryprostatin B (43), spirotryprostatin C (44),
12,13-dihydroxyfumitremorgin C (45), neofipiperzine C (46), prenylcycloprostatin B (47), fumitremorgin
B (48) and fumitremorgin A (49) (Figure 8)Mar. Drugs 2020, 18, x 8 of 27 
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Compounds 27, 28, 38–40, 44 and 46–49 displayed strong inhibitory effects on bromodomain-
containing protein 4 (BRD4) at 20 μM. Notably, 39 and 48 exhibited the most inhibitory activity with 
72.7% and 80.4%, compared with the positive control, BRD4 inhibitor (+)-JQ1 (85.7%) [35]. As 

Figure 8. Chemical structures of 27–49.

The secondary metabolites profile of the co-culture of Streptomyces sp. and Aspergillus flavipes,
obtained from marine sediments of the Nanji Islands of the same habitat, showed an induced
biosynthesis of a series of known cytochalasans, including rosellichalasin (50), and five
aspochalasins (aspochalasin E 51, aspochalasin P 52, aspochalasin H 53, aspochalasin M 54 and
19,20-dihydro-aspochalasin D 55) (Figure 9) [36]. The chromatographic purification of the combination
culture extract from marine-derived Aspergillus fumigatus MR2012 and Streptomyces leeuwenhoekii C34 led
to the isolation of two novel compounds, luteoride D (56) and pseurotin G (57), along with the known
isolates, nocardamine (58), terezine D (59), 11-O-methylpseurotin A (60) and lasso peptide chaxapeptin
(61) [37]. In addition, seven known compounds, notoamide D (9), speramide B (62), notoamide E (63),
stephacidin A (64), notoamide R (65), protuboxepin B (66) and 3,10-dehydrocyclopeptine (67) (Figure 9)
were identified from the mixed-fermentation of the marine-derived fungus Aspergillus versicolor isolated
from sponge Agelas oroides and B. subtilis [38].



Mar. Drugs 2020, 18, 449 9 of 28

Mar. Drugs 2020, 18, x 8 of 27 

 

N N

N

O
O

O

R1
R2

H

27: R1=α-OC2H4OC4H9, R2=β-OH, R3=H 
34: R1=α-OH, R2=α-OH, R3=OH
40: R1=α-O-prenyl, R2=α-OH, R3=H
47: R1=α-OCH3, R2=β-OH, R3=H
48: R1=α-OH, R2=α-OH, R3=H

R3

N N

N

O
O

O

OH
OH

H

N
H

N

N

O
O

O

OH

H

O

OH

28

N
H

N

N

O
O

O

R1
R2

H

29: R1=α-OC2H5, R2=β-OH 
31: R1=α-OC2H4OC4H9, R2=β-OH  
37: R1=α-OH, R2=α-OH 
38: R1=α-O-prenyl, R2=α-OH 
39: R1=α-OH, R2=β-OH  
41: R1=α-OCH3, R2=β-OH

HO

N
H

N

N

R1
O

O

R2
OH

OH

30: R1=H, R2=H
32: R1=OCH3, R2=α-OH  

N N

N

O
O

O

R1
R2

H

33: R1=α-O-prenyl, R2=α-OH, R3=H, R4=OH
35: R1=α-OCH 3, R2=β-OH, R3=H, R4=H
36: R1=α-O-prenyl , R2=α-OH, R3=OH, R4=H
49: R1=α-O-prenyl , R2=α-OH, R3=H, R4=H

O O

R4

R3

NH N

N
R1

O

O

R2
R3

H

42: R1=H, R2=α-OH, R3=α-OH
43: R1=OCH3, R2=α-OCH 3, R3=β-OH
45: R1=OCH3, R2=α-OH, R3=α-OH

N
N

N

O O

O
O

OH OH

H

44

N N

N

O

HO

O

O

OH
OH

H

46  
Figure 8. Chemical structures of 27–49. 

O

O
O

HN O
O

50

HN
O

R2

R1

R4
R3

R5
R6

O

51: R1=R3=R5=H, R2=R4=R6=OH
52: R1=R2=R3=H, R4=OH, R5=R6=O
54: R1=R2=R5=H, R3=R4=O, R6=OH
55: R1=R2=R3=R5=H, R4=R6=OH

HN
O

OH
O O OH

53

N
H

O
N

OMe

O

HO

H

56  

NH

NH2

O

HO
O

O

H
NO O

OMe

OH

57

H
N N

N
H

N
N
H

N

OH

O

O

O

O
OH

OH

O

O

58

N
H

HN

NH

O

O

59

O
OH

H
NO

OOH
OMe

O

HO

60  

NH

O

O
NH

NH

H
N

HN O

HO

O

N
H

O NH
OO

HO O

HN

NH

NH

O
O

HN

HN
O

O

N

O

NH2

H
N

OOH

61

O

H2N

O
N
H

O

O N
H

N

N

O

O

HO
H

OH

62

O N
H

HN

N
O

63

O
H

O

64: R=H
65: R=OH

N
H

N
O

R

H

NH

O
O

N

N
NH

O

O

66

N
H

N

O

O
67

 
Figure 9. Chemical structures of 50–67. 

Compounds 27, 28, 38–40, 44 and 46–49 displayed strong inhibitory effects on bromodomain-
containing protein 4 (BRD4) at 20 μM. Notably, 39 and 48 exhibited the most inhibitory activity with 
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Compounds 27, 28, 38–40, 44 and 46–49 displayed strong inhibitory effects on bromodomain-
containing protein 4 (BRD4) at 20 µM. Notably, 39 and 48 exhibited the most inhibitory activity
with 72.7% and 80.4%, compared with the positive control, BRD4 inhibitor (+)-JQ1 (85.7%) [35].
As reported in the previous study, BRD4 protein was a member of the bromodomain and extra-terminal
domain (BET) family that carried two bromodomains and was associated with mitotic chromosomes.
Bromodomains targeted genetic and epigenetic alterations and regulated chromatin remodeling,
which were important therapeutic targets for major diseases, such as neurological disorders, obesity,
cancer and inflammation [39,40]. Thus, these compounds further deserved development and
research for the treatment of major diseases. Li et al. (2012) reported that 41 had potent inhibitory
activities against Fusarium oxysporum f. sp. Niveum, Alternaria alternate, Fusarium oxysporum f. sp.
vasinfectum and Fusarium solani with MIC values of 6.25–25 µg/mL and moderate brine shrimp toxicity
(LC50 60.7 µg/mL) [41]. The occurrence of 41 could be involved in protecting microbes against invasion
by other competing microbes. Therefore, 41 could be considered as a promising lead compound for
developing new fungicides. Cui et al. reported 43 could completely inhibit the G2/M phase of tsFT210
cells at concentrations >29.4 µM [42]. Furthermore, Wang et al. (in 2008) showed that 44 had selective
cytotoxicity against four cancer cell lines, MOLT-4, HL-60, A-549 and BEL-7402 [43].

