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Abstract: The microbial community interacts with the environment and the health and immune
function of its host both directly and indirectly. However, very few studies about microbial
communities have considered habitat and external environmental variables. This study examined
environmental influences on the microbial community of Pachygrontha antennata, which is found in
various habitats (e.g., urban, forested, and agricultural areas). The results demonstrated that the
composition of the microbial community differed according to land use, while the bacterial diversity
did not. In urban areas with high environmental heterogeneity, microbial community diversity tended
to be high. Furthermore, bacteria in forests and agricultural areas (e.g., Paraburkholderia, Burkholderia)
have been found to be highly correlated with habitat variables. Therefore, we suggest that habitat
variables should be considered in future symbiotic studies.

Keywords: pachygronthidae; pachygrontha antennata; microbial community; land use; habitat variable

1. Introduction

A microbial community refers to all of the intracellular and extracellular bacteria that exist within
a single organism. Microbial communities differentiate into ecological niches in the host organism
within a limited space to relieve unnecessary interspecies competition, contributing to biodiversity and
playing an important role in host adaptation and fitness [1–5]. Bacteria can be both horizontally and
vertically transmitted. Vertical transmission refers to transmission from a mother to an offspring, as in
the case of mitochondria, whereas horizontal transmission refers to transmission from the external
environment. Environmentally derived bacteria can be spread via horizontal transmissions between
organisms, and the composition and diversity of these bacteria may vary according to environmental
variables such as habitat, diet, and social contact [5,6].

Varying landscapes comprise diverse environmental variables, such as climate, resources, and
organisms, which are directly associated with microbial foraging activities and interspecies interactions.
The diversity in a given landscape causes a uniquely adapted complex network of microbial interactions
to arise [7]. For example, ladybugs are found in highly diverse habitats (e.g., soybean fields and
prairies), and their microbial community compositions differ depending on the habitat in which they
are found [7]. The microbial community of the house sparrow (Passer domesticus) is also more diverse
in agricultural areas than in urban areas [8]. Urbanization and subsequent habitat fragmentation have
recently increased environmental heterogeneity, including within the same urban habitat, making
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it difficult to make accurate biological and environmental predictions, such as those regarding the
invasion of exotic species, unpredictable climate, and development of heat islands [9]. To improve
prediction capabilities, a better understanding of biological responses with reference to the landscape
and actual environmental data is necessary.

Insects are the largest group taxonomically classified, and exhibit highly diverse feeding habits.
They widely adapted to most environments. The guts of insects are known to contain enterobacteria
that produce various bioactive substances, such as digestive enzymes, and dissolve contaminants
from external sources [10]. Insects within Hemiptera are sensitive to vegetation structure [11–16] and
contamination [17]. However, very few studies have considered habitat variables when characterizing
microbial communities of insects, including the Hemiptera.

Pachygrontha antennata [18] belongs to the order Hemiptera and family Pachygronthidae, and this
species is a major pest in agricultural areas. The adult insects are typically found between April and
October, and are distributed across Korea, Japan, China, and Russia [19]. This insect was suitable for
our examination of the environmental influences on the microbial community for two reasons. First, P.
antennata is a generalist and it commonly inhabits the areas that we investigated. Thus, comparisons
could be made for each land use, and natural experiments assessing the environmental influence on
microbial communities could be performed. Second, the use of this insect in our study minimized the
effects of intracellular bacteria. Wolbachia, which are maternally inherited intracellular bacteria, have
been shown to alter the relative abundance of microbial communities in host insects [20]. Accordingly,
to assess the differences in the microbial community due to environmental influences, host insects
should not be infected with Wolbachia. Thus, all P. antennata used in this study were Wolbachia-free.

Despite the importance of microbial communities for host fitness, few studies have investigated
the characteristics of host-insect-associated microbial communities. Furthermore, due to the lack
of empirical studies on the bacteria associated with the environmental variables, it is challenging
to predict the dynamics of the microbial communities given an environmental change. Notably,
Burkholderia are the only bacteria that have been identified in P. antennata [21]. We assessed the effect
of environmental influences on the microbial community of P. antennata. In particular, the effects on
the microbial community caused by the macrohabitat and microhabitat variables as environmental
variables were examined. Previous studies have primarily analyzed the impact of land use using GIS
(Geographical Information System) data [7,8,22]. Here, we considered not only the GIS data, but also
data pertaining to the actual environment (ambient temperature and degree of coverage) that the host
insect is faced with. Thus, we investigated (1) any variance in the structure (diversity and composition)
of the microbial community of P. antennata based on habitat variables, and (2) any associations between
the microbial community and varying habitat variables. The evaluation of microbial communities of
insects in association with the environmental variables can be exploited to control agricultural pests
and disease-transmitting insects, as well as to conserve endangered insects [23–25].

