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ABSTRACT
A b-carbonic anhydrase (CA, EC 4.2.1.1) from the widespread bacterium Escherichia coli (EcoCAb), encoded
by the CynT2 gene, has been investigated for its catalytic properties and enzymatic activation by a panel
of amino acids and amines. EcoCAb showed a significant catalytic activity for the hydration of CO2 to
bicarbonate and a proton, with a kinetic constant kcat of 5.3� 105 s� and a Michaelis–Menten constant KM
of 12.9mM. The most effective EcoCAb activators were L- and D-DOPA, L-Tyr, 4-amino-Phe, serotonin and
L-adrenaline, with KAs from 2.76 to 10.7mM. L-His, 2-pyridyl-methylamine, L-Asn and L-Gln were relatively
weak activators (KAs from 36.0 to 49.5mM). D-His, L- and D-Phe, L- and D-Trp, D-Tyr, histamine, dopamine,
2-(aminoethyl)pyridine/piperazine/morpholine, L-Asp, L- and D-Glu have KAs from 11.3 to 23.7mM.
Endogenous CA activators may play a role in bacterial virulence and colonisation of the host.
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1. Introduction

The presence of carbonic anhydrase (CA, EC 4.2.1.1) in Escherichia
coli was first reported in the early 90s by Guilloton et al.1 The cyn
operon present in the genome of this widespread bacterium enc-
odes for at least three such enzymes all belonging to the b-CA
genetic family, two with CO2 hydrase activity and one reported to
act as a cyanase, i.e., catalysing the reaction of cyanate with bicar-
bonate to give ammonia and CO2

1. One of these b-CAs that is
encoded by the CynT2 gene was crystallised by Cronk et al.2,3

which was one of the first representatives of this class of enzymes
to be structurally characterised in detail. In the same study, the
authors also qualitatively measured the CO2 hydrase activity for
this enzyme, demonstrating the enzyme to be active at a pH 8.4,
but devoid of any activity at lower, or even neutral pH values.
However, the detailed kinetic/thermodynamic parameters or the
catalytic efficacy of this enzyme has not reported in that2 or any
other studies to date.

Why are CAs important for E. coli4, or more generally for bac-
teria5? These enzymes are present in most organisms investigated
to date5–9, with eight genetically distinct classes of CAs having
been reported to date, the a-, b-, c-, d-, f-, g-, h- and i-classes9–12.
They all catalyse the simple but crucial interconversion reaction
between CO2 and bicarbonate, with the concomitant generation
of hydronium ions:

CO2 þ 2H2O�HCO�
3 þ H3O

þ

In addition to being involved in pH regulation in all organism
and tissues in which they are present13,14, CAs are also metabolic

enzymes15. Indeed, essential metabolic processes require either
CO2 or bicarbonate as substrates for carboxylating reactions.
Although both CO2 and bicarbonate spontaneously equilibrate in
solution at the physiologic pH, the low concentration of CO2 in
the air and its rapid diffusion from cells lead to an insufficient
bicarbonate availability for in vivo metabolic and biosynthetic
requirements in bacteria and other organisms4. For example,
Merlin et al.4 calculated that in E. coli, the demand for bicarbonate
is 1000–10,000-fold higher than the amount of this anion that is
provided by uncatalyzed CO2 hydration. Thus, an enzymatic con-
version of CO2 to bicarbonate is therefore strictly required for the
growth of E. coli and many other bacteria5, which is likely why at
least four CA genetic families are present in bacteria, the a-, b-, c-
and i-CAs5,10,12.

In fact, inhibition of CAs belonging to various classes and
organisms is exploited pharmacologically for various applica-
tions16–22. Many of the human isoforms (among the 15 presently
known) are targets for diuretics, antiobesity, antiepileptic, antiglau-
coma or antitumor agents16–20. Inhibition of such enzymes from
pathogenic bacteria, fungi or protozoans was proposed as a new
approach to develop antiinfective agents with novel mechanisms
of action, devoid of the drug resistant problems of the currently
used agents21,22. Thus, a large number of drug design studies of
CA inhibitors (CAIs) targeting both mammalian and pathogenic
CAs are constantly being reported23,24.