Cytochalasans were fungal metabolites that were structurally identified by the presence of a
reduced isoindone nucleus connected with a macrocyclic ring [44]. Six cytochalasans (50–55) showed
strong toxicity against Streptomyces sp. with 50–80% inhibition at 2–16 µg/mL, and most of them even
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exhibited 60% inhibition at 2 µg/mL, but they had no any effect on the fungus A. flavipes at the same
concentration. This indicated that cytochalasans could help A. flavipes to compete with Streptomyces sp.,
which was an important support for their potential ecological role. All cytochalasans also exhibited
obvious toxicity against human cell lines, as cytochalasans had the ability to inhibit, specifically, the
actin filament elongation by blocking the polymerization sites [45–47]. Thus, all six compounds (50–55)
exhibited powerful toxicity against Streptomyces sp. at 2–16 µg/mL with inhibition rate of 50–80%.
Notably, most of these compounds displayed strong inhibitory activity with inhibition rate of 60%
even at 2 µg/mL, whereas none of them had antimicrobial activity against the marine-derived producer
A. flavipes at the same concentration. These findings implied that the co-culture through microbial
physical contact could stimulate the expression of silent gene cluster that was responsible for the
production of cytochalasans.

The cyclic siderophore, nocardamine (58), had inhibitory effects on the proliferation of human
tumor cell lines: SK-Mel-5 with an IC50 value of 18 µM, T-47D with an IC50 value of 6 µM, PRMI-7951
with an IC50 value of 14 µM and SK-Mel-28 with an IC50 value of 12 µM [48]. Compared with the pure
cultures, some novel metabolites were observed in the mixed culture. Two fungal prenylated indole
metabolites, 56 and 59, which were not traced before in A. fumigatus, were induced. Both of them had
an oxazino [6,5-b]indole nucleus which was not previously found in nature. Additionally, the yield
of compound 61 was obviously higher than that of the monoculture of Streptomyces leeuwenhoekii
C58. It was the first time that a bi-lateral cross talk was proved, which resulted in dual induction
of both fungal and bacterial metabolites in the same culture conditions. 64 displayed cytotoxic
activities toward mouse lymphoma cell line L5178Y with an IC50 value of 16.7 µM and in vitro toward
testosterone-dependent prostate LNCaP cells with an IC50 value of 2.1 µM [49].

2.1.3. Alkaloids Derived from the Co-Cultures of Different Marine Bacteria

Thirteen alkaloids were isolated from the co-culture of different marine bacteria (Figures 2E and 3);
the structures of these isolates were listed in Figure 10. The average yields of five known tryptamine
derivatives, N-acetyltryptamine (68), N-propanoyltryptamine (69), bacillamide C (70), bacillamide B
(71) and bacillamide A (72) using the co-fermentation of marine strain Streptomyces sp. CGMCC4.7185
and Bacillus mycoides isolated from marine sediments of the Nanji Island (China, 27◦42′ N, 121◦08′ E),
were 14.9, 2.8, 9.6, 13.7 and 3.0 mg/L, respectively, which were all undetectable under simple culture
conditions [50]. This was the first report of applying a microorganism co-culture system to enhance the
yields of known compounds [50].

In 2018, El-Hawary et al. identified four indole alkaloids—a novel brominated oxindole
alkaloid saccharomonosporine A (73), a novel convolutamydine F (74) and two known compounds,
(S) 6-bromo-3-hydroxy-3-(1H-indol-3-yl) indolin-2-one (75) and vibrindole (76)—from the mixed
fermentation culture of two sponge-associated actinomycetes, Saccharomonospora sp. UR22 and
Dietzia sp. UR66 collected from the Red Sea sponge Callyspongia siphonella [51].

Two sponge-associated actinomycetes, Actinokineospora sp. EG49 isolated from the Red Sea sponge,
Spheciospongia vagabunda, and Nocardiopsis sp. RV163 derived from the Mediterranean sponge,
Dysidea avara, were co-cultivated together and yielded a novel 5a,6,11a,12-tetrahydro-5a,11a-dimethyl-
1,4-benzoxazino[3,2-b][1,4]benzoxazine (77) and three known metabolites, N-(2-hydroxyphenyl)-
acetamide (78), 1,6-dihydroxyphenazine (79) and 2,2′,3,3′-tetrahydro-2,2′-dimethyl-2,2′-bibenzoxazole
(80) [52].

Pim-1 kinase is a well-established oncoprotein in several tumor entities, such as prostate cancer,
pancreatic cancer, colorectal cancer and myeloid leukemia. Inhibition of Pim-1 kinase would prevent
the growth of tumor cells. Compounds 73 and 75 exhibited potent Pim-1 kinase inhibitors with IC50

values of 0.3 µM and 0.946 µM, respectively. Docking studies showed the binding model of 73 and
75 in the ATP pocket of Pim-1 kinase. They also exhibited obvious antiproliferative activity against
human promyelocytic leukemia HL-60 (IC50 2.8 and 4.9 µM) and human colon adenocarcinoma HT-29
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(IC50 3.6 and 3.7 µM). This indicated that 73 and 75 could act as potential Pim-1 kinase inhibitors that
mediated the inhibitory effects on the growth of tumor cells [51].
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In addition, only compound 79 was documented against Trypanosoma brucei (IC50 19µM), Bacillus sp.
(11 mm inhibition zone diameter) and Actinokineospora sp. EG49 (15 mm inhibition zone diameter) [52].
The yield of 79 was very high in the co-culture process. However, it was not detected in the single
microbial culture. Co-culture strategy not only enhanced the chemical diversity of the metabolites but
also increased the production of metabolites undetected in the single microbial culture.

