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Developing a prediction model 
to estimate the true burden 
of respiratory syncytial virus (RSV) 
in hospitalised children in Western 
Australia
Amanuel Tesfay Gebremedhin1*, Alexandra B. Hogan2, Christopher C. Blyth1,3,4,5, 
Kathryn Glass6 & Hannah C. Moore1

Respiratory syncytial virus (RSV) is a leading cause of childhood morbidity, however there is no 
systematic testing in children hospitalised with respiratory symptoms. Therefore, current RSV 
incidence likely underestimates the true burden. We used probabilistically linked perinatal, hospital, 
and laboratory records of 321,825 children born in Western Australia (WA), 2000–2012. We generated 
a predictive model for RSV positivity in hospitalised children aged < 5 years. We applied the model to 
all hospitalisations in our population-based cohort to determine the true RSV incidence, and under-
ascertainment fraction. The model’s predictive performance was determined using cross-validated 
area under the receiver operating characteristic (AUROC) curve. From 321,825 hospitalisations, 
37,784 were tested for RSV (22.8% positive). Predictors of RSV positivity included younger admission 
age, male sex, non-Aboriginal ethnicity, a diagnosis of bronchiolitis and longer hospital stay. Our 
model showed good predictive accuracy (AUROC: 0.87). The respective sensitivity, specificity, positive 
predictive value and negative predictive values were 58.4%, 92.2%, 68.6% and 88.3%. The predicted 
incidence rates of hospitalised RSV for children aged < 3 months was 43.7/1000 child-years (95% CI 
42.1–45.4) compared with 31.7/1000 child-years (95% CI 30.3–33.1) from laboratory-confirmed RSV 
admissions. Findings from our study suggest that the true burden of RSV may be 30–57% higher than 
current estimates.

Respiratory Syncytial Virus (RSV) is a leading cause of morbidity and mortality in young children worldwide, 
causing 3.2 million detected hospitalisation episodes every  year1. The true burden is likely to be much greater, 
with approximately half of RSV-associated deaths estimated to occur outside of  hospital1. In Australia, for every 
100,000 hospitalised children aged < 5 years, an estimated 418 have  RSV2. A recent population-based study in 
Western Australia (WA) conducted by our group reported pathogen-specific incidence rates of 247/100,000 
child-years for RSV in children aged < 17  years3, with the highest burden among infants in their first 3 months 
of life (28.1/1000 child-years)4. RSV is most frequently associated with hospitalisations for acute bronchiolitis, 
but was also identified across other clinical diagnoses including pneumonia, unspecified acute lower respiratory 
infections, asthma, upper respiratory infections as well as non-specific viral diagnosis  codes3,5.

Population-wide in our jurisdiction and elsewhere, there is no systematic approach to RSV testing, nor is it 
currently a notifiable disease, making estimates of RSV disease burden using microbiological testing datasets 
alone difficult. From our population-based study, only 10% of children aged < 17 years were ever tested for RSV 
and variable testing trends were seen between age groups and from year to year. Additionally, 54% of children 
hospitalised with respiratory infections did not have a corresponding microbiological  test3. Improved estimates 
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of RSV burden are required to inform future policy for RSV therapeutics and preventative strategies, as late-stage 
clinical trials of antivirals, maternal vaccines and monoclonal antibodies  progress3,6.

Understanding the demographic and clinical predictors of RSV test positivity in different populations can 
aid in quantifying the under-ascertainment burden of RSV from standalone datasets. Ideally, a combination of 
clinical and laboratory data is needed. Such a study has been conducted in England for infants aged < 1 year, 
using hospitalisation data and RSV positive testing  records7.

The aim of our study was to develop a prediction model to estimate the true incidence of RSV associated 
hospitalisations in children < 5 years of age in WA and to use these findings to determine the under-ascertainment 
fraction of RSV incidence using laboratory records alone.

Methods
Setting and data sources. WA covers the western third of Australia with a population of approximately 
2.6 million people at 31 December  20198. Three quarters of the population reside in the temperate climatic 
region of metropolitan Perth and its  surrounds9. We conducted a population-based cohort study using admin-
istrative linked data of all births in WA (1996 to 2012), as previously  reported3,10. Data sources used for this 
study included the Midwives Notifications System, which includes perinatal information on > 99% of births in 
 WA11, Birth and Death Registries, Hospital Morbidity Data Collection and PathWest Laboratory Medicine Data-
base (PathWest). Data were probabilistically linked using best practice protocols through the WA Data Linkage 
 Branch12.

Hospital data. Hospitalisation records, herein referred to as hospital admissions, with an admission and dis-
charge date between 1 January 2000 and 31 December 2012 were included, to match the same time period when 
routine laboratory data were available. We included all admissions in children aged < 5 years in WA with any 
diagnosis using International Statistical Classification of Diseases and Related Health Problems,10th Revision, 
Australian Modification (ICD-10-AM) codes. As per previous analyses of these data, interhospital transfers were 
 collapsed3,10.