On the other hand, activation studies of various classes of CAs
have progressed slowly compared to the inhibition studies. The
CA activation mechanism was in fact explained at the molecular
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level only in 1997 with the report of the first X-ray crystallographic
adduct of a CA-activator complex, more precisely the CA II com-
plexed with histamine25. Indeed, it has been demonstrated by
Briganti et al.25 and others8 that the CA activators (CAAs) partici-
pate directly in the enzyme catalytic cycle, which can be repre-
sented schematically by Equations 1 and 2.

EZn2þ�OH� þ CO2 � EZn2þ�HCO�
3 �þH2O

EZn2þ�OH2 þ HCO�
3 (1)

EZn2þ�OH2 � EZn2þ�OH� þ Hþ �rate determining step� (2)

The metal hydroxide species of the enzyme (EZn2þ-OH�) acts
as a strong nucleophile (at physiologic pH) and converts CO2 to
bicarbonate, which is subsequently coordinated to the catalytic
metal ion [Step 1 in Equation (1)]. This adduct is not very stable
and its reaction with an incoming water molecule leads to liber-
ation of bicarbonate in solution (Step 2 in Equation (1) and gener-
ation of an acidic form of the enzyme incorporating a Zn2þ(OH2)
species at the metal centre, which is catalytically ineffective for
the hydration of CO2.

6–8,25 In order to regenerate the nucleophilic
species, a proton transfer reaction occurs, which is rate determin-
ing for the catalytic cycle in many CAs [Equation (2)]. For many
human isoforms, this step is assisted by a proton shuttle residue,
which is His64 in most mammalian CAs. In the presence of an
activator molecule ‘A’, Equation (2) becomes Equation (3); that is,
in the enzyme-activator complex the proton transfer reaction is
no longer intermolecular but intramolecular, and thus fav-
oured25–28:

EZn2þ—OH2 þ A� EZn2þ—OH2� A
� �

� EZn2þ—HO��AHþ½ ��

EZn2þ—HO� þ AHþenzyme � activator complexes (3)

The imidazole moiety of the key histidine residue, with a pKa
of 6.0–7.5 (depending on the isoform6) is an appropriate proton
shuttling residue which transfers the proton from the metal coor-
dinated water to the reaction medium, in the crucially important
rate-determining step of the catalytic cycle1–3. The process can
also be assisted by endogenous molecules, which bind within the
enzyme active site, as proven by X-ray crystallography and other
techniques, which have been termed CAAs25–28. Such activators
facilitate the proton transfer reactions between the metal ion
centre and the external medium by an alternative pathway to the
proton shuttle residue.

CAAs were recently demonstrated to have potential pharmaco-
logic applications, as the activation of mammalian enzymes was
shown to enhance cognition and memory in experimental ani-
mals29, whereas its inhibition had the opposite effect13,14. The
activation of CAs from pathogenic bacteria may also be relevant
for understanding the factors governing virulence and colonisa-
tion of the host, because pH in the tissues surrounding the patho-
gens likely plays a key role in such processes5,10,12. Considering
such evidence, in this study we report the first activation study
with amines and amino acids (compounds 1–24, Figure 1) of one
of the b-CAs reported to be present in the model organism E. coli.
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Figure 1. Amino acids and amines 1–24 investigated as CAAs in the current article.
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2. Materials and methods

2.1. Enzyme production and purification

The protocol described in Ref.3 has been used to obtain purified
recombinant EcoCAb.

2.2. Ca activity/activation measurements

An Sx.18Mv-R Applied Photophysics (Oxford, UK) stopped-flow
instrument has been used to assay the catalytic activity of vari-
ous CA isozymes for CO2 hydration reaction30. Phenol red (at a
concentration of 0.2mM) was used as indicator, working at the
absorbance maximum of 557 nm, with 10mM Hepes (pH 7.5, for
a-CAs)31–34 or TRIS (pH 8.3, for b-CAs)35–38 as buffers, 0.1M
NaClO4 (for maintaining constant ionic strength), following the
CA-catalyzed CO2 hydration reaction for a period of 10 s at 25 �C.
The CO2 concentrations ranged from 1.7 to 17mM for the deter-
mination of the kinetic parameters and inhibition constants. For
each activator, at least six traces of the initial 5–10% of the reac-
tion have been used for determining the initial velocity. The
uncatalyzed rates were determined in the same manner and sub-
tracted from the total observed rates. Stock solutions of activa-
tors (at 0.1mM) were prepared in distilled-deionised water and
dilutions up to 1 nM were made thereafter with the assay buffer.
Enzyme and activator solutions were pre-incubated together for
15min prior to assay, in order to allow for the formation of the
enzyme–activator complexes. The activation constant (KA),
defined similarly with the inhibition constant KI, can be obtained
by considering the classical Michaelis–Menten equation
[Equation (4)], which has been fitted by non-linear least squares
by using PRISM 3:

v ¼ vmax= 1þ KM=½S�ð Þ 1þ ½A�f=KA
� �� �

(4)

where [A]f is the free concentration of activator.
Working at substrate concentrations considerably lower

than KM ([S] � KM), and considering that [A]f can be repre-
sented in the form of the total concentration of the enzyme
([E]t) and activator ([A]t), the obtained competitive steady-state

equation for determining the activation constant is given by
Equation (5):

v ¼ v0:KA= KA þ ½A�t � 0:5 ½A�t þ ½E�t þ KA
� �� ½A�t þ ½E�t þ KA

� �2n�n

�4½A�t:½E�tÞ1=2gg (5)

where v0 represents the initial velocity of the enzyme-catalyzed
reaction in the absence of activator35–39. This type of approach
to measuring enzyme-ligand interactions is in excellent agree-
ment with recent results from native mass spectrometry
measurements40.

2.3. Reagents

Amines and amino acid derivatives 1–24 were obtained in the
highest purity that was available commercially from Sigma-Aldrich
(Milan, Italy).

3. Results and discussion

A mentioned in the introduction, the crystal structure of EcoCAb
was reported in 20012 (Figure 2), although no kinetic characterisa-
tion of the enzyme was reported.

As many other b-CAs have been characterised to date by X-ray
crystallography41, EcoCAb is a tetrameric enzyme, more precisely a
dimer of homodimers. The dimer which constitutes the fundamen-
tal element for the structure and functioning of this enzyme is
shown in Figure 2(A), with the catalytic Zn(II) ion situated at the
bottom of a rather long and narrow active site2. However, when
the detailed coordination geometry of the active site was
inspected (Figure 2(B)), a rather surprising situation emerged: the
metal ion was observed to be coordinated by four amino acid res-
idues (Cys42, His98, Cys101 and Asp44), with no water molecule
coordinated to the Zn2þ to form the zinc-hydroxide nucleophile in
the CO2 hydration reaction. Thus, for a rather long period of time
the catalytic mechanism of this type of b-CAs (thereafter

Figure 2. Structure of EcoCAb (PDB code 1I6O2) (A) Ribbon representation of the dimer. (B) View of the active site. The Zn(II) ion is represented as a magenta sphere.
Chain A and chain B are coloured white and green, respectively. Amino acids in the active site are labelled with one letter symbols (blue for chain A and black for
chain B): A, Ala; C, Cys; D, Asp; H, His; I, Ile; K, Lys; L, Leu; R, Arg; V, Val; W, Trp; Y, Tyr.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 1381



denominated “closed active site” or “type II b-CAs”) was poorly
understood, with various hypothesises being proposed, including
that a water molecule acts as the fifth zinc ligand (but was unob-
served in the crystal structures), which may eventually be used to
form the nucleophile2,42. This mystery has been resolved in a very
elegant study by Covarrubias et al.43, who used a b-CA from
Mycobacterium tuberculosis, which was crystallised at various pH
values. For pH values >8.3, the Zn(II) ion was coordinated by a
His residue, two Cys residues and a water molecule/hydroxide ion,
whereas at pH values <8, the coordination was as the one shown
in Figure 2(B), with an Asp replacing the water molecule43. The
active site at higher pH was thus entitled the “open” and that at
lower pH was considered ‘closed’43. Furthermore, the mechanism
by which the closed active site is opened has also been eluci-
dated: a conserved catalytic dyad comprising an Asp and an Arg
residue (Asp44–Arg46 in Figure 2(b)) is present in all b-CAs. In the
closed active site enzymes, the Asp of the dyad is coordinated to
the Zn(II) ion at pH values <8. At higher pH values, the carboxyl-
ate moiety of this Asp residue is involved in a strong ionic inter-
action with the guanidinium moiety of the Arg from the dyad and
thus, liberating the coordination position around the zinc ion to
allow coordination of a water molecule; that is, the key zinc-
hydroxide nucleophile can be formed by the enzyme during
catalysis from the open but not the closed active site43. For this
reason, the type II b-CAs are usually catalytically active only at pH
values >8.