2.2. Anthraquinones

Thirteen different anthraquinone isolates were obtained from different marine microbial co-cultures;
the co-cultures of marine fungi–bacteria represented the majority, 69% (9/13 isolates; Figures 2B and 11).Mar. Drugs 2020, 18, x 11 of 27 
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Figure 11. Anthraquinones isolated from the co-cultures of marine fungi–fungi, fungi–bacteria
and bacteria–bacteria.
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2.2.1. Anthraquinones Derived from the Co-Cultures of Different Marine Fungi

In the recent study, the combination of cultures from two different developmental stages of marine
alga-derived Aspergillus alliaceus (teleomorph: Petromyces alliaceus) drastically changed the metabolite
profile and resulted in the production of allianthrone A (81) and two diastereomers, allianthrones B
(82) and C (83) (Figure 12) [53]. 81–83 exhibited cytotoxic activity against SK-Mel-5 melanoma cell lines
with IC50 (11.0, 12.2, and 19.7 µM) and HCT-116 colon carcinoma cells with IC50 (9.0, 10.5 and 13.7 µM),
respectively. This study presented the first example of elicitation of novel fungal chemical diversity by
a co-existing strategy of two different developmental phenotypes of Aspergillus species. For several
Aspergilli, e.g., A. alliaceus, asexual and sexual life developmental stages were known. However, rarely
did they co-cultivate at the same time. Even more surprising was the presence of novel bianthrones
when the sclerotial and asexual morphs of the same species co-existed. There were only a few examples
that showed differences in secondary metabolites in fungi based on their distinct developmental
stages or chemical profiles for the two mating types of heterothallic fungi. However, none of these
compounds displayed any activity against P. aeruginosa, E. faecium, S. aureus, E. coli, C. albicans and
B. subtilis. Furthermore, non-significant results were obtained against lung (A549), prostate (PC3) and
breast (MCF-7) human cancer cells compared with the positive control, etoposide [53].
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2.2.2. Anthraquinones Derived from the Co-Cultures of Marine Fungi and Bacteria

Two novel anthraquinones, (z)(11S,12R)-versicolorin B (84) and 6,8-O-dimethylbipolarin (85),
along with seven known substances bipolarin (86), versiconol (87), versiconol acetate (88), versicolorin
B (89), 8-O-Methylversicolorin B (90), averufin (91) and endocrocin (92) (Figure 13) were isolated and
identified from the mixed fermentation broth of the marine fungus A. versicolor and B. subtilis [38].Mar. Drugs 2020, 18, x 12 of 27 
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Versiconol (87) was characterized as an inhibitor of protein tyrosine kinases against EGF-R and
v-abl protein tyrosine kinases that were responsible for catalyzing phosphorylation of tyrosine residues
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of protein substrates, and suppression of MK-cells [54]. 89 displayed inhibitory activity against the
Gram-positive S. aureus with MIC value of 50 µM and antifungal activity against Fusarium solani
with MIC values of 16–32 µg/mL [38,55]. The cytotoxic bioassay of 90 was recorded against mouse
lymphoma cell line L5178Y with an IC50 value of 21.2 µM. Moreover, 91 displayed antibacterial activity
against B. subtilis (MIC = 8–16 µg/mL) and the Gram-positive S. aureus (MIC = 25 µM) and four
Gram-positive microbes, including two E. faecalis and two E. faecium (MIC = 12.5–25 µM) [38,55].
Neither 89 nor 91 had cytotoxicity against L5178Y cell line, which implied that their antimicrobial
activities were not associated with their respective general toxicities. Besides, 90 also displayed mild
cytotoxic activity against human lung cancer cells H460 and the human prostate cancer cells PC-3
with IC50 values of 27.2 and 19.5 µM, respectively [56]. Other compounds did not exhibit distinct
cytotoxic activity against L5178Y cell line and antibacterial activity against five Gram-positive microbes,
including one S. aureus, two E. faecalis and two E. faecium.

2.2.3. Anthraquinones Derived from the Co-Cultures of Different Marine Bacteria

A new antibiotic, keyicin (93) (Figure 14), was purified and identified from a co-culture of
two marine invertebrate-associated bacteria Micromonospora sp. WMMB-235 and Rhodococcus sp.
WMMA-185 [57]. It showed selective inhibitory activity against Gram-positive bacteria and could
inhibit the growth of B. subtilis and Methicillin Sensitive Staphylococcus aureus (MSSA) with MIC values
of 9.9 µM and 2.5 µM, respectively. In contrast to many anthracyclines, 93 might modulate fatty acid
metabolism and exhibit antibacterial activity without nucleic acid damage that is explained by keyicin’s
mechanism of action (MOA) based on E. coli chemical genomics studies [57].
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2.3. Cyclopeptides

Cyclopeptides are cyclic compounds mainly formed by the amide bonds of proteinogenic or
non-proteinogenic amino acids bound together. Several fungal cyclic peptides have been developed as
pharmaceuticals, such as the echinocandins, pneumocandins and cyclosporin A [58]. Six cyclopeptides
were produced by the co-cultures of marine fungi–fungi (four isolates, 67%) and fungi–bacteria
(two isolates, 33%) from different marine sources. However, marine bacteria–bacteria did not yield
these structures in this period of investigation.