2. Materials and Methods

2.1. Microbial Community

To compare the compositions of the microbial community by habitat type, 18 samples of P.
antennata were collected using the sweeping method at eight sites in five regions in Korea (Seoul,
Daejeon, Buyeo, Seocheon, and Gunsan) during the summer of 2018. Table 1 lists detailed information
about the collection sites, including GPS coordinates. There was no geographic isolation, such as
mountain ranges, between the five regions where samples were collected. The collected samples
were immediately placed in 100% ethanol (EtOH) and stored at −20 ◦C until genomic DNA could be
extracted. Samples were vortexed twice in 100% EtOH to remove foreign contaminants. After samples
were frozen with liquid nitrogen, they were lysed using two 3 mm beads and a tissue lyser (30 rpm/s,
20 s) [26,27]. Genomic DNA (gDNA) was extracted from the lysed samples using the DNeasy Blood &
Tissue kit (Qiagen, Hilden, Germany).
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Table 1. Location of sampling sites for collecting P. antennata.

Site Region Coordination Samples
Latitude Longitude

S1 Daejeon 36.37441 127.3486 P1, P2, P3
S2 Daejeon 36.11464 127.3297 P4, P5
S3 Daejeon 36.30056 126.9169 P6
S4 Buyeo 36.28120 126.9169 P8, P9, P19
S5 Seoul 37.51008 127.0767 P10, P12, P21
S6 Buyeo 36.26959 126.9122 P13, P14, P15
S7 Seocheon 36.02857 126.7268 P16, P17
S8 Gunsan 36.00767 126.7569 P18

To construct a library from the extracted gDNA, the V3 and V4 regions of the 16S rRNA gene
were amplified. The PCR primer set used during the preparation was comprised of an adaptor
sequence and a target sequence [28]. The Illumina MiSeq platform was used to obtain nucleotide
sequences of microbial communities. A large amount of nucleotide sequence information was obtained
from the prepared gDNA library. Raw sequences were trimmed to remove the primer sequence
and other unnecessary sequences (i.e., low quality amplicons, non-target amplicons, and chimeric
amplicons). After trimming, species-level identification with 97% 16S similarity was conducted
using the EzBiocloud database (database version: PKSSU4.0) [29]. The metagenome data were also
normalized for 16S gene copy number and read counts [30], and the alpha diversity indices (Shannon
index and phylogenetic diversity) were calculated using the EzBiocloud software.

2.2. Habitat Variables

Thirteen habitat variables which could influence the composition of the microbial community in
P. antennata were used in our analysis, including microhabitat variables (ambient temperature and
cover degree) and macrohabitat variables (land use) (Table 2). Temperature was measured hourly
at each location using a temperature logger (EL-USB-2-LCD+, LASCAR Instrument). The loggers
were installed within a 30 m radius of the representative sites of insect collection at a height of about
2.5 m, out of direct sunlight. The cover degree was measured within a 10 × 10 m area of the sampling
site using the ocular method in the FIA (Forest Inventory and Analysis) field manual (ver. 3.0) for
estimating cover degree [31].

Table 2. Description of micro and macrohabitat variables at the eight sampling sites.

Category Variables Abbreviation Mean (± SD)

Microhabitat variable
(10 × 10 m)

Ambient
temperature

Average daily temperature (◦C) Temp_ave 24.8 ± 2.2
Maximum daily temperature (◦C) Temp_max 32.0 ± 3.6
Minimum daily temperature (◦C) Temp_min 18.7 ± 1.7

Cover degree

Grass (%) Grass 59.1 ± 36.1
Arbor (%) Arbor 19.7 ± 18.7
Shrub (%) Shrub 21.2 ± 19.5

Canopy (%) Canopy 27.8 ± 18.8

Macrohabitat variable
(500 m radius) Land use

Urban area (%) Urban 35.6 ± 31.1
Agriculture area (%) Agriculture 17.2 ± 22.0

Forest area (%) Forest 36.5 ± 32.9
Grassland (%) Grassland 0.3 ± 1.3
Bare land (%) Bareland 8.0 ± 4.9

Watershed area (%) Watershed 2.4 ± 6.4

Land use data were obtained from the Ministry of Environment, Korea. Land use data were
extracted for a 500 m radius of each collection site [16,32,33] using GIS software (version 10.1, ArcGIS,
Redlands, CA, United States), and these data were used to calculate the proportion (%) of each land



Int. J. Environ. Res. Public Health 2019, 16, 4668 4 of 13

use. To avoid issues with GIS, distances that covered the largest area of a particular region were used,
and the GPS coordinates were used as the site of origin to minimize potential errors caused by the
GIS process.

