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Abstract

Background: Cell function necessitates the assemblage of proteins into complexes, a process
which requires further regulation on top of the fairly understood mechanisms used to control the
transcription and translation of a single protein. However, not much is known about how protein
levels are controlled to realize that regulation.

Results: We integrated data on the composition of yeast protein complexes and the dynamics of
their protein building-blocks concentrations to show how the cell regulates protein levels to
optimize complex formation. We find that proteins which are subunits of the same complex tend
to have similar levels which change similarly following a change in growth conditions, and that
abundant proteins undergo larger decrease in their copy number when grown in minimal media.
We also study the fluctuations in protein levels and find them to be significantly smaller in large
complexes, and in the least abundant subunit of each complex. We use a mathematical model of
complex synthesis to explain how all these observations increase the efficiency of complex
synthesis, in terms of better utilization of the available molecules and better resilience to stochastic
variations.

Conclusion: In conclusion, these results indicate an intricate regulation at all levels of protein
production for the purpose of optimizing complex formation.

Background in recent years, there has been a significant experimental

Much of the cell's activity is directed towards synthesis of
single proteins. Yet, the functional units of various cellular
processes are not single proteins but rather protein com-
plexes, i.e. a couple or more proteins bound together, per-
forming specific tasks[1]. While much is known about the
dynamics of gene expression and protein synthesis, the
understanding of the mechanisms of complex formation
and their dynamics is still in its early stages. Given the key
role played by complexes in all eukaryotes, the investiga-
tion of cellular complexes is of major importance. Indeed,

progress in identification of protein-protein interac-
tions[2,3] and their roles, as well as in detecting full func-
tional complexes [4-7]. Statistical analysis of the resulting
protein networks and complexes has attracted much inter-
est[8]. In particular, data describing protein interactions
and complexes was integrated with several other sources
of information such as gene expression [9-14], protein
function|6], localization|15,16], essentiality[16,17], and
others[18] to offer insight into the characteristics of the
complexes.

Page 1 of 10

(page number not for citation purposes)


http://www.biomedcentral.com/1752-0509/3/3
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19128449
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Systems Biology 2009, 3:3

A major obstacle to these analyses stems from the fact that
most studies of gene product abundance measure mRNA
abundance, which is insufficiently correlated with actual
protein levels. The widely used DNA microarray experi-
ments, providing a transcriptome-wide measure of mRNA
levels, are limited by the need to extrapolate from mRNA
levels to protein and complex levels, bridging over post-
transcriptional effects, which are, in large, still not suffi-
ciently understood. Key questions regarding the dynami-
cal behavior of complexes, such as what are the
advantages of a given complex structure and how it
changes under different conditions, need to incorporate
direct data on protein levels.

In a previous work[19], we have shown that protein com-
plexes in yeast[20] tend to have similar protein abun-
dances[21]. That is, the variance of the protein levels
among subunits of a complex is significantly lower than
expected by chance based on the distribution of levels of
single proteins. Analyzing a simple mathematical model
of complex formation, we have explained this tendency as
a selection towards efficiency of complex production.
Intuitively, excess in the level of one component of a given
complex results in a surplus of undesired sub-complexes
that contain this overly-expressed protein, followed by a
shortage of other sub-complexes required for the synthe-
sis of the complete goal complex. As a result, the efficiency
of complex synthesis (defined as the ratio of the number
of whole complexes to the amount of the component with
lowest abundance; see Methods) decreases [22,23].

In this work, we present more evidence for cells' internal
optimization for efficient complex production. We use
newly available measurements providing results for the
comparison of yeast protein levels in different environ-
mental conditions, as well as measures of the cell-to-cell
variation in actual protein levels[24]. The availability of
these proteomic data enables us to directly and globally
investigate the cells' response to external stimuli at the
proteomic level. We integrate other sources of informa-
tion on protein length[25], stability[26] and translational
activity|27], and apply a mathematical model of complex
formation, to further reinforce the general optimization
principle.