2.3.1. Cyclopeptides Derived from the Co-Cultures of Different Marine Fungi

Three new cyclic tetrapeptides, named cyclo-(L-leucyl-trans-4-hydroxy-L-prolyl-D-leucyl-trans-4-
hydroxy-L-proline) (94) [59] cyclo (D-Pro-L-Tyr-L-Pro-L-Tyr) (95) and cyclo (Gly-L-Phe-L-Pro-L-Tyr)



Mar. Drugs 2020, 18, 449 14 of 28

(96) (Figure 15) [60] were identified from the co-culture of two mangrove fungi Phomopsis sp. K38 and
Alternaria sp. E33 isolated from the South China Sea. Meanwhile, the co-cultivation of two marine
alga-derived fungi Aspergillus sp. BM-05 and BM-05ML isolated from a brown algal species collected off

Helgoland, North Sea, Germany, yielded a new cyclotripeptide, psychrophilin E (97) (Figure 15) [30].
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Compound 94 exhibited in vitro moderate to high inhibitory activity towards four crop-threatening
fungi, Helminthosporium sativum, Gaeumannomyces graminis, F. graminearum and Rhizoctonia cereals
with MIC values of 130, 220, 250 and 160 µg/mL, respectively [59]. 95 and 96 showed high in vitro
antifungal activity against human fungus (Candida albicans) with MIC values of 35 µg/mL and 25
µg/mL, respectively [60]. 97 exhibited anti-proliferative activities against four human cancer cells,
human cisplatin-resistant ovarian cancer A2780CisR, colon carcinoma HCT116, ovarian cancer A2780
and chronic myelogenous leukemia K562 with IC50 values of 49.4, 28.5, 27.3 and 67.8 µM, respectively.
The inhibition of HCT116 cells by 97 was more potent than that of the positive control, cisplatin (IC50

33.4 µM) [30].

2.3.2. Cyclopeptides Derived from the Co-Cultures of Marine Fungi and Bacteria

Recently, the chemical investigation of the mixed-fermentation of a marine fungus Aspergillus versicolor
isolated from the sponge Agelas oroides and B. subtilis yielded two cyclic pentapeptides, one new
cotteslosin C (98) and a known cotteslosin A (99) (Figure 16) [38]. Both of them did not show significant
cytotoxic activity towards mouse lymphoma cell line L5178Y, or even antibacterial activity against five
Gram-positive microbes, including one S. aureus, two E. faecalis and two E. faecium [38]. 99 displayed
weak cytotoxicity against another three human cancer cell lines, prostate DU145, melanoma MM418c5
and breast T47D, with EC50 values of 90, 66 and 94 µg/mL, respectively [61].
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2.4. Macrolide

There were no reported macrolides from the co-cultures of marine fungi–fungi and fungi–bacteria.
Only one isolate was identified from a co-culture of marine bacteria–bacteria.
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Macrolides Derived from the Co-Cultures of Different Marine Bacteria

A known compound, nonactin (100) (Figure 17) was isolated from the co-culture of two marine
bacteria, Saccharomonospora sp. UR22 and Dietzia sp. UR66 [51]. It possessed a macrotetrolide structure
integrated from nonactic acid, and exhibited antitumor and antibacterial activity, especially its inhibitory
effects on the P170 glycoprotein-mediated efflux of chemotherapeutic agents in multiple-drug-resistant
cancer cells [62–65].
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2.5. Phenylpropanoids

Phenylpropanoids are a big and structurally diverse group of secondary metabolites, which bear
a C6–C3 phenolic scaffold that play crucial roles in a wide spectrum of biological and pharmacological
activities [66]. Twenty-three phenylpropanoids were isolated from co-culture of marine fungi–fungi
(12 isolates, 52%) and fungi–bacteria (11 isolates, 48%), while there are no reported phenylpropanoids
from the co-culture of different marine bacteria.

2.5.1. Phenylpropanoids Derived from the Co-Cultures of Different Marine Fungi

A xanthone derivative known as 8-hydroxy-3-methyl-9-oxo-9H-xanthene-1-carboxylic acid methyl
ether (101) (Figure 18) was discovered from the mixed culture of two mangrove fungi, Phomopsis sp.
K38 and Alternaria sp. E33 [67] from the South China Sea coast. It showed a broad spectrum of
antifungal activities against plant pathogens, Blumeria graminearum, Gloeasporium musae, F. oxysporum,
Colletotrichum glocosporioides and Peronophthora cichoralearum.
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Ten citrinin analogues were isolated and identified from the co-culture of two marine algal-derived
endophytic fungal strains, Aspergillus sydowii EN-534 and Penicillium citrinum EN-535 collected from
marine red alga Laurencia okamurai, including two novel compounds, citrinin dimer seco-penicitrinol A
(102) and citrinin monomer penicitrinol L(103), and the known penicitrinone A (104), penicitrinone
F (105), penicitrinol A (106), citrinin (107), dihydrocitrinone (108), decarboxydihydrocitrinone (109)
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phenol A acid (110) and phenol A (111) (Figure 19) [68]. In addition, one novel coumarin named
7-(γ,γ-dimethylallyloxy)-6-hydroxy-4-methylcoumarin (112) (Figure 19) was detected and characterized
from the co-culture of the two mangrove fungi, Phomopsis sp. K38 and Alternaria sp. E33 [69].
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Compounds 104, 106 and 107 exhibited inhibitory activities against two human pathogens
Micrococcus luteus and E. coli, and three aquatic bacteria Vibrio parahaemolyticus, Vibrio alginolyticus
and Edwardsiella ictaluri with MIC values of 4–64 µg/mL. 102, 103 and 105 inhibited V. alginolyticus
and E. ictaluri with MIC values of 32–64 µg/mL. 103 and 105 inhibited V. parahaemolyticus and E. coli
with MIC values of 32 and 64 µg/mL, respectively. Moreover, 102–107 were further evaluated for
anti-influenza neuraminidase (homologous protein of H5N1) activity. 104 and 105 exhibited significant
inhibitory activities with IC50 values of 12.9 and 18.5 nM, respectively [68]. Thus, these bioactive
substances could be further optimized for the development of antibacterial and anti-influenza agents.
In addition to the anti-influenza activity, the activated metabolite penicitrinone A (104) also exerted
an inhibitory effect on four human cancer cell lines, HL-60, K562, BGC-823 and HeLa cells with IC50

values of 43.2, 50.8, 54.2 and 65.6 µM, respectively [70].

