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ABSTRACT
Osteoarthritis (OA), a whole-joint disease driven by
abnormal biomechanics and attendant cell-derived and
tissue-derived factors, is a rheumatic disease with the
highest prevalence, representing a severe health
burden with a tremendous economic impact. Members
of the nuclear factor κB (NF-κB) family orchestrate
mechanical, inflammatory and oxidative stress-activated
processes, thus representing a potential therapeutic
target in OA disease. The two pivotal kinases, IκB
kinase (IKK) α and IKKβ, activate NF-κB dimers that
might translocate to the nucleus and regulate the
expression of specific target genes involved in
extracellular matrix remodelling and terminal
differentiation of chondrocytes. IKKα, required for the
activation of the so-called non-canonical pathway, has
a number of NF-κB-independent and kinase-
independent functions in vivo and in vitro, including
controlling chondrocyte hypertrophic differentiation and
collagenase activity. In this short review, we will
discuss the role of NF-κB signalling in OA pathology,
with emphasis on the functional effects of IKKα that
are independent of its kinase activity and NF-κB
activation.

INTRODUCTION
Osteoarthritis (OA) is the