We find that yeast complexes tend to contain proteins
with similar change (increasing or decreasing their levels)
when grown in minimal media. Also, down regulation of
proteins in minimal media is stronger for proteins that are
more abundant in rich media, which we explain as ten-
dency towards efficiency using a mathematical model of
complex formation. Using our model we find that com-
plex levels are most sensitive to fluctuations in the levels
of the least abundant protein, and indeed, experimental
data show significantly smaller noise in the levels of the
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least abundant protein in a complex. Similarly, variation
in protein production is significantly less for proteins in
large complexes. Finally, we show that the length and life-
time of complex subunits are more similar than expected
by chance. Taken together, these results attest for highly
efficient control over the concentration of complexes
through tight regulation of the expression of their build-
ing blocks.

Results

Uniform direction of change in levels of complex subunits
In an experiment reported by Newman et. al. [24], the
abundance of yeast proteins was compared between two
states: YEPD (rich), and SD (minimal) by measuring cells'
fluorescence due to GFP-tagging of individual proteins.
Based on these measurements, Newman et. al. [24]
assigned each protein to one of three classes: Rich-State
proteins (proteins whose concentration in SD condition is
significantly lower than the one in YEPD), Minimal-State
proteins (YEPD concentrations are significantly lower
than those in SD), and Constant proteins (no significant
difference in concentrations observed). Out of about
6,000 yeast proteins, more than 2,000 were classified. 232
proteins are minimal-state, 684 are rich-state, and 1298
are constant. Integration of this data on protein levels
with the collection of protein complexes (downloaded
from MIPS[28] website, [see Additional file 1]) generates
interesting observations.

In the following, we present a number of results relating
abundance and noise levels of complex subunits. All of
these results are then analyzed in terms of a simple toy-
model of complex formation, and are shown to be differ-
ent manifestations of complex production efficiency.

We first extract the number of complexes with uniform
change, i.e.,, complexes in which all identified proteins
belong to the same class. Excluding complexes with three
or less identified subunits, 426 complexes are available
for analysis (complexes with only few subunits might
exhibit uniform change just by chance, masking any real
trend. We have verified that our results remain qualita-
tively the same even when analyzing all complexes). There
are 46 uniform change complexes, compared to 14 + 4
complexes (P-value= 1015, see Methods) expected when
randomly assigning proteins to classes - see Figure 1(a)
for a graphical comparison of real and random complex
make up [see Additional file 2]. In 26 of these complexes
all proteins are constant, in 19 all are rich-state, and in one
all are minimal-state (ubiquinol-cytochrome c reductase
complex (bcl complex), which is a component of the
mitochondrial inner membrane electron transport
chain[29]). Looking at the whole set of complexes, one
also observes a clear tendency towards uniformity in
direction of change (Figure 1(b)).
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(Color) Protein make-up of the yeast complexes. (a) Each horizontal line represents one complex, and its color is
determined by the RGB scheme, where the green component of the line color is the fraction of complex subunits which are
constant proteins, the blue is the fraction of rich-state proteins, and the red is the fraction of minimal state proteins. For real
complexes (left panel), many complexes show almost pure base colors, corresponding to complexes in which all (or most) of
the proteins belong to the same class. Following shuffling of the protein classes (right panel), colors tend to be mixed, indicating
mixture of proteins of different classes. (b) Uniformity in change of protein levels in complexes between YEPD and SD states.
For each complex, we calculated the largest of the three fractions of its subunits that exhibited increase, decrease or no change
upon a change between YEPD and SD states. In the figure, we plot the distribution of this fraction among all complexes for real
complexes and after shuffling of the protein complexes (averaged over 100 randomizations). For real complexes, typically a
large fraction of the subunits change uniformly, in contrast to the situation for the shuffled ones (p-value = 10-!!, Kolmogorov-

Smirnoff test).