2.5.2. Phenylpropanoids Derived from the Co-Cultures of Marine Fungi and Bacteria

The chemical investigation of the mixed culture of the marine fungus A. versicolor and
B. subtilis resulted in the isolation of one novel aflaquinolone, 22-epi-aflaquinolone B (113);
and ten known metabolites, aflaquinolone A, F and G (114–116), 3-O-methylviridicatin (117),
9-hydroxy-3-methoxyviridicatin (118), O-demethylsterigmatocystin (119), sterigmatocystin (120),
sterigmatin (121), AGI-B4 (122) and sydowinin B (123) (Figure 20) [38].

The metabolite 3-O-methylviridicatin (117) was reported to possess inhibitory activity against
human immunodeficiency virus (HIV) (Heguy et al., 1998). It could prevent cytokine tumor necrosis
factor α (TNF-α), induce the HIV expression with long terminal repeat in HeLa cells (IC50, 5µM)
and block the viral replication in the model of chronic infection in OM-10.1 cell lines which directed
at the induction of TNF-α [71]. 119 exhibited cytotoxic activities towards mouse lymphoma cell
line L5178Y with an IC50 value of 5.8 µM. Three xanthone derivatives (120–122) showed potent
cytotoxic activities towards the mouse lymphoma cell lines with IC50 values of 2.3, 2.2 and 2.0 µM,
respectively, compared with a positive control, kahalalide F (IC50 = 4.3 µM). Sterigmatocystin (120)
also exhibited strong cytotoxicity towards human hepatoma cells (HepG2) at 3 µM [72]. Its mechanism
suggested that it could stimulate a biotransformation process, increase the population of reactive
oxygen species and promote the imbalance in the antioxidant defense system caused by the process of
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lipid peroxidation [73]. Recently, Zingales et al. (2020) displayed the significant role of mitochondria
in sterigmatocystin-induced toxicity in SH-SY5Y cells [74]. The reduced viability of SH-SY5Y cells
displayed time- and dose-dependence with mitochondrial dysfunction when exposed to 120 in response
to the forced dependency of the cells on mitochondrial oxidative phosphorylation [74]. Thus, these
findings provided us a valuable direction for the application of neuroprotective mitochondria-target
functional peptides. Moreover, compound 122 inhibited human umbilical vein endothelial cells
(VEGF-induced proliferation of HUVECs) with an IC50 value of 1.4 µM [75]. It is considered as a novel
inhibitor of vascular endothelial cell growth factor, which is one of the main stimulants of angiogenesis.
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2.6. Polyketides

Twelve polyketides were isolated and characterized from the marine microbial co-cultures in
recent years (Figures 2B and 21).
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Compound 124 showed in vitro anti-proliferative activities towards human cisplatin-resistant 
ovarian cancer A2780CisR, ovarian cancer A2780 and chronic myelogenous leukemia K562 cell lines 
with IC50 values of 95.5, 30.6 and 57.0 μM, respectively. Moreover, it also displayed more significant 
anti-proliferative activities against human colon carcinoma HCT116 cells with an IC50 value of 10.3 
μM (cf. to cisplatin’s IC50 33.4 μM). Compound 125 exhibited potent in vitro anti-proliferative 
activities towards three human cancer cell lines, HCT116, A2780 and human chronic myelogenous 
leukemia (K562) with IC50 values of 4.4, 51.0 and 13.4 μM, respectively [30]. 
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2.6.1. Polyketides Derived from the Co-Cultures of Different Marine Fungi

In 2014, Ebada et al. identified three previously reported polyketide derivatives, sterigmatocystin
(124), 5-methoxysterigmatocystin (125) and aversin (126) (Figure 22) from the ethyl acetate extract of two
marine alga-derived fungi, Aspergillus sp. BM-05 and BM-05ML [30]. Kossuga et al. isolated two new
and unusual polyketides: (Z)-2-ethylhex-2-enedioic acid (127) and (E)-4-oxo-2-propylideneoct-7-enoic
acid (128) (Figure 22) from the marine-derived fungi Penicillium sp. Ma(M3)V isolated from the
marine sponge Mycale angulosa co-cultivated with Trichoderma sp. Gc(M2)1 isolated from the
marine sponge Geodia corticostylifera [76]. Two unprecedented polyketides (127–128) had a common
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feature—a conjugated carboxylic acid group that could be biogenetically generated from the methyl
group of an acetate rather than a methionine precursor in 127, and the same group could be derived
from C-1 position of an acetate or C-2 position of a propionate in 128 based on the precursor of the
ethyl group connected to a double bond. It was an excellent case of a truly novel carbon skeleton
induced by the powerful and underexplored method, marine microbial co-cultivation.
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Compound 124 showed in vitro anti-proliferative activities towards human cisplatin-resistant 
ovarian cancer A2780CisR, ovarian cancer A2780 and chronic myelogenous leukemia K562 cell lines 
with IC50 values of 95.5, 30.6 and 57.0 μM, respectively. Moreover, it also displayed more significant 
anti-proliferative activities against human colon carcinoma HCT116 cells with an IC50 value of 10.3 
μM (cf. to cisplatin’s IC50 33.4 μM). Compound 125 exhibited potent in vitro anti-proliferative 
activities towards three human cancer cell lines, HCT116, A2780 and human chronic myelogenous 
leukemia (K562) with IC50 values of 4.4, 51.0 and 13.4 μM, respectively [30]. 
  

Fungi and fungi
41% (5)

Fungi and bacteria
42% (5)

Bacteria and bacteria
17% (2)

Polyketides

Fungi and fungi
Fungi and bacteria
Bacteria and bacteria

Figure 22. Chemical structures of 124–128.

Compound 124 showed in vitro anti-proliferative activities towards human cisplatin-resistant
ovarian cancer A2780CisR, ovarian cancer A2780 and chronic myelogenous leukemia K562 cell lines
with IC50 values of 95.5, 30.6 and 57.0 µM, respectively. Moreover, it also displayed more significant
anti-proliferative activities against human colon carcinoma HCT116 cells with an IC50 value of 10.3 µM
(cf. to cisplatin’s IC50 33.4 µM). Compound 125 exhibited potent in vitro anti-proliferative activities
towards three human cancer cell lines, HCT116, A2780 and human chronic myelogenous leukemia
(K562) with IC50 values of 4.4, 51.0 and 13.4 µM, respectively [30].