2.3. Data Analysis

2.3.1. Multivariate Analyses

The differences in macrohabitat type of the microbial communities of P. antennata were analyzed
in relation to external habitat variables using multivariate statistical analyses such as cluster analysis
and principal component analysis (PCA). Cluster analysis was performed to classify the differences in
macrohabitat type of eight sampling sites based on the proportion of land use (urban, agricultural,
forest, grassland, bare land, and watershed area) using Ward’s linkage method with a Euclidean
distance measure. A multi-response permutation procedure (MRPP) analysis was performed on the
classified clusters to verify their significance [34]. Principal component analysis was conducted to
characterize spatial patterns of microbial communities of P. antennata in relation to habitat variables.
During the data preprocessing procedure, we applied cut-off filters of >0.1% and >1% based on
abundance level, and these cut-offs were used to select the predominant taxa [35]. The abundance of
the microbial community of each sample underwent a natural-logarithm transformation (ln (x + 1)) to
reduce variation and to meet the assumption of normality. After transformation, each sample was
rescaled to between 0 and 1 with min-max transformation to normalize all taxa for the comparison
analysis. The cluster analysis, MRPP, and PCA were performed with PC-ORD 5.0 (Wild Blueberry
Media LLC, Oregon, OR, United States) [36].

2.3.2. Statistical Analyses

Spearman rank correlation analysis was conducted to assess the correlation between macrohabitat
and microhabitat variables. A Dunn’s multiple-comparisons test after a Kruskal-Wallis test (K-W test)
was used to compare the differences in habitat variables among the clusters. These analyses were
conducted using STATISTICA software (version 7, StatSoft, Inc., Arizona, CA, USA). The Wilcoxon
rank-sum test was also used to compare the alpha diversity of the microbial community and the
relative abundance (%) of particular bacteria at the genus level based on each habitat type divided by
the cluster analysis. This analysis was conducted using the R software (version 3.6.1, R Development
Core Team, Auckland, New Zealand).

3. Results

3.1. Characteristics of Macro and Microhabitat Variables

Correlations between the land use proportion and cover degree as well as ambient temperatures
at sampling sites are shown in Table 3. The proportion of urban area was positively correlated with
minimum temperature (Temp_min; r = 0.72, p < 0.01) and arbor (r = 0.57, p < 0.01). Canopy (r = −0.85,
p < 0.01), maximum temperature (Temp_max; r = 0.48, p < 0.05), and cover degree, such as grass (r =

0.51, p < 0.05), arbor (r = −0.48, p < 0.05), and shrub (r = −0.50, p < 0.05), were significantly correlated
with agricultural area. Forest area had significant negative correlations with all ambient temperature
factors (p < 0.01). Meanwhile, grassland and bare land were not significantly correlated with any
microhabitat variables (p > 0.05).
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Table 3. Spearman rank correlation coefficients between microhabitat and macrohabitat variables at
eight sampling sites (** p < 0.01, * p < 0.05).

Land Use
Cover Degree Ambient Temperature

Grass Arbor Shrub Canopy Temp_ave Temp_max Temp_min

Urban −0.43 0.57 * 0.25 0.37 0.46 0.27 0.72 **
Agriculture 0.51 * −0.48 * −0.50 * −0.85 ** 0.30 0.48 * −0.19

Forest 0.07 −0.16 0.06 0.35 −0.66 ** −0.81 ** −0.63 **
Grassland 0.31 −0.31 −0.31 −0.36 −0.02 0.12 0.12
Bare land 0.27 −0.30 −0.28 −0.17 0.21 0.45 −0.05

Watershed 0.31 −0.31 −0.31 −0.56 * 0.32 0.63 ** 0.11

3.2. Classification of Macrohabitat Type

Cluster analysis was performed to classify the differences of the macrohabitat type of the eight
sampling sites, which were categorized into three clusters (1–3) based on the similarity of land use
(Figure 1a). The MRPP showed significant differences among clusters (A = 0.53, p = 0.0024). Among the
eight sites, S5 and S4, which belonged to Cluster 1, had high urban ratios of 86% and 68%, respectively,
while the other sites were less than 22% urban (Figure 1b). In addition, the forested areas accounted
for more than 67% of the sites in Cluster 3, while the sites in Cluster 2 consisted of more than 27%
agricultural areas.
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Figure 1. (a) Classification of eight sampling sites based on the composition of land use through a
cluster analysis with Ward’s linkage method using a Euclidean distance measure. (b) The percentage of
land use in the sampling sites. (c) The representative images in each cluster defined by cluster analysis.