Larger decrease in the levels of more abundant proteins
The actual amount by which protein levels change is also
of interest. Looking at the difference in protein levels
between the SD state and the YEPD state as a function of
the steady-state concentration in YEPD state[21] (Figure
2(a)), one clearly sees that the higher the protein levels
are, the larger is the decrease in the minimal state, where
increase is observed only for those proteins which are
scarcely expressed in YEPD. For proteins with higher levels
in YEPD, the correlation coefficient between the loga-
rithm of the concentration and (level_yepd level sd)/
level_yepdist=0.1,P= 104

Lower noise in components of large complexes

Next, we study role of 'noise’, that is, the cell-to-cell varia-
tion in protein levels, and its interplay with protein com-
plexes production. Measurements of cell-to-cell variance
in protein levels were also reported by Newman et. al.
[24]. Noise is measured by the CV (coefficient of varia-
tion), the standard deviation of protein levels divided by
the average, in percentage. In the absence of correlations
between different individual proteins, one would expect
the standard deviation to be proportional to the square
root of the mean, or CV o« N-1/2 x 100%, where N is the
average number of copies in a cell. In reality, it was
shown[24] that the CV decreases with protein level, but

much slower than N-1/2, reflecting the fact that production
of multiple copies of a single protein is typically a corre-
lated process.

We first note that proteins participating in a complex have
significantly lower noise[30] as compared to other pro-
teins (CV 19.7 vs. 21.5 for complex and non-complex pro-
teins, respectively (in YEPD state). P < 10-14, t-test; [see
Additional file 2]). Among the complex proteins, we find
that components of large complexes (144 complexes with
at least 15 subunits) exhibit a significantly lower noise
(CV 18.52 vs. 19.07 + 0.12, P = 10°). We note that the
large complexes contain proteins of higher concentration
compared to what is expected by chance (averaged log-
concentration 8.7 vs. 8.57 + 0.03, P = 10-°), which can
partly explain the lowered CV. However, the noise in com-
ponents of large complexes is even lower than could be
expected based on abundance alone (P = 104, see Meth-
ods). This tendency holds even upon controlling for the
large amount of essential proteins found in large com-
plexes (P = 0.003, see Methods [see Additional file 2]).

Lower noise in the least abundant protein in a complex

We then return to all complexes, and focus on the level of
the least abundant protein in each complex. First we note
that the concentration of these proteins (averaged over all
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Figure 2

Number of complexes

Number of complexes in which a protein participates

Decrease in levels in SD is larger for abundant proteins. (a) Percentage of decrease in the protein level in minimal state
((level_yepd level_sd)/level_yepd 100%), compared to protein concentration (in units of no. of molecules per cell). Negative per-
centage represents increase in levels. (b) Average protein concentration (in units of no. of molecules per cell) vs. the number

of complexes in which a protein participates (c) Probability distribution of the number of complexes in which a protein partic-
ipates for rich-state proteins and for constant + minimal-state proteins.

complexes) is 36% higher (1,310 molecules/cell, averaged
over all complexes with at least 4 identified subunits) than
could be expected by chance (960 molecules/cell, P= 10
8, see Methods), or due to the complexes having more
similar subunit abundances than random [see Additional
file 2]. As a result, the CV of the protein with minimal con-
centration, which is an indication of the typical possible
loss (in percentage) of complexes due to noise in protein
synthesis, is lower (20.7%, in comparison to 21.3% =+
0.2%, P = 0.004). In addition, this remains true even
when abundance and essentiality are controlled for (P =
0.02, see Methods). In comparison, the protein of highest
concentration in a complex does not have CV lower than
expected by chance (in fact, it has (non-significantly)
higher CV).

Thus, we conclude that for large complexes, as well as for
the least abundant protein in each complex, significantly
low noise levels are found. In both cases, it is also found
that the low noise level is not only due to proteins having
high abundance or being more essential than expected by
chance.