2.6.2. Polyketides Derived from the Co-Cultures of Marine Fungi and Bacteria

A pair of enantiomers (9R,14S)-epoxy-11-deoxyfunicone (129) and (9S,14R)-epoxy-11-
deoxyfunicone (130), along with deoxyfunicone (131), alternariol (132) and vermistatin (133) (Figure 23)
were isolated from the co-culture of Penicillium sp. WC-29-5 isolated from the mangrove soil around
the roots of Aegiceras corniculatum and Streptomyces fradiae 007 isolated from a sediment sample in the
Jiaozhou Bay, Shandong Province, China [77].

Mar. Drugs 2020, 18, x 18 of 27 

 

2.6.2. Polyketides Derived from the Co-Cultures of Marine Fungi and Bacteria 

A pair of enantiomers (9R,14S)-epoxy-11-deoxyfunicone (129) and (9S,14R)-epoxy-11-
deoxyfunicone (130), along with deoxyfunicone (131), alternariol (132) and vermistatin (133) (Figure 
23) were isolated from the co-culture of Penicillium sp. WC-29-5 isolated from the mangrove soil 
around the roots of Aegiceras corniculatum and Streptomyces fradiae 007 isolated from a sediment 
sample in the Jiaozhou Bay, Shandong Province, R. P. China [77]. 

OMe OMeO

O O

129

MeO O

O
OMe OMeO

O O

130

MeO O

O

OMe OMeO

O O

131

MeO O
O

OH

HO

O

OH

132

OMe O

OO
O

MeO

133  
Figure 23. Chemical structures of 129–133. 

Both 129 and 130 exhibited moderate inhibitory activity against H1975 tumor cell lines with IC50 
values of 3.97 and 5.73 μM, respectively. Deoxyfunicone (131) was found to exert anti-inflammatory 
activity, exhibiting the inhibition effect on overproduction of nitric oxide (NO) and the prostaglandin 
E2 in both lipopolysaccharide-provoked BV2 microglial and lipopolysaccharide-stimulated 
RAW264.7 macrophage cells (IC50 = 10.6 and 40.1 μM, respectively) [78]. 132 was known as a 
cytotoxic, genotoxic, mutagenic and fetotoxic mycotoxin [79,80]. However, in the IL-1β-stimulated 
Caco-2 cells, the metabolite 132 increased the transcription of TNF-α; inversely reduced the 
transcription of IL-1β and IL-6; and decreased the transcription and secretion of IL-8, suggesting that 
132 possessed immunomodulatory activities on both lipopolysaccharide- and IL-1 β-related 
pathways in non-immune intestinal epithelial cells [79]. 

2.6.3. Polyketides Derived from the Co-Cultures of Different Marine Bacteria 

Recently, two unusual polyketides, janthinopolyenemycins A (134) and B (135) (Figure 24) were 
purified and identified from the co-cultivation broth of two marine bacteria Janthino bacterium spp. 
ZZ145 and ZZ148 isolated from marine soil sample [81]. Both 134 and 135 displayed the same 
antifungal activity against C. albicans with a minimum bactericidal concentration (MBC) value of 
31.25 μg/mL and an MIC value of 15.6 μg/mL. However, none of them could suppress the growth of 
methicillin-resistant S. aureus or E. coli (MIC > 100 μg/mL) [81]. 

OH

O

HO

H

H

134

OH

O

HO

H

H

135

HO  
Figure 24. Chemical structures of 134–135. 

2.7. Steroids 

Steroids contain a characteristic arrangement of four cycloalkane rings that are joined together. 
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Both 129 and 130 exhibited moderate inhibitory activity against H1975 tumor cell lines with IC50

values of 3.97 and 5.73 µM, respectively. Deoxyfunicone (131) was found to exert anti-inflammatory
activity, exhibiting the inhibition effect on overproduction of nitric oxide (NO) and the prostaglandin
E2 in both lipopolysaccharide-provoked BV2 microglial and lipopolysaccharide-stimulated RAW264.7
macrophage cells (IC50 = 10.6 and 40.1 µM, respectively) [78]. 132 was known as a cytotoxic,
genotoxic, mutagenic and fetotoxic mycotoxin [79,80]. However, in the IL-1β-stimulated Caco-2
cells, the metabolite 132 increased the transcription of TNF-α; inversely reduced the transcription of
IL-1β and IL-6; and decreased the transcription and secretion of IL-8, suggesting that 132 possessed
immunomodulatory activities on both lipopolysaccharide- and IL-1 β-related pathways in non-immune
intestinal epithelial cells [79].
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2.6.3. Polyketides Derived from the Co-Cultures of Different Marine Bacteria

Recently, two unusual polyketides, janthinopolyenemycins A (134) and B (135) (Figure 24) were
purified and identified from the co-cultivation broth of two marine bacteria Janthino bacterium spp.
ZZ145 and ZZ148 isolated from marine soil sample [81]. Both 134 and 135 displayed the same antifungal
activity against C. albicans with a minimum bactericidal concentration (MBC) value of 31.25 µg/mL and
an MIC value of 15.6 µg/mL. However, none of them could suppress the growth of methicillin-resistant
S. aureus or E. coli (MIC > 100 µg/mL) [81].
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2.7. Steroids

Steroids contain a characteristic arrangement of four cycloalkane rings that are joined together.
They represent a large family of compounds that play important roles as chemical messengers, and the
scaffold is present in many FDA-approved drugs [82–84]. A total of five steroidal metabolites were
reported; four of them were isolated from the co-culture of marine fungi–bacteria (80%); only one
isolate was identified from the co-culture of marine fungi–fungi (20%). No isolates were obtained from
the co-culture of marine bacteria–bacteria.