Laboratory data. We extracted PathWest testing records of RSV from respiratory specimens with a specimen 
collection date between 1 January 2000 and 31 December 2012. We then linked these records with hospitalisa-
tion records from individuals from the birth cohort when respiratory specimens were collected 48 h before or 
after the admission date, as per our previous  analyses3,10. The laboratory records were linked to the admission 
closest to the date of specimen collection when the same child had multiple admissions for different reasons 
within 48  h. During the early study period, RSV was predominantly detected through immunofluorescence 
antigen detection (65%) and viral culture on respiratory specimens and complement-fixation tests (CFT) on 
serum while, gradually, polymerase chain reaction (PCR) on respiratory specimens was more frequently  used4,10. 
Using assembled data from hospital and PathWest records, we then identified our source population defined as 
children in the cohort who had a hospitalisation for any reason in the first 5 years of life with RSV testing records 
during the study period (n = 37,784 hospitalisations). After exclusion of 3,801 records with missing data for one 
or more of the variables, we finally included 33,983 hospitalisations with RSV testing records in the final pre-
diction model. Similarly, after excluding observations with missing data, we estimated RSV burden in 321,825 
records of hospitalised children under 5 years of age during the study period (Fig. 1).

Statistical analysis. Developing prediction models. A multivariable logistic regression model was fitted to 
identify predictors of RSV-positivity (binary outcome) amongst children younger than 5 years who were hospi-
talised and tested for RSV in WA during the study period (2000–2012). We used a robust standard error estima-
tion adjusting for correlated observations due to children having multiple admissions over the study  period13. 
A total of 27 candidate predictors for the prediction models were selected based on a comprehensive literature 
review, including previous work in our  setting14 and clinical plausibility.

Directed acyclic graphs (DAG) were used to inform the choice of these predictors. In modern epidemiology, 
DAGs are used as a tool in causal inference to identify and demonstrate knowledge, theories and assumptions 
about causal relationships between  variables15,16. Causal inference principles have recently been more widely 
applied in prediction  models17,18. The minimal set of variables identified by DAGs included child age, sex, delivery 
route (vaginal vs caesarean), season of admission, Aboriginal and/or Torres Strait Islander status, respectfully 
referred to as (Aboriginal/non-Aboriginal), as identified through a validated algorithm provided by the WA 
linkage  branch19, maternal age (categorised), smoking during pregnancy (yes/no), socioeconomic status (in 
quantiles), numbers of siblings, gestational age (< 32 weeks, 32–36 weeks and 37 or more weeks), admission 
year, birth year, length of hospital stay (continuous), admission to intensive care unit (ICU) [binary], mechanical 
ventilation use during hospital admission (see below), maternal history of asthma (binary), any diagnosis code 
for acute bronchiolitis, pneumonia, bronchitis, unspecified acute lower respiratory infections (ALRI), asthma, 
URTI, whooping cough, influenza and diagnosis code for other infections including unspecified viral illness, 
convulsions, fever and cough, breathing abnormalities (refer to eTable 1). These specific codes were chosen based 
on our previous work that identified a positive detection of a respiratory virus in hospital admissions with these 
 codes10. Further, we included season of birth and geographical region of residence to account for seasonality and 
climatic conditions (as a proxy) respectively (eTable 1). Our final prediction model also included a sine and cosine 
function as per the recommendation by Stolwijk and Edwards to account for the seasonal variation of  RSV20,21.

Socioeconomic status (SES) was measured using Socio-Economic Indexes for Areas (SEIFA). Specifically, 
we used the Index of Relative Advantage and Disadvantage score, calculated at the collection district (CD) level 
by Australian Bureau of  Statistics22.
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A child was coded as admitted to an ICU if they spent at least one day in ICU as recorded on the Hospital 
Morbidity Data Collection. Mechanical ventilation was defined as receipt of at least an hour of continuous ven-
tilatory support or having procedure codes (classified using the 7th edition of the Australian Classification of 
Health Interventions) for airway management, invasive or non-invasive ventilatory support (eTable 1).

Model specification and estimation. As part of model development, a stepwise backward selection approach 
using Akaike Information criterion (AIC) was performed. Stepwise backward selection using AIC is a widely 
used criterion to assess model goodness of fit and  parsimony23,24. We assessed the subsequent model improve-

Figure 1.  Flow diagram of datasets.
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ment through a decrease in the AIC criterion after including all variables in the minimal sufficient adjustment 
sets plus additional variables not included in our DAG. All variables removed were individually reinserted into 
the model and reassessed for any model improvement.