Complex subunits have similar length

Another aspect of complex organization is revealed by
studying protein and mRNA lengths. Recently, the entire
yeast transcriptome has been sequenced|[31], from which
we extracted the full length of the mRNA molecules, UTRs
included. We found that the lengths of transcripts that
belong to the same complex tend to be more similar than
expected by chance. To show this, we calculated the vari-
ance of the (logarithm of the) lengths (5' untranslated
region length + open reading frame length + 3' untrans-
lated region length) of genes that are subunits in a given
complex. We consider again only those complexes with
information on at least 4 subunits (there are 467 such
complexes). The variance for real complexes is 0.27 (aver-
aged), significantly lower than the randomly expected one
(0.33 £ 0.013, P = 107). We note that the results holds
even if only the UTRs are considered, but the significance
is much lower (P = 0.05).

A negative correlation exist between protein abundance
and length (see e.g. [32]). Also, proteins of same function
tend to have similar length[33]. Thus, one may argue that
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the similarity between the transcript lengths of complex
subunits is due to either their similar abundance or simi-
lar function. Therefore, we controlled for both abundance
and function when shuffling the complexes [see Addi-
tional file 2]. The variance in the complexes randomized
with control of abundance and function is indeed some-
what lower than for completely random shuffling (0.31 +
0.012 vs. 0.33 + 0.013), but is still significantly higher
than that observed in real complexes (0.27, P= 10-5).

Balance of protein translation activity and degradation
rate

The concentration of a protein results from a balance
between its rate of synthesis (translational activity[27],
which, in turn, relates to its mRNA abundance and ribos-
ome occupancy and density) and rate of degradation|[26].
To identify the regulation strategies employed to achieve
the uniformity in protein levels in a complex, it is interest-
ing to study the relative contribution of each of these two
factors.

According to the simplest model for the kinetics of protein
synthesis[27], the logarithm of a protein's concentration
is the sum of the logarithms of its translational activity
and the its half life. Thus, the variance due to each of them
can be computed independently. We find that both show
lower variance in complexes than expected by chance.
However, while the variance of the translational activity is
34% lower than expected (0.47 vs. 0.72 + 0.03, P < 10-14),
the variance of the half life is only 10% lower than
expected, and less significant (1.24 vs. 1.38 + 0.08, P =
0.05). Thus, it seems that the half life plays a less signifi-
cant role in the regulation for efficient complex synthesis.

Discussion

We have thus far analyzed several experimental sources
integrating protein complexes with data on protein abun-
dance, noise, response to environmental change, and oth-
ers. As we explain below, these observations may be
interpreted as signatures of optimization of complex for-
mation at the global level of the yeast cell. A simple math-
ematical model of complex formation is employed to
support some of our claims.

Change of protein levels in a complex across different
conditions

Our first finding was that protein abundances in a com-
plex are correlated between two different environmental
conditions. A correlation between expression patterns
across different conditions was previously shown at the
mRNA level [10-12]. Here we presented first evidence sup-
porting this correlation at the protein level. As was shown
in Ref. [19], complex subunits levels tend to be similar in
the rich YEPD medium so that the complex production is
efficient. In order to maintain this level of efficiency in
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face of the different environment, the direction of change
in protein levels from YEPD to SD should also be similar
across complex subunits.

Next, we found that proteins of larger abundance exhibit
steeper decrease in SD condition. This is also a manifesta-
tion of efficiency, as we now demonstrate in terms of a
simple toy-model of complex formation (see Methods for
model details). A complex in our model is made up of 3
different components: A, B, and C, with total concentra-
tions A, By, and C,, respectively. [ABC] is the concentra-
tion of the complete complex ABC, the desired outcome
of the production. We analyze the case where one is given
a set of initial subunit concentrations A,, B, and C,, and
wants to change them to achieve a certain desired decrease
in the amount of the target complex.