2.7.1. Steroids Derived from the Co-Cultures of Different Marine Fungi

To the best of our knowledge, the only one steroid, ergosterol (136), was found from the co-culture
broth of two marine mangrove epiphytic fungi, Aspergillus sp. FSY-01 and FSW-02 (Figure 25) [21,85].
It was an essential component of fungal cell membrane with strong specificity and stable structure.
Therefore, 136 was widely applied to detecting fungal containment as an indicator of fungal biomass [86].
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2.7.2. Steroids Derived from the Co-Cultures of Marine Fungi and Bacteria

An unprecedented steroid, 7β-hydroxycholesterol-1β-carboxylic acid (137), together with
three known steroidal metabolites, 7β-hydroxycholesterol (138), 7α-hydroxycholesterol (139) and
ergosterol-5α,8α-peroxide (140) (Figure 26), have been confirmed from the co-culture of two marine
alga-derived microbes, Aspergillus sp. BM05, and an unidentified bacterium (BM05BL), isolated from
the brown alga of the genus Sargassum collected off Helgoland, North Sea, Germany [87].
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Compounds 137–140 showed moderate activities against four human tumor cell lines, A2780,
HCT116, K562 and A2780 CisR with the IC50 values of 10.0–100.0 µM. At the same time, the total extract
of co-culture of Aspergillus sp. BM05 and BM05BL showed obvious antiproliferative activity compared
with its single steroidal compounds. This implied a synergistic role of these steroidal metabolites in
the extract. Furthermore, 140 was reported as a promising new candidate that could overcome the
drug-resistant property of malignant cancer cells through abolishing miR-378, a microRNA involved
in new tumor initiation, unlimited self-renewal and recurrence of tumor cells after chemotherapy [88].

2.8. Terpenoids

Terpenoids known as isoprenoids are structurally diverse metabolites found in many natural
sources. This class of compounds displays a wide sector of important pharmacological entities that
confirmed by several preclinical and clinical studies [89,90]. Only two terpenoidals were isolated from the
co-cultures of marine fungi–bacteria (one compound, 50%) and bacteria–bacteria (one compound, 50%).

2.8.1. Terpenoids Derived from the Co-Cultures of Marine Fungi and Bacteria

The production of the bacterial sesquiterpene pentalenic acid (141) (Figure 27) might be attributed
to the competition relationship between marine fungus A. fumigatus MR2012 isolated from a Red
Sea sediment in Hurghada, Egypt and terrestrial bacterium S. leeuwenhoekii C58 collected from the
hyper-arid soil of Laguna de Chaxa Salar de Atacama, Chile, in which S. leeuwenhoekii C58 suppressed
the production of A. fumigatus MR2012 and enhanced the production of 141 [37]. This suggested that
S. leeuwenhoekii C58 appeared to activate the cryptic biosynthetic gene clusters to construct a defense
mechanism based on the chemical signals generated by the competitive fungus, A. fumigatus MR2012.
Thus, the bacterial strain was capable of suppressing the biosynthesis of the fungus metabolites that
were present in the axenic cultures.
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2.8.2. Terpenoids Derived from the Co-Cultures of Different Marine Bacteria

A diterpene lobocompactol (142) (Figure 28) was isolated from the co-culture of marine
actinomycete Streptomyces cinnabarinus PK209 collected from the seaweed rhizosphere, obtained
at a depth of 10 m along the coast of Korea and its competitor Alteromonas sp. KNS-16. Its productivity
was increased 10.4-fold higher than that of the pure culture of PK209 [91]. Moreover, its antifouling
activities were recently confirmed against primary fouling organisms, including diatoms, bacteria,
and macroalgae zoospores. In order to further determine whether 142 was a non-toxic antifoulant,
the therapeutic rate (LC50/EC50) was used to evaluate its toxicity, the LC50/EC50 of 142 was more than
that of 15, indicating that the metabolite 142 was a non-toxic antifoulant. Thus, this compound could
be valuable as an antifouling agent in both antifouling coating industry and marine ecology.
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2.9. Others

Twelve compounds with other structures were obtained by co-culture of marine fungi–bacteria
(4 compounds, 33%) and fungi–fungi (8 compounds, 67%).

2.9.1. Other Compounds Derived from the Co-Cultures of Different Marine Fungi

A novel polysubstituted benzaldehyde derivative, ethyl-5-ethoxy-2-formyl-3-hydroxy-4-
methylbenzoate (143) (Figure 29) was identified from the mixed fermentation of the two mangrove
fungi, Phomopsis sp. K38 and Alternaria sp. E33 that were collected from the South China Sea [92].
Another two novel furanone derivatives were identified as sclerotiorumins A and B (144, 145) (Figure 29)
from the co-culture of the two marine fungi, sclerotiorum SCSGAF 0053 and P. citrinum SCSGAF 0052
isolated from gorgonian Muricella flexuosa collected from the South China Sea, Sanya (18◦11′ N,
109◦25′ E), Hainan Province, China [23]. Five diorcinols, including one novel diorcinol J (146) and
four known diorcinols B-E (147–150) (Figure 29), were characterized during the co-culturing of two
marine-derived fungi, A. sulphureus KMM 4640 and I. felina KMM 4639 [93].Mar. Drugs 2020, 18, x 21 of 27 
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Compound 143 showed in vitro inhibitory activity against G. musae, F. graminearum, P. sojae 
(Kaufmann and Gerdemann) and Rhizoctonia solani Kuhn at 0.25 mM with inhibition zone diameters of 
11.57, 12.06, 8.5 and 10.21 mm, respectively. This suggested that 143 had broad inhibitory activity 
against these microbes [92]. 144 and 145 exhibited weak toxicity against brine shrimp (LC50 > 100 μM) 
and none of them displayed cytotoxicity against the liver hepatocellular carcinoma Huh7 and HepG2 
(LC50 > 100 μM) and obvious inhibitory activities towards three marine-derived bacteria, Bacillus 
stearothermophilus, Pseudoalteromonas nigrifaciens and Bacillus amyloliquefaciens, and two common 
pathogens, P. aeruginosa and S. aureus [23]. 
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Compound 143 showed in vitro inhibitory activity against G. musae, F. graminearum, P. sojae
(Kaufmann and Gerdemann) and Rhizoctonia solani Kuhn at 0.25 mM with inhibition zone diameters
of 11.57, 12.06, 8.5 and 10.21 mm, respectively. This suggested that 143 had broad inhibitory activity
against these microbes [92]. 144 and 145 exhibited weak toxicity against brine shrimp (LC50 > 100 µM)
and none of them displayed cytotoxicity against the liver hepatocellular carcinoma Huh7 and
HepG2 (LC50 > 100 µM) and obvious inhibitory activities towards three marine-derived bacteria,
Bacillus stearothermophilus, Pseudoalteromonas nigrifaciens and Bacillus amyloliquefaciens, and two common
pathogens, P. aeruginosa and S. aureus [23].