Predictive performance and model validation. The ability of the variables to predict RSV-positivity in the 
source population was determined by a tenfold cross-validated area under the receiver operating characteristic 
(AUROC) curve. We constructed Receiver Operator Characteristic (ROC) by plotting the true positive rate 
(sensitivity) against false positive rate (1-specificity) at various levels of the marker. In k-fold cross validation, 
the dataset is randomly divided into k approximately equally sized subsamples (or folds)25. At each iteration, 
one-fold is retained as the validation data for testing the model and estimating the Area Under Curve (AUC), 
while the remaining k − 1 folds are used as training data for model estimation. This process is repeated k times, 
with each of the k folds used once as the validation data. The ‘cvauroc’ command in Stata was employed to derive 
and average the AUCs corresponding to each fold (here k = 10) and bootstrapping the cross-validated AUC was 
used to obtain statistical inference and bias corrected 95% confidence intervals (CIs). K-fold cross validation 
avoids the optimistic estimates of predictive performance known to exist when the full dataset is used for assess-
ing model specification and  prediction25. To explore diagnostic accuracy of the models, sensitivity, specificity, 
positive predictive values (PPV) and negative predictive values (NPV) were generated. We determined these 
characteristics at different false positive rates [eTable 3]. However, we chose a 0.5 probability threshold as the 
cut-off, which maximises sensitivity and specificity of the model. Furthermore, we used a ‘calibration belt’ to 
evaluate the calibration of our predictive model. The ‘calibration belt’ is a plot depicting the relationship between 
the model’s fit probabilities and the observed proportions of the response across all ranges of risk, which reflects 
the reliability or degree of bias of the  model26. In addition, reliability was tested by the Hosmer–Lemeshow 
goodness-of-fit  test27. As a sensitivity analysis, we repeated the same procedure for developing the prediction 
model by method of testing to see if predictors of RSV-positivity differ between PCR or immunofluorescence 
(IF) detection methods (eFigs. 8 and 9).

All data were analysed using STATA v.16.028. We used DAGitty v2.3 to produce the  DAG29. We conducted a 
complete case analysis excluding records from the analysis with missing values for one or more of the predictor 
variables. We calculated incidence rates of predicted RSV-positivity using survival analysis techniques, allowing 
for multiple hospital admissions per person. We used person-time-at-risk as the denominator (calculated from 
date of birth until first date of hospital admission). All children were censored at the end of the study period or 
date of death, whichever was the earlier. Incidence rates were reported per 1000 child-years with associated 95% 
confidence intervals (CIs) by age group, year of hospital admission, admission season and birth month. Finally, 
we plotted predicted RSV rates by calendar week throughout the study period.

Estimating burden of RSV. After running each logistic regression model, we estimated a predicted probability 
of RSV-positivity and applied that to all hospital admissions in children aged less than 5 years during the study 
period given all non-missing variables in the model. All admissions in children aged less than 5 years during 
the study period with a predicted probability threshold of 0.5 were classified as an RSV-associated admission 
(hereafter referred to as predicted RSV). Finally, we estimated the under-ascertainment fraction of RSV rates, 
computed as rate differences between laboratory-confirmed RSV and predicted RSV.

Transparency of reporting. The Transparent Reporting of a multivariable prediction model for Individual Prog-
nosis Or Diagnosis (TRIPOD) statement was followed for this study (eTable 4)30. The TRIPOD statement pro-
vides a framework for the full and clear reporting of a prediction model study, such that risk of bias and potential 
usefulness can be adequately assessed.

Ethics statement. The authors assert that all methods were carried out in accordance with relevant guidelines 
and regulations. Ethical approvals were obtained from the WA Department of Health Human Research Ethics 
Committee and the WA Aboriginal Health Ethics Committee. As the study utilised de-identified linked admin-
istrative data, a waiver of informed consent was granted by the WA Department of Health Human Research 
Ethics Committee.

Results
Cohort description. From the birth cohort of 321,825 hospitalised children under the age of 5  years 
at the time of hospital admission, 37,784 were tested for RSV (11.7%). Of these 8,471 (22.4%) were infants 
aged < 3 months and 5,768 (15.3%) were Aboriginal. From all hospitalised children tested for RSV, laboratory 
confirmation was determined in 22.8% (n = 8,604 episodes). RSV positivity was more common in children that 
were younger, non-Aboriginal, male, had mothers with average SES, lived in a metropolitan residence and had 
hospital admission in the Australian winter months between June and August. One in three (2,594 admissions) 
of RSV positive admissions were among infants aged < 3 months. Approximately three quarters of all laboratory-
confirmed RSV-positive children had a discharge diagnosis of bronchiolitis (Table 1).