For simplicity, we assume first that only one component
is allowed to be changed. One may then ask which is the
component whose levels should be reduced in order to
reach the target concentration of the goal complex while
using as few molecules as possible? Intuitively, one
expects this to be the most abundant component. This is
clearly the case when concentrations are very small, [ABC]
= AyB,C, and thus the most economic way (in terms of
the total number of A, B, and C molecules) to lower the
product ABC is by decreasing the level of the largest of A,
By, and C,. Indeed, this picture holds also when concen-
trations are not small. In Figure 3, we plot the number of
molecules saved (per unit volume) when the final concen-
tration of ABC is 10% of the original, for various initial
values of A,, By, and C,. Without loss of generality, we
look at Cy<By<A,. The solution of the model equations
results in 3 surfaces, corresponding to changing the
amounts of A only, B only, and C only. It can be seen that
it is always most economic to change A, (the most abun-
dant component).

The same picture holds in the general case, where the con-
centration of all three types is free to change. Optimal effi-
ciency (in terms of saved molecules) is achieved when the
concentration of the most abundant type decreases most
[see Additional file 2]. Therefore, the observed correlation
between abundance and difference in levels between the
environments can be also attributed to selection towards
efficiency.

Parenthetically, we note that within the above simplistic
model, one would expect all subunits of a complex to
have equal levels in order to optimize the production rate.
In practice, although protein abundances in a complex are
significantly more similar than expected by chance, they
do not have exactly the same levels. Obviously, this can be
partly attributed to the simplifying assumption of sym-
metric rate constants used in our model (see Methods),
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(Color) Decrease in protein levels in minimal state — model results. For various values of Ajand C;in our complex

formation model (B, = 1000 fixed, and Cy<B,<A,), we plot the amount of molecules (per unit volume) saved if we change the
concentration of only one component (top to bottom manifolds: A, B, C, respectively), to decrease the concentration of the

goal complex ABC by 90%. Decreasing the amount of the most abundant molecule (A) yields the largest gain.

which, in reality, does not hold of course. As a result, the
optimal point in not necessarily at all components having
equal concentrations. More importantly, while protein
levels are regulated to increase efficiency, they are cer-
tainly not exactly at the optimal point.

In fact, the above analysis assumes that the cell is off-opti-
mum for the YEPD condition, and is getting closer to the
optimal balance when in the minimal SD condition.
Indeed, the variance in protein levels in a complex, aver-
aged over all complexes is 5% lower in SD state compared
to YEPD state (and significantly lower than expected by
chance, P = 10°7), supporting this view. Why would pro-
tein levels in SD state be more regulated compared to
YEPD state? A possible reason is that proteins which par-
ticipate in more than one complex or in a combinatorial
sub-module of a complex[34] have competing constraints
which prevent them from being at the optimum level
desired for each single complex they participate in. It is
reasonable to assume that in a minimal (SD) condition
the constraints on protein levels due to participation in
many complexes are partly released. In addition, the pro-
duction of some of the non-essential complexes is termi-
nated or reduced. Thus, protein levels can be closer to the
optimum needed for each complex production separately.

In order to support this, we point out (Figure 2(b)) that
proteins which participate in more than one complex gen-
erally appear in more copies than others. Furthermore,
Figure 2(c) presents the probability distribution of pro-
tein's 'degree’, i.e., the number of complexes in which a
protein participates, for rich-state proteins and all other
proteins separately. It can be seen that for rich-state pro-
teins the degree distribution is wider (P < 10-?, KS test)
with a larger average (5 complexes on average for rich-
state proteins vs. just 3.2 for the rest). Clearly, most of the
change in expression profile occurs in proteins which par-
ticipate in many complexes, as expected by the above pic-
ture. In the minimal condition, these protein levels can be
closer to the optimum needed for each single complex
production. This partly explains why cells "choose" to be
closer to optimality in the SD state, and provides another
explanation to the correlation between relative change
and absolute concentration.