Thus, we measured the catalytic activity of EcoCAb at a pH of
8.3 and determined its kinetic constants (kcat and KM) for compari-
son to those of the thoroughly studied human (h) CA isoforms
hCA I and II, belonging to the a-CA class (Table 1) as well as a
recently investigated pathogenic, fungal b-CA, from Malassezia
restrica, MreCA44. The experiments were also performed in the
presence of 10mM L-Trp as an activator (Table 1) or in the pres-
ence of a sulphonamide inhibitor (data not shown).

The catalytic activity of EcoCAb is substantial for the hydration
of CO2 to bicarbonate, with a kinetic constant kcat of 5.3� 105s�1

and a Michaelis–Menten constant KM of 12.9mM. These kinetic
parameters are in fact comparable to those of other a- or b-CAs
(Table 1). In fact, EcoCAb has an activity comparable to the human
isoform hCA I. The bacterial enzyme has a kcat/Km of 4.10� 107

M�1 s�1, whereas hCA I has nearly the same ratio (5.0� 107 M�1

s�1), indicating that the two enzymes have moderate activity over-
all. Acteazolamide, a sulphonamide standard CAI, inhibited this
catalytic activity with a KI of 227 nM (hCA I is inhibited by this
compound with a KI of 250 nM

6).
The data in Table 1 also indicates that the presence of L-Trp as

an activator does not change the KM for either of the two

enzymes belonging to the a-class (hCA I/II) as well as for MreCA
and EcoCAb, a situation also observed for all CA classes for which
CA activators have been investigated so far8,31–38. In fact, as pro-
ven by kinetic and crystallographic data3,20, the activator binds in
a different region of the active site than the site of substrate bind-
ing. Thus, the activator does not influence KM but has an effect
only on kcat. Indeed, a 10mM concentration of L-Trp leads to a 3.4-
fold enhancement of the kinetic constant of EcoCAb compared to
the same parameter in the absence of the activator (Table 1). For
hCA I and II, the enhancement of the kinetic constant in the pres-
ence of L-Trp was rather modest, as these enzymes have a weaker
affinity for this activator (Table 1). On the other hand, L-Trp has a
low micromolar affinity for EcoCAb which explains its more effect-
ive activating effect on this enzyme.

Thus, we proceeded with the investigation of activators 1–24
(Figure 1) belonging to the amino acid and amine chemotypes for
understanding their ability to activate EcoCAb. In Table 2, the acti-
vation constants of these compounds against the target enzyme
EcoCAb as well as hCA II and II (a-CA enzymes) and MreCA (a fun-
gal b-CA) are shown. The following structure-activity relationship
(SAR) was observed for the activation of EcoCAb:

(i) A rather weak activation was observed with L-His, 2-pyridyl-
methylamine 15, L-Asn and L-Gln, which had activation constants
KAs from 36.0 to 49.5 mM.

(ii) Medium potency activating effects were observed for the
following derivatives: D-His, L- and D-Phe, L- and D-Trp, D-Tyr, his-
tamine, dopamine, 2-(aminoethyl)pyridine/piperazine/morpholine
(compounds 16–18), L-Asp, L- and D-Glu. These derivatives have
KAs from 11.3 to 23.7mM (Table 2). These activators belong to the
heterogeneous classes of amines and amino acids, with both aro-
matic, heterocyclic and aliphatic representatives in both series.
Thus, the SAR is rather challenging to delineate definitively.

Table 1. Activation of human carbonic anhydrase (hCA) isozymes I, II, MreCA
and EcoCAb with L-Trp, at 25 �C, for the CO2 hydration reaction25.

Isozyme kcat� KM� (kcat)L-Trp�� KA��� (mM)

(s�1) (mM) (s�1) L-Trp
hCA Ia 2.0� 105 4.0 3.4� 105 44.0
hCA IIa 1.4� 106 9.3 4.9� 106 27.0
MreCAb 1.06� 106 9.9 9.6� 66 0.32
EcoCAb 5.3� 105 12.9 1.8 . 106 18.3
�Observed catalytic rate without activator. KM values in the presence and the
absence of activators were the same for the various CAs (data not shown). ��
Observed catalytic rate in the presence of 10mM activator. ���The activation
constant (KA) for each enzyme was obtained by fitting the observed catalytic
enhancements as a function of the activator concentration41. Mean from at least
three determinations by a stopped-flow, CO2 hydrase method25. Standard errors
were in the range of 5–10% of the reported values (data not shown).
aHuman recombinant isozymes, from Ref.8; bFungal recombinant enzyme, from
Ref.44, cThis work.