Predicting RSV positivity. The variables included in the final logistic regression prediction model were 
child age, gender, delivery route, admission season, Aboriginal status, maternal age, smoking, SES, numbers of 
siblings, prematurity, admission year, birth year, length of hospital stay, admission to ICU, mechanical ventila-
tion use during admission, maternal history of asthma, any diagnosis code for ALRI and diagnosis code for 
other infections including unspecified viral illness. To account for seasonality and climatic conditions, we also 
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Characteristics

Total admissions N (%) RSV-positive N (%) RSV positivity rate (%)

N = 37,784 N = 8,604 22.8

Age in months

 < 3 months 8,471 (22.4) 2,594 (30.1) 31

3–< 6 months 5,077 (13.4) 1,614 (18.8) 32

6–< 12 months 7,641 (20.2) 1,718 (20.0) 22

12–< 24 months 8,804 (23.3) 1,611 (18.7) 18

24–< 36 months 3,773 (10.0) 599 (7.0) 16

36- < 60 months 4,018 (10.6) 468 (5.4) 12

Admission season

Summer 5,298 (14.0) 301 (3.5) 6

Autumn 6,735 (17.8) 967 (11.2) 14

Winter 14,950 (39.6) 5,834 (67.8) 39

Spring 10,801 (28.6) 1,502 (17.5) 14

Baby Aboriginal status
Non-Aboriginal 32,016 (84.7) 7,301 (84.9) 23

Aboriginal 5,768 (15.3) 1,303 (15.1) 23

Delivery route

Vaginal 20,177 (53.4) 4,749 (55.2) 24

Instrumental 3,698 (9.8) 756 (8.8) 20

Elective Caesarean 6,558 (17.4) 1,566 (18.2) 24

Emergency caesarean 7,337 (19.4) 1,529 (17.8) 21

Gender
Female 16,040 (42.5) 3,758 (43.7) 23

Male 21,744 (57.5) 4,846 (56.3) 22

Maternal age

 < 20 3,187 (8.4) 742 (8.6) 23

20–24 7,603 (20.1) 1,773 (20.6) 23

25–29 10,409 (27.6) 2,377 (27.6) 23

30–34 10,262 (27.2) 2,316 (26.9) 23

≥ 35 6,309 (16.7) 1,392 (16.2) 22

Smoking during pregnancy Yes 9,141 (25.1) 2,208 (26.6) 24

Gestational age

 < 32 weeks 27,322 (74.9) 261 (3.0) 22

32–36 weeks 1,599 (4.2) 1,516 (17.6) 16

 > 36 weeks 6,530 (17.3) 6,823 (79.3) 23

SEIFA score at birth

0–10% (most deprived) 4,634 (13.2) 1,123 (14.1) 24

11–25% 6,918 (19.7) 1,611 (20.2) 23

26–75% 16,876 (48.0) 3,772 (47.3) 22

76–90% 4,515 (12.8) 986 (12.4) 22

91–100% (least deprived) 2,231 (6.3) 479 (6.0) 21

Number of siblings

0 8,943 (23.7) 1,720 (20.0) 19

1 11,122 (29.4) 2,616 (30.4) 24

2 or more 17,705 (46.9) 4,264 (49.6) 24

Maternal asthma 5,561 (14.7) 1,248 (14.5) 22

Mention of bronchiolitis in any of the diagnoses 11,865 (31.4) 6,245 (72.6) 53

Mention of pneumonia in any of the diagnoses 3,730 (9.9) 1,024 (11.9) 27

Mention of unspecified ALRI in any of the diagnoses 2,542 (6.7) 493 (5.7) 19

Any URTI in episode (Burgner categories) 6,450 (17.1) 891 (10.4) 14

Mention of influenza in any of the diagnoses 1,385 (3.7) 39 (0.5) 3

Mention of bronchitis in any of the diagnoses 185 (0.5) 57 (0.7) 31

Mention of asthma in any of the diagnoses 2,364 (6.3) 310 (3.6) 13

Mention of whooping cough in any of the diagnoses 307 (0.8) 23 (0.3) 7

Diagnostic code for other  infectionsa 5,216 (13.8) 263 (3.1) 5

Remoteness

Metro 29,921 (79.3) 6,571 (76.4) 22

Rural 4,100 (10.9) 1,068 (12.4) 26

Remote 3,727 (9.9) 957 (11.1) 26

Length of hospital stay

1 day 2,357 (6.2) 255 (3.0) 11

2 days 8,908 (23.6) 1,454 (16.9) 16

3 or more days 26,519 (70.2) 6,895 (80.1) 26

ICU admission 2,976 (7.9) 492 (5.7) 17

Mechanical ventilation 1,122 (3.0) 213 (2.5) 19

Continued
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included season of birth and geographical region of residence respectively (eTable 1). The predictive equation of 
the final model is presented in (eFig. 2).