Noise in protein levels in a complex

Next we studied the noise levels of complex proteins. We
demonstrated that large complexes usually contain pro-
teins with lower noise. This finding attests for another
level of efficiency in complex production. Since large dif-
ferences in the abundances of the different constituents of
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a complex result in decreasing efficiency of its produc-
tion[19], it is of high importance to keep the levels of the
complex components stable. For large complexes, where
each of the many components deviating from its desired
concentration could result in a loss of many proteins, reg-
ulation of the concentrations of their components
becomes increasingly crucial, as the stakes are higher. It is
thus reassuring to observe that subunits used in large com-
plexes are not only highly expressed, but also less noisy
than other similarly abundant proteins.

Another property of the noise in complexes is that the
noise level of the least abundant protein in a complex is
lower than expected. This is also indicative of optimiza-
tion. To show this, we demonstrate that in our 3-compo-
nent complex formation model, variation in complex
levels is most sensitive to fluctuations in the level of the
least abundant protein. We look at the production of the
goal complex ABC when fixing the levels of two of the
components, and letting the third to fluctuate, its level
being drawn from a normal distribution with standard
deviation equals to the square root of its mean. Figure 4
demonstrates that the CV of the goal complex concentra-
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tion is always higher when the variation is in the compo-
nent of lowest abundance, thus demonstrating that
variations in its levels are more crucial. This fits nicely
with the empirical findings of higher regulation of the
least abundant protein, compared to no regulation of the
most abundant protein.

Similarity of transcript length in a complex

The similarity in transcript lengths of complex subunits
might turn useful to make complex assembly more effi-
cient- when complex subunits have largely different
lengths, and given the dependence of the transcription
and translation time on length, the cell would have spent
extra effort to coordinate protein synthesis to bring the
complete complex together just in time (see[13] for the
analysis of complex just in time synthesis vs. just in time
assembly).

Conclusion

In summary, based on several sources of experimental
data, we have shown that the composition of protein
complexes in yeast is optimized towards more efficient
complex generation. In particular, not only that protein
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(Color) Variation in the goal complex as a result of variation in one component (model). For various values of A,
and C,in our complex formation model (B, = 1000 fixed, and Cy<B;<A,), we plot the CV of the goal complex ABC, when only
one component (bottom to top manifolds: A, B, C, respectively) is allowed stochastic variation. It can be seen that the CV of
the goal complex is most sensitive to variations in the concentration of C, its least abundant component.
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abundances are similar, but their response to minimal
media is also similar, providing another evidence for opti-
mization. Moreover, the variation in protein levels is opti-
mized for a more robust complex production by
minimizing the stochastic fluctuations in the concentra-
tion of large complexes and in the concentration of the
least abundant protein in a complex. These results are
indicative of transcriptional, as well as post-transcrip-
tional regulation at the global level of the yeast cell. Pre-
liminary results show that similarity in protein levels in a
complex is mainly due to regulation of translational activ-
ity rather than degradation rate. However, the precise
combination of regulatory mechanism that leads to the
optimized levels is still to be elucidated.

For Prokaryotes, the simplest method to guarantee coex-
pression of genes is to couple them in a single operon.
Having all genes of a given complex bundled together in
a single operon with a single promoter will yield the exact
amount of proteins needed for the synthesis of the com-
plex under all circumstances. However, this simplistic
approach requires the genome to contain multiple copies
for each gene that appears in more than one complex.
Instead, most Eukaryotes adopt a more flexible scheme, as
each gene appears only once (or very few times) in the
genome. However, there is a price to pay in the form of
additional regulation mechanisms at various levels, which
are necessary for maintaining efficient usage of the availa-
ble resources. These include keeping subunits of a com-
plex at similar levels, similar response to external change
of conditions, and low noise.

Our analysis of experimental data was performed on the
yeast, a unicellular organism. In more complex multicel-
lular organisms, more constraints apply due the diversity
in the function of the various cells. In particular, it would
be interesting to explore the potential role that improper
function of the regulation of proteins level and noise we
found might have in any disease state. Future experimen-
tal advances providing data on protein complexes and
protein levels in higher organism will enable study of the
implementation of the aforementioned optimization
principles in complex organisms, in health and in disease.