According to our analysis, land use differed significantly among clusters (Table 4). Urban area
was highest in Cluster 1 (76.7 ± 9.9%) compared to all other clusters (Dunn’ s test, p < 0.05; Table 3).
Forested area was highest in Cluster 3 (77.0 ± 12.5%), whereas agricultural area was highest in Cluster
2 (45.7 ± 13.2%; Dunn’ s test, p < 0.05). Meanwhile, the proportions of grassland, bare land, and
watershed area were not significantly different among clusters (K-W test, p > 0.05).
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Table 4. Differences of macro and microhabitat variables among the three clusters defined by the cluster
analysis. The number indicates the mean (± SD) in each cluster. Different lowercase letters (a and b) in
the table indicate significant differences based on Dunn’s test (p < 0.05). Habitat variable acronyms are
given in Table 2.

Category Variables
Clusters

1 2 3

Macrohabitat
variables

Land use

Urban 76.7 ± 9.9 a 17.2 ± 4.3 b 12.8 ± 10.2 b

Agriculture 3.5 ± 3.6 b 45.7 ± 13.2 a 2.5 ± 1.4 b

Forest 14.7 ± 5.5 b 17.9 ± 23.3 b 77.0 ± 12.5 a

Grassland 0.0 ± 0.0 0.9 ± 2.2 0.0 ± 0.0
Bareland 5.1 ± 0.8 11.3 ± 6.6 7.7 ± 3.9

Watershed 0.0 ± 0.0 7.1 ± 10.0 0.0 ± 0.0

Microhabitat
variables

Ambient
temperature

Temp_ave 26.7 ± 0.7 a 25.2 ± 2.2 ab 22.5 ± 0.1 b

Temp_max 33.4 ± 2.5 33.8 ± 4.6 28.9 ± 0.2
Temp_min 20.7 ± 0.4 a 18.4 ± 1.2 ab 17.1 ± 0.3 b

Cover degree

Grass 26.7 ± 29.2 b 89.1 ± 6.6 a 61.7 ± 34.3 ab

Arbor 41.7 ± 9.1 a 3.5 ± 2.8 b 13.8 ± 12.6 b

Shrub 31.7 ± 20.1 a 7.4 ± 4.1 b 24.5 ± 22.3 ab

Canopy 40.0 ± 5.5 a 2.5 ± 2.7 b 40.8 ± 3.8 a

In addition, ambient temperature, except for maximum temperature and cover degree, was
significantly different among clusters (K-W test, p < 0.05; Table 4). Cluster 1 showed high values for
average temperature (Temp_ave) and minimum temperature (Temp_min), while Cluster 3 exhibited the
lowest values (Dunn’ s test, p < 0.05). Meanwhile, maximum temperature (Temp_max) was relatively
low in Cluster 3, although there was no significant difference between clusters (K-W test, p > 0.05).
Finally, the proportion of arbors and shrubs was highest in Cluster 1, whereas the proportion of grass
was highest in Cluster 2 and lowest in Cluster 1 (Dunn’ s test, p < 0.05).

3.3. Difference in Microbial Communities

To analyze the microbial communities, nucleotide sequences of an average length of 424 bp per
individual were obtained from 18 samples of P. antennata. A total of 670 taxa were identified from the
collected nucleotide sequences, including 27 predominant taxa (abundance level > 0.1%) and seven
major predominant taxa (abundance level > 1%; Table 5). Paraburkholderia (48.1%) and Caballeronia
(32.4%) were the most abundant taxa and made up 80.5% of the microbial community. However,
Caballeronia (43.9%) was most abundant in Cluster 1, and Paraburkholderia (25.3%) was a sub-dominant
taxon. Taxon richness was highest in Cluster 1 (427 taxa), followed by Cluster 3 (314 taxa) and Cluster
1 (171 taxa).

Table 5. Characteristics of microbial community in P. antennata for different clusters.