In the multivariable analysis, there was a higher odd of RSV-positivity in those aged < 3 months (Adjusted 
odds ratio (AOR) = 1.91, 95% CI (1.27–2.87)), and children who were not Aboriginal (AOR = 1.44. 95% CI 
(1.29–1.61)). Children with a primary or secondary diagnosis of acute bronchiolitis had 16-fold increased odds 
of RSV-positivity (AOR = 16.8, 95% CI (15.3–18.5)). RSV-positivity was also significantly associated with a 
diagnosis of any pneumonia, unspecified ALRI and bronchitis. Similarly, children born in remote or rural areas, 
who had a long hospital stay (three or more days) and who required mechanical ventilation during admission 
had an increased odds of RSV positivity.

Conversely, prematurity, low SES and maternal history of asthma were associated with reduced odds of RSV-
positivity (eTable 2).

The tenfold cross-validated model showed accurate and robust performance of the prediction model 
(AUROC = 0.87, 95% CI 0.86 to 0.88), reflecting excellent ability of the model to predict RSV-positivity 
(Fig. 2). The sensitivity and specificity of the final model were 58.4% (95% CI 57.3–59.6%), and 92.2% (95% 
CI 91.8–92.5%) respectively. The model had a PPV of 68.6% (95% CI 67.5–69.7%) and NPV of 88.3% (95% CI 
87.9–88.7%). Additionally, the calibration belt demonstrated that our prediction model is well calibrated (eFig. 3). 
The overall goodness of fit of the model was satisfactory, as indicated by a nonsignificant Hosmer–Lemeshow 
test (P = 0.66). Our sensitivity analysis suggested that the prediction model performance slightly differed by 
laboratory detection method (immune-fluorescence vs PCR) (eFigs. 8 and 9).

Laboratory-confirmed and predicted RSV rates by age at admission. The predicted incidence 
rates of RSV were higher in the younger age groups with the highest admission rates among infants aged less than 
3 months. Our model predicted RSV-related admissions for children aged less than 3 months to be 43.7/1000 
child-years (95% CI 42.1–45.4) compared with 31.7/1000 child-years (95% CI 30.3–33.1) from laboratory-con-
firmed RSV admissions. Similarly, the rate of predicted RSV admissions ranged from 5/1000 child-years for 
12–24 months to 28/1000 child-years for 3–6 months of age. We estimated that the average annual RSV associ-
ated hospitalisation rates were 404 per 1000 children for < 3 months, 499 per 1000 children and 302 per 1000 
children for 3–6 months and 6–11 months respectively, which is equivalent to under-ascertainment fractions of 
32% for < 3 months, 57% for 3–6 months and 35% for 6–11 months of total admissions respectively (Table 2).

A total of 76% of our predicted RSV-associated admissions were in infants aged less than 12 months, 
accounting for 39% of the estimated under-ascertainment. For infants aged less than 12 months, the predicted 

Table 1.  Characteristics of laboratory-confirmed RSV-positive admissions used to generate the RSV 
prediction model, 2000–2012. RSV respiratory syncytial virus, ALRI acute lower respiratory infections, URTI 
upper respiratory tract infections, ICU intensive care unit. a Other infections include unspecified viral illness, 
Convulsions, fever and cough, and breathing abnormalities.

Characteristics

Total admissions N (%) RSV-positive N (%) RSV positivity rate (%)

N = 37,784 N = 8,604 22.8

Season of birth

Summer 8,699 (23.0) 1,813 (21.1) 21

Autumn 10,758 (28.5) 2,883 (33.5) 27

Winter 9,774 (25.9) 2,380 (27.7) 24

Spring 8,553 (22.6) 1,528 (17.8) 18

Figure 2.  Tenfold cross-validated receiver operating characteristic ROC curves for RSV-associated admissions. 
Solid red curve = bias corrected cross-validated AUC, dashed curves = k-fold ROC curves.
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RSV-associated admissions peaked during the winter season (n = 6859, 204/1000 child years [95% CI 199.1, 
208.7)]) and in infants born in months of April–June (Table 3). Similarly, for children 12–24 months of age 
the predicted RSV admissions peaked during the winter season and in children born in March–May (Table 4).

RSV rates by calendar week. Rates of predicted RSV admissions for children aged less than 2  years 
showed a seasonal pattern. The peak in predicted RSV-associated admissions for this age group were observed 
during week 26–29 each year between 2000 to 2012, with exception of year 2007 and 2009 with a peak observed 
during week 34 (66/1000 child-years) and week 32 (55.9/1000 child-years), respectively. We observed a similar 
pattern to the peak in admissions for laboratory-confirmed RSV admissions during the study period (Fig. 3).