Methods

A model of complex formation

The model of complex formation we analyze was intro-
duced in[19], where more technical details are given. In
short, we study a complex made up of 3 different compo-
nents: A, B, and C. We denote the concentrations of the
three components of the complex by [A], [B], and [C], and
the concentrations of the complexes they form by [AB],
[AC], [BC], and [ABC]. The latter is the concentration of
the complete complex that is the desired outcome of the
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production, while the first three describe different sub-
complexes which are formed (each of which is composed
of two components). A typical kinetic equation looks like:

dA] _

S =k JABI+ kg, [ACI + Iy [ABCl =y, [AIIB] =y, [A[C] =y, , [AIIBC],

where k, (kg , ) are the association (dissociation) rates
Y X,

of the subcomponents x and y to form the complex xy
(direct three-body interactions, i.e., generation or decom-
position of ABC out of A, B, and C, are neglected). Similar
equations hold for the other 6 sub-complexes. Denoting
the total number of A, B, and C particles by A, B,, and C,,,

respectively, we may write the conservation of material
equations as follows: [A] + [AB] + [AC] + [ABC| = A,, and
similarly for the B's and the C's.

We look for the steady-state solution of these equations,
where all time derivatives vanish. For simplicity, we con-
sider the totally symmetric situation, where all the ratios
of association coefficients to their corresponding dissoci-

ation coefficients are equal, i.e., the ratios k; [k, are
X,y X,y

all equal to X,,, where X, is a constant with concentration

units. In this case, measuring concentrations in units of
X, the reaction equations are all solved by the substitu-
tions [AB] = [A] [B], [AC] = [A] [C], [BC] = [B] [C], and
[ABC] = [A] [B] [C], and one needs only to solve the set of
three conservation of material equations, which take the
form: [A] + [A] [B] + [A] [C] + [A] [B] [C] = A,, and simi-
larly for the B's and the C's. These equations allow for an
exact and straightforward (albeit cumbersome) analytical
solution, which we explore throughout the manuscript.

An efficiency of complex formation can be defined in our
model as the ratio of the number of full complexes to the
amount of the component with lowest abundance:
[ABC]/min(A,, By, C,). Alternatively, the efficiency could
be defined in terms of the total utilization of proteins:
[ABC]/(A,+By+C,). Both definitions lead to the same con-
clusion that protein synthesis is optimal whenever all (or
the two most abundant, in the case of the first definition)
proteins have similar levels. The first efficiency measure is
somewhat advantageous as it ignores the obvious waste of
excess subunits, and thus it underscores the additional
harmful effect of concentration imbalance on the reaction
dynamics (see also in [19]).

Randomization schemes
To estimate the significance of our results, we used two
methods of randomization of protein properties. To dem-

Page 8 of 10

(page number not for citation purposes)



BMC Systems Biology 2009, 3:3

onstrate the methods, consider for example the study of
protein levels. In the first method we gave each protein the
level of another, uniformly chosen protein (out of pro-
teins which participate in complexes). This preserves the
distribution of protein levels, but not the total number of
times a given level appears in the complexes. In the sec-
ond method, which preserves the latter, but not the
former, we assigned each protein the level of another pro-
tein, chosen with probability proportional to the actual
number of times it appears in the complex dataset. To
compute P-value, we calculated the variance in the distri-
bution of the randomized results and assumed they are
normally distributed. We verified that all results are signif-
icant in both methods, whenever the application of both
is relevant.

To control for abundance, we replaced the examined
property of a protein with another protein chosen among
those having a concentration close to the original one,
where 'close' means the absolute value of the natural log-
arithm of the ratio of concentrations is less than 1. To con-
trol for essentiality, we exchanged only proteins which
were either both essential or both non-essential.
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