Among the five diorcinols, only 146 showed apparent cytotoxicity against murine Ehrlich
carcinoma cells and hemolytic activity against mouse erythrocytes. The significant hemolytic activity
of 146 suggested that its cytotoxic activity against murine Ehrlich carcinoma cells was due to a
membranolytic mechanism. It is well known that the heat shock protein 70 (HSP70) was frequently
overexpressed in tumor cell lines as an ATP-dependent molecular chaperone and played a significant
role in refolding misfolded proteins and promoting cell survival under stress [94]. Thus, compounds
that could inhibit HSP70 had great potential in tumor therapy. 147 could decrease the expression of
HSP70 in the Ehrlich carcinoma cells, which made it possible to develop as a new antitumor drug/lead.
Diorcinol D (149) was studied for its combined therapy against planktonic Candida albicans with a
broad-spectrum antifungal agent fluconazole [95]. The combined therapy exhibited considerable
antifungal activity against ten clinical isolates of C. albicans containing five fluconazole-resistant isolates
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and five fluconazole-sensitive isolates, whereas fluconazole alone did not display antifungal activity.
This suggested that diorcinol D (149) restored the susceptibility of fluconazole to C. albicans.

Moreover, the efficiencies of fluconazole inhibiting mature biofilms were also drastically boosted
by the addition of 149 [95]. The fractional inhibitory concentration index (FICI) model and ∆E
model unclosed that the synergistic actions indeed existed in combination of diorcinol D (149) and
fluconazole [95]. Two resistance mechanisms of azoles were overexpression of efflux pumps genes
and alterations of genes (point mutations). 149 mainly suppressed the activity of efflux pump in cells
partly by decreasing the expression of Cdr1 (one mediator of azole efflux pumps) in Candida albicans
CASA1. On the other hand, 149 also inhibited ergosterol synthesis and CYP51 (the target of fluconazole)
expression [95]. Thus, the significant synergistic interaction and drug-resistant reversion of fluconazole
combined with diorcinol D (149) were caused by the two latent mechanisms, the block of efflux pump
and ergosterol biosynthesis. Notably, 149 was still needed to further in vivo study in the combination
therapy field to settle rock-ribbed clinical fungal infection in response to the azole resistance.

2.9.2. Other Compounds Derived from the Co-Cultures of Marine Fungi and Bacteria

Five known metabolites, diorcinol D (149), penicillanone (151), diorcinol G (152), diorcinol I (153)
and radiclonic acid (154) (Figure 30) were obtained from the co-culture of the sponge-derived fungi
A. versicolor and B. subtilis [38].Mar. Drugs 2020, 18, x 22 of 27 
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Compounds 149, 152 and 153 displayed antibacterial activities against five Gram-positive microbes,
including one S. aureus, two E. faecalis and two E. faecium with the MIC values of 12.5–50 µM. In addition,
152 displayed potent inhibitory activities against all tested bacteria with an MIC value of 12.5 µM.
149 displayed inhibitory activity against E. coli with an MIC value of 8 µg/mL; and 153 showed
significant antibacterial activity against S. aureus with an MIC value of 6.25 µg/mL [96,97]. In contrast,
149, 152 and 153 did not display any obvious activity against L5178Y cell lines, which suggested
that the antimicrobial activities of these products were not associated with their respective general
toxicities [38].

3. Conclusions

Marine microorganisms have attracted more attention as natural producers of lead compounds.
Marine microbes especially are considered as a renewable and reproducible source that can be
easily cultured [98,99]. However, the speed of new lead compound discovery is slowing down.
Thus, marine microbial co-culturing represents a powerful strategy for the production of novel
bio-substances. The strategy can induce the biosynthesis of novel compounds and various NPs
coded by corresponding genomes through the activation of the silent gene clusters or previously
unexpressed biosynthetic routes.

In the last ten years, the overall statistical studies showed that 156 metabolites were discovered
from the co-culture of different marine microbes. Figure 2 and Table 1 illustrated that 59 compounds
were isolated from the co-culturing of different marine fungi; 79 compounds were isolated from marine
fungi and bacteria; and only 18 compounds were disclosed from co-culturing different marine bacteria.
The metabolites by co-culture of marine fungi and bacteria accounted for the largest proportion
(51% of all metabolites of marine microbial co-culture). Alkaloids were the largest group with ≥51.9%,
whereas macrolides were the lowest group with <0.65%. Just only one macrolide was identified from
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the co-cultures of different marine bacteria. Furthermore, co-cultures of different marine bacteria did
not produce cyclopeptides, phenylpropanoids and steroids, and co-cultures of different marine fungi
did not induce the biosynthesis of terpenoids.

Several studies suggest that Aspergillus spp. are the most common fungi that co-fermented with
other microbes and produce numerous novel skeletons. The majority of these NPs have antimicrobial
or/and antitumor activities. However, some significant restrictions obstruct the development of the
co-culture technology; e.g., cryptic and undefined biosynthesis routes and the producers of NPs from
the co-cultivation of two or more microorganisms, the particularities of strains and environmental and
nutritional requirements, the instability of the ecological relationship, the uncertainty of the interaction
relationship and the high contamination probability. Therefore, new technology and equipment need
to be created, such as metabolomics analysis and molecular network technology. The new mechanisms
of chemical communication of microbes (through direct/mediate contact) also need to be further
investigated. In conclusion, co-culture is still shrouded in mystery as a prospective experimental tool
for novel bioactive NPs. This article embodies the value and diversity of NPs from the co-cultivation
of marine-derived microorganisms and it is considered as a guided reference for studying NPs.
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