Discussion
RSV vaccine development has gained substantial attention globally, with the WHO identifying global RSV 
disease burden estimates as a global  priority31,32. Our study aimed to improve the estimates of RSV incidence 
which are needed to help advocate for vaccine programs and provide essential baseline data to evaluate vaccine 
impact studies. We have developed a population-based prediction model to better estimate the true burden of 
RSV associated hospitalisations in children younger than 5 years in WA with robust performance. Our predic-
tion model was based on readily available patient characteristics and may be useful for identifying hospitalised 
children likely to test positive for RSV.

Using population-based hospital and laboratory data, our results corroborated previous findings of the large 
burden of RSV-associated hospital admissions in  children3,4,7, and our prediction model suggests that we under-
estimate this burden by more than 30%. Our results also indicate that the RSV burden is age-specific, with sig-
nificant seasonal variation. Over the study period, which spanned more than a decade, the burden of predicted 
RSV-associated hospital admissions was substantial, with an average annual estimated admission rate of 404 
per 1000 children for < 3 months and 338 per 1000 children for under 2 years old respectively. This is consistent 
with our previous  results3,4 and with findings from other  studies33,34. The peaks in RSV-associated admissions 
were observed in the winter season, as well as in children born in April, May and June in both < 12 months and 
12–24 months age groups. Given the higher burden of RSV-associated hospitalisation among the young infant 
age group, future vaccine programmes could target them as priority beneficiaries. There are recent suggestions 
of targeting infants born around the start of RSV season for a possible seasonal vaccination  strategy35.

Our analysis confirmed that children who are younger at admission (< 3 months) are at increased risk of 
RSV positivity, which is consistent with other  studies7,36. In addition to younger age, our study also identified 
additional important predictors of RSV positivity, including length of hospital stay, primary or secondary diag-
nosis of acute bronchiolitis, pneumonia, bronchitis and unspecified ALRIs. A primary or secondary diagnosis of 
acute bronchiolitis was the strongest predictor of RSV positivity. A diagnosis of bronchitis was the second most 
important predictor, followed by pneumonia. A previous study in England similarly reported that infants with 
a diagnosis of bronchiolitis, unspecified LRTI or with an RSV-specific code had higher odds of RSV-positivity7.

The risk of hospitalisation was higher for non-Aboriginal children and children from a rural or remote region 
at birth. Similarly, the highest rates of RSV were found in remote and rural regions compared to metropolitan 
areas. These difference could be attributed to a combination of socio economic disadvantages (such as household 
crowding) and access to health  care37,38. Interestingly, low SES, prematurity and family history of asthma were 
associated with lower odds of RSV positivity. Similar findings were reported in previous  studies7,39. Nonethe-
less, findings reported elsewhere have suggested that the majority of cases with RSV do not have any underlying 
co-morbidity40.

Our evaluation using tenfold cross validation showed an excellent performance and was well calibrated, with 
AUROC of 0.8727. By comparison, in a recent study predicting RSV associated admissions in England reported 
AUROC of 0.9, our predictive model has higher specificity and NPV but lower sensitivity and PPV compared 
to that model which focused on infants under the age of 12  months7. Our prediction study differs from others 

Table 2.  Incidence rates of laboratory-confirmed and predicted RSV positivity by age at hospital admission, 
2000–2012. All rates presented in this table are per 1000 child-years. a Rate differences (per 1000 child-years) 
between lab-confirmed and predicted RSV. b Percentage differences between rates of laboratory-confirmed 
RSV admissions & predicted RSV admissions computed using ((predicted RSV-laboratory confirmed RSV))/
(laboratory confrimed RSV)*100 

Age at admission

Laboratory-confirmed RSV Predicted RSV
Under-
ascertainment

Num Rate (95% CI) Num Rate (95% CI) Ratea (%)b

0–27 days 625 21.3 (19.7–23.0) 704 24.0 (22.3–25.8) 2.7 13

28 days– < 3 months 1969 31.7 (30.3–33.1) 2716 43.7 (42.1–45.4) 12 38

 < 3 months 2594 28.4 (27.2–29.5) 3420 37.4 (36.2–38.7) 9 32

3–< 6 months 1614 17.8 (16.9–18.7) 2531 27.9 (26.8–29.0) 10.1 57

6–< 12 months 1718 9.5 (9.1–10.0) 2311 12.8 (12.3–13.4) 3.3 35

12–< 24 months 1612 4.54 (4.3–4.8) 1873 5.3 (5.0–5.5) 0.7 16
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with respect to either the domain or population studied. Other studies focused on RSV hospitalisation in young 
 children7,41, premature  infants42,43, or non-hospitalised RSV among healthy term  infants44.

Our prediction model showed a good fit to the seasonality and age distribution of RSV-associated hospi-
talisation. However, the model slightly underestimated the RSV-associated admissions for older children. This 
could be due to non-inclusion of additional risk factors, or lifestyle factors beyond the perinatal period, where 
we had limited data to base our prediction model on. Our prediction model was based on more than a decade 
of population-based hospitalisation data linked with laboratory and socio-demographic records, which is a key 
strength of our study. Our model included a comprehensive list of maternal, infant, and perinatal predictors 
which were not included in previous similar RSV prediction  studies7,41,45. We also employed a DAG as an efficient 
strategy to improve predictor selection in the prediction modelling. We believe the definition of ALRIs, and 
other infections included as risk factors in our prediction model increases the likelihood of positive detection 
of a respiratory virus in hospital admissions. We also employed a k-fold cross validation, an internal validation 
method that takes over-optimism into account far better than conventional data  splitting46.

Our study has some limitations. Firstly, our results are based on hospitalisation data linked to laboratory 
records with specimen collection within 48 h of hospital admission. Therefore, we are limiting our prediction 
model to more severe RSV cases associated with hospitalisation and therefore our model does not estimate the 
broader community incidence of RSV. Secondly, our analysis only included linked data in the years between 
2000–2012, and more recent trends in hospital admissions are not reflected in our results. However, we are 
confident our model can be applied to more contemporary data and believe that the majority of the known peri-
natal and environmental predictors are not likely to change over time. Our study did not include other potential 

Table 3.  Incidence rates of laboratory-confirmed and predicted RSV positivity by selected patient 
characteristics among children aged < 12 months, 2000–2012.

0–12 months

Laboratory-confirmed RSV Predicted RSV

Num

Rate/1000 child-years

Num

Rate/1000 child-years

Rate difference/1000 child-years(95% CI) (95% CI)

Admission year

2000 461 18.3 (16.7, 20.0) 799 31.7 (29.6, 33.9) 13.4

2001 390 15.7 (14.2, 17.4) 654 26.4 (24.4, 28.5) 10.6

2002 600 24.3 (22.4, 26.3) 760 30.8 (28.7, 33.1) 6.5

2003 352 14.4 (13.0, 16.0) 554 22.7 (20.9, 24.7) 8.3

2004 475 19.0 (17.4, 20.8) 678 27.1 (25.2, 29.2) 8.12

2005 449 17.4 (15.9, 19.1) 718 27.8 (25.8, 29.9) 10.4

2006 521 18.9 (17.4, 20.6) 721 26.2 (24.3, 28.2) 7.3

2007 329 11.3 (10.1, 12.5) 486 16.6 (15.2, 18.2) 5.4

2008 513 16.9 (15.6, 18.5) 712 23.6 (21.9, 25.4) 6.6

2009 391 12.8 (11.6, 14.2) 476 15.6 (14.3, 17.1) 2.8

2010 497 15.9 (14.6, 17.4) 589 18.9 (17.4, 20.5) 2.9

2011 432 13.8 (12.5, 15.1) 457 14.6 (13.3, 15.9) 0.8

2012 516 15.9 (14.6, 17.3) 658 20.3 (18.8, 21.9) 4.4

Admission season

Summer 193 7.9 (6.9, 9.2) 21 0.8 (0.6, 1.3) − 7.1

Autumn 626 23.4 (21.6, 25.3) 612 22.9 (21.1, 24.7) − 0.5

Winter 4008 119.1 (115.5, 122.9) 6859 203.8 (199.1, 208.7) 84.7

Spring 1099 33.8 (31.9, 35.9) 770 23.7 (22.1, 25.5) − 10.1

Birth month

Jan 424 42.4 (38.6, 46.7) 724 59.1 (54.5, 64.0) 16.62

Feb 446 46.9 (42.7, 51.4) 821 73.9 (68.6, 79.6) 27.02

Mar 599 57.8 (53.4, 62.7) 1087 87.9 (82.4, 93.8) 30.13

Apr 646 64.9 (60.2, 70.2) 1251 102.1 (96.0, 108.6) 37.11

May 805 78.9 (73.7, 84.6) 1395 112.6 (106.3, 119.3) 33.64

Jun 754 79.5 (74.1, 85.4) 1196 103.2 (96.9, 109.8) 23.63

Jul 542 55.8 (51.3, 60.7) 896 70.5 (65.4, 75.9) 14.64

Aug 410 41.9 (38.0, 46.2) 576 45.1 (41.1, 49.5) 3.17

Sep 335 34.2 (30.7, 38.1) 511 41.9 (38.1, 46.2) 7.77

Oct 292 29.8 (26.6, 33.5) 512 42.9 (39.0, 47.3) 13.09

Nov 325 35.3 (31.7, 39.4) 558 49.3 (44.9, 54.0) 13.92

Dec 348 37.3 (33.6, 41.5) 608 54.5 (49.9, 59.4) 17.16
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predictors such as breastfeeding, immunodeficiencies, day care attendance, and environmental factors, as these 
factors are not routinely collected in databases available for linkage. However, we do not expect a major under-
estimation of our prediction model as these variables are not known to be strong predictors of RSV associated 
 admissions7,44. Additionally, even though the testing detection method would not impact the propensity to get 
tested, our sensitivity analysis suggested that the prediction model performance slightly different by laboratory 
detection method.