Cluster
Number of Taxa with Cut-Off Filter Dominant Taxa (%)

Total >0.1% >1% 1st 2nd

1 427 27 7 Caballeronia (43.9) Paraburkholderia (25.3)
2 171 22 7 Paraburkholderia (54.3) Caballeronia (31.5)
3 314 25 7 Paraburkholderia (64.6) Caballeronia (21.7)

Total 670 27 7 Paraburkholderia (48.1) Caballeronia (32.4)

The relative abundance of 27 predominant taxa in each cluster was transformed by
natural-logarithm (Figure 2). Microbial taxa showing high relative abundance were different between
clusters. The relative abundance of 19 taxa in Cluster 1 was higher than in other clusters. In Cluster
2, the relative abundances of Burkholderiaceae_uc, Paraburkholderia, Burkholderia, and Aureimonas were
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high, while in Cluster 3, the relative abundances of Asaia, Faecalibacterium, Prevotella, and Lonsdalea
were high.Int. J. Environ. Res. Public Health 2019, 16, x 7 of 13 
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We evaluated the relative abundance of seven major predominant taxa (cut-off filter based on
abundance level > 1%) among clusters defined by cluster analysis (Figure 3). Some predominant
taxa such as Paraburkholderia and Burkholderiaceae_uc showed significant differences, but the other
five predominant taxa did not. Paraburkholderia differed significantly between Clusters 1 and 3
(Wilcoxon rank-sum test, p = 0.04), and Burkholderiaceae_uc differed significantly between Clusters
1 and 2 (Wilcoxon rank-sum test, p = 0.04). Meanwhile, the relative abundance of Pseudomonas and
Sphingomonas were higher in Cluster 1 than in other clusters, although the difference was not statistically
significant (Wilcoxon rank-sum test, p > 0.05).

Based on results from the Wilcoxon rank-sum test, the phylogenetic diversity for the microbial
community of P. antennata was significantly different between Clusters 2 and 3 (Wilcoxon rank-sum
test, p = 0.04; Figure 4). Furthermore, the Shannon index was not significantly different among
clusters (Wilcoxon rank-sum test, Cluster 1–2, p = 0.57; Cluster 1–3, p = 0.34; Cluster 2–3, p = 0.30).
Raw sequence data generated for this study are available from NCBI Sequence Read Archive (SRA;
BioProject PRJNA588651).
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significant difference among clusters.
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3.4. Ordination with Microbial Community

The microbial communities of P. antennata could be ordinated on the biplot based on their
contribution to the community ordination using PCA (Figure 5). The cumulative variances of Axes 1
(57.6%) and 2 (13.8%) was 67.4%. The three clusters divided by cluster analysis were subjected to PCA.
The samples in Cluster 1 were mainly located on the lower left quadrant of the ordination map, and
samples in Cluster 2 were principally in the upper right quadrant. Based on the correlation coefficients
between environmental variables and PCA axis scores, the PCA axes were significantly correlated
with some habitat variables, and were visualized on the PCA ordination map with vector length and
direction. As a result, the urban area (r = −0.57, p < 0.05) and the proportion of arbor (r = −0.54, p <

0.05) and shrubs (r = −0.50, p < 0.05) were negatively correlated with Axis 1, whereas the proportion of
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grass (r = 0.55, p < 0.05) was positively correlated with Axis 1. Axis 2 was highly correlated with the
bare land area and agriculture area (r = 0.57 and r = 0.50, respectively; p < 0.05).Int. J. Environ. Res. Public Health 2019, 16, x 9 of 13 
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Figure 5. Principal component analysis ordination based on the differences in microbial community of
P. antennata. Principal component analysis ordination based on the differences in relative abundance
of microbial community in P. antennata (less than 0.1% were excluded). The environmental variables
that showed significant correlation coefficients (p < 0.05) with the first two principal axes are shown as
gray lines. The line length indicates the magnitude of the correlation and the line direction implies a
negative or positive correlation with each axis.

4. Discussion

In our study, macrohabitat and microhabitat variables were significantly correlated (Table 3), and
they represented the actual environment inhabited by P. antennata. We also noted some differences
in the composition of the microbial communities of P. antennata according to the habitat variables.
Although not statistically significant, there was a trend which suggested that these factors impacted
the bacterial diversity at a relatively low level. Therefore, our findings suggested that the composition
of microbial communities can vary depending on the habitat variables.