Table 2. Activation constants of hCA I, hCA II and the fungal enzyme MreCA
from M. resticta and EcoCAb (E. coli) with amino acids and amines 1–24, by a
stopped-flow CO2 hydrase assay25.

No. Compound

KA (mM)�

hCA Ia hCA IIa MreCAb EcoCAbc

1 L-His 0.03 10.9 12.8 36.0
2 D-His 0.09 43 1.84 23.7
3 L-Phe 0.07 0.013 2.69 12.0
4 D-Phe 86 0.035 0.76 15.4
5 L-DOPA 3.1 11.4 0.87 10.7
6 D-DOPA 4.9 7.8 0.70 3.14
7 L-Trp 44 27 0.32 18.3
8 D-Trp 41 12 0.89 11.5
9 L-Tyr 0.02 0.011 4.15 9.86
10 D-Tyr 0.04 0.013 7.83 17.9
11 4-H2N-L-Phe 0.24 0.15 0.61 7.34
12 Histamine 2.1 125 0.90 18.5
13 Dopamine 13.5 9.2 2.71 11.3
14 Serotonin 45 50 0.82 2.76
15 2-Pyridyl-methylamine 26 34 0.34 48.7
16 2–(2-Aminoethyl)pyridine 13 15 2.13 17.2
17 1–(2-Aminoethyl)-piperazine 7.4 2.3 0.25 14.1
18 4–(2-Aminoethyl)-morpholine 0.14 0.19 0.33 17.4
19 L-Adrenaline 0.09 96.0 0.015 9.15
20 L-Asn 11.3 >100 0.93 49.5
21 L-Asp 5.20 >100 4.04 18.9
22 L-Glu 6.43 >100 5.26 18.0
23 D-Glu 10.7 >100 4.70 11.4
24 L-Gln >100 >50 0.90 49.2
�Mean from three determinations by a stopped flow, CO2 hydrase method25.
Standard errors were in the range of 5–10% of the reported values (data
not shown).
aHuman recombinant isozymes, from Ref.8; bFungal recombinant enzyme, Ref44;
cBacterial recombinant enzyme, this work.
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(iii) The most effective EcoCAb activators were L- and D-DOPA,
L-Tyr, 4-amino-Phe 11, serotonin and L-adrenaline, which had KAs
from 2.76 to 10.7 mM. The most effective compounds of this subs-
eries were serotonin (KA of 2.76 mM) and D-DOPA (KA of 3.14 mM).
In addition, for the enantiomers of this amino acid, the D-enantio-
mer was 3.4-times more effective as an activator than the
L-enantiomer.

The mechanism of action of these CAAs probably involves the
facilitation of the rate-determining step of the catalytic cycle
[Equation (3)], as for the a-CAs8. However, no X-ray crystal struc-
tures of the activator-enzyme complexes have been characterised
so far for the b-CAs. The proton shuttling residue for this class of
enzymes is yet to be definitively established, but as shown in
Figure 2(A), the long channel which constitutes the active site of
b-CAs would easily accommodate such small molecules as the
amines and amino acids investigated here, providing in this way a
more efficient proton shuttling between the zinc-coordinated
water molecule and the aqueous environment.

4. Conclusions

The b-CA from the widespread bacterium Escherichia coli EcoCAb
has been investigated here for the first time for its catalytic prop-
erties as well as for enzymatic activation by a panel of amino
acids and amines. EcoCAb has substantial catalytic activity for the
hydration of CO2 to bicarbonate, with a kinetic constant kcat of
5.3� 105 s�1 and a Michaelis–Menten constant KM of 12.9mM.
The most effective EcoCAb activators were L- and D-DOPA, L-Tyr,
4-amino-Phe, serotonin and L-adrenaline (KAs from 2.76 to
10.7mM). Weak activation was observed for L-His, 2-pyridyl-methyl-
amine, L-Asn and L-Gln, with activation constants KAs in the range
of 36.0–49.5 mM. D-His, L- and D-Phe, L- and D-Trp, D-Tyr, hista-
mine, dopamine, 2-(aminoethyl)pyridine/piperazine/morpholine, L-
Asp, L- and D-Glu showed KAs in the range of 11.3–23.7 mM. CA
activators may play a role in bacterial virulence and colonisation
of the host, although no detailed studies in this area are available
to date.
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