The population-based linkage of routine laboratory and hospitalisation data allowed us to develop a predic-
tive model with excellent predictive performance to identify RSV associated hospitalisation in WA. Applying the 
model to all hospitalised children aged less than 5 years (irrespective of respiratory infection diagnosis) during 
the study period enabled us to estimate the true RSV burden in hospitalised children in the state.

Further research is needed that takes into consideration emergency department and community RSV-asso-
ciated admissions, preferably including recent data, as well as other potential predictors. A development of a 
simple risk score, and further external validation of the model in other populations must also be considered for 
possible future clinical use of the prediction model.

Conclusion
We have successfully developed a prediction model using population-based data to estimate the true burden of 
RSV in hospitalised children in WA with good predictive performance and internal validation. Findings from 
our study indicate that the true burden of RSV is up to 30–57% higher than figures based solely on laboratory 

Table 4.  Incidence rates of laboratory-confirmed and predicted RSV positivity by selected patient 
characteristics among children aged 12–24 months, 2000–2012.

12–24 months

Laboratory-confirmed RSV Predicted RSV

Num

Rate /1000 child-years

Num

Rate /1000 child-years

Rate difference /1000 child-years(95% CI) (95% CI)

Admission year

2000 143 5.6 (4.7, 6.6) 166 6.5 (5.6, 7.6) 0.89

2001 85 3.4 (2.7, 4.2) 128 5.1 (4.3, 6.0) 1.71

2002 153 6.2 (5.3, 7.2) 154 6.2 (5.3, 7.3) 0.04

2003 91 3.7 (3, 4.5) 135 5.5 (4.6, 6.5) 1.78

2004 124 5.1 (4.3, 6.1) 137 5.6 (4.8, 6.7) 0.53

2005 93 3.7 (3.0, 4.6) 138 5.5 (4.7, 6.5) 1.80

2006 123 4.8 (4.0, 5.7) 148 5.7 (4.9, 6.7) 0.97

2007 88 3.2 (2.6, 3.9) 159 5.8 (4.9, 6.8) 2.58

2008 131 4.5 (3.8, 5.3) 188 6.4 (5.6, 7.4) 1.95

2009 120 3.9 (3.3, 4.8) 121 4.0 (3.4, 4.8) 0.04

2010 157 5.2 (4.4, 6.0) 169 5.6 (4.8, 6.5) 0.39

2011 168 5.4 (4.7, 6.3) 126 4.1 (3.4, 4.8) − 1.34

2012 136 4.3 (3.7, 5.1) 104 3.3 (2.7, 4.0) − 1.02

Admission season

Summer 70 3.5 (2.8, 4.4) 12 0.6 (0.3, 1.1) − 2.9

Autumn 216 9.9 (8.6, 11.3) 201 9.2 (8.0, 10.5) − 0.7

Winter 1083 41.8 (39.4, 44.4) 1496 57.8 (54.9, 60.7) 15.9

Spring 243 9.2 (8.07, 10.4) 164 6.2 (5.3, 7.2) − 2.9

Birth month

Jan 124 15.2 (12.8, 18.1) 590 59.1 (54.5, 64.0) 43.8

Feb 125 16.3 (13.6, 19.4) 703 73.9 (68.6, 79.6) 57.6

Mar 158 19.0 (16.3, 22.2) 911 88.0 (82.5, 93.8) 69.0

Apr 167 20.8 (17.9, 24.2) 1015 102.1 (96.0, 108.6) 81.3

May 165 20.1 (17.2, 23.4) 1148 112.6 (106.3, 119.3) 92.5

Jun 165 21.6 (18.6, 25.2) 978 103.2 (96.9, 109.8) 81.5

Jul 137 17.6 (14.9, 20.8) 684 70.5 (65.4, 75.9) 52.9

Aug 129 16.5 (13.8, 19.5) 441 45.1 (41.1, 49.5) 28.6

Sep 127 16.3 (13.7, 19.4) 411 42.0 (38.1, 46.3) 25.7

Oct 105 13.4 (11.0, 16.2) 420 42.9 (39.0, 47.3) 29.6

Nov 101 13.5 (11.1, 16.5) 453 49.3 (44.9, 54.0) 35.7

Dec 109 14.4 (12.0, 17.4) 508 54.5 (49.9, 59.4) 40.0
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detection data in young children. These estimates can now be used as input parameters in dynamic transmission 
models to better predict the impact of prevention measures including maternal  vaccination47.
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