The composition of microbial communities showed distinct differences based on land use,
especially for those grouped in Cluster 1, with the characteristics of urban areas, which were relatively
abundant in 19 predominant taxa (Figure 2). Since habitat composition is directly linked to food
sources for insect hosts, the diversity of microbial communities is likely to be richer in habitats with
more diverse food sources [22]. Generally, urban areas have anthropogenic disturbances and high
temperatures [37], which reduces the range of food sources [38] and subsequently decreases microbial
diversity [22]. However, in some cases, urbanization may induce environmental heterogeneity [9,39].
Depending on the habitat compositions of urban areas, food source availability and diversity of bacteria
may increase. For instance, the microbiome of male birds was found to be highly diverse in urban
areas with a specific set of environmental conditions (tree/scrub/grass/impervious area), while in rural
areas, the diversity of their microbiome was low due to considerably simpler habitats and cultivation
practices [22]. These previously uncovered patterns are similar to our results. Specifically, although
it was not significantly different, the Shannon index (1.92 ± 1.39) and phylogenetic diversity (436 ±
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344) in Cluster 1, which had a high proportion of urban area, indicated greater diversity than at other
sites (Figure 4). In particular, Cluster 1 was significantly higher than the other clusters at all cover
degrees except grass, and it had relatively diverse environmental conditions. Taken together, urban
heterogeneity appears to positively influence the diversity of microbial communities.

There was a marked difference in the composition of the microbial communities when analyzed
from the perspective of land use (Figure 2). Paraburkholderia and Caballeronia were the predominant
taxa in all clusters (Table 5), and the relative abundance of Paraburkholderia was significantly higher,
especially in Cluster 3, which had a high proportion of forests (Wilcoxon rank-sum test, p = 0.04).
Paraburkholderia promotes plant growth [40–42]. Because plants are typically more abundant in forests
than in other habitats, the forest soil is likely enriched in Paraburkholderia.

Burkholderia is a major genus of bacteria found in various types of environments (soil, plants, insects,
molds, and humans) [43]. The relative abundance of Burkholderia (1.3 ± 0.9%) and Burkholderia_uc
(2.0 ± 0.9%) was highest in Cluster 2, which had a high proportion of agricultural area (Figures 3
and 4). Burkholderia breaks down fenitrothion in the insect Riptortus clavatus. This relative abundance
is similar to that observed by Kikuchi et al. [44] who confirmed the presence of Burkholderia spp. and
demonstrated that these bacteria acquire resistance to the insecticide fenitrothion in agricultural areas
and form a mutually beneficial symbiotic relationship. Since Burkholderia is transmitted horizontally,
each generation can obtain these commensal bacteria from their environment. Based on these results,
it is likely that P. antennata was subjected to selective pressure to develop an increased tolerance
to fenitrothion.

Possible reasons for land use affecting microbial communities are as follows: first, the food source
is a key factor in microbial communities and can be altered by different by land use [45]. Since P.
antennata is not a specialist, it can consume different plants depending on where it lives. This may
cause differences in microbial communities among the different types of land use. For example,
Aphis gossypii show different densities of Buchnera, an obligate bacterium, depending on their host
plants [46]. In addition, in the honeybee, the composition of the microbial community differs according
to the forage type [47]. This has been explained by the fact that because of the different secondary
metabolites present in plants, the amounts of bacteria that promote the decomposition of certain pollen
components can change. Second, specific environmental conditions resulting from land use can affect
the composition of microbial communities. For example, in agricultural areas containing pesticides,
insecticide-degrading bacterial populations are enriched (e.g., Burkholderia) [44], and red weaver ants
in urban areas harbor pathogenic bacteria [48]. Our results showed that Pseudomonas, a pathogenic
bacterium [49], had the highest relative abundance in urban areas. Collectively, our findings highlight
the possibility that different food sources and specific environmental conditions resulting from land
use may influence the microbial community of P. antennata, and further comprehensive studies (e.g.,
laboratory and outdoor) are required for elucidating the causes behind these differences.

5. Conclusions

The results revealed that the compositions of the microbial communities of P. antennata differ based
on habitat variables, although these factors have a relatively small impact on bacterial diversity. In urban
areas with high environmental heterogeneity, the diversity of microbial communities tended to be high.
In forests and agricultural areas, bacteria (Paraburkholderia, Burkholderia) that were highly correlated to
habitat variableswere also identified. Our findings suggest that the structure of microbial communities
can vary depending on land use or environmental variables. Furthermore, we demonstrated that
human activities affect habitat compositions as well as environmental variables, insect activities, and
microbial communities. Therefore, differences in microbial communities stemming from environmental
conditions should be considered not only when assessing the characteristics of symbionts, but also for
the conservation of host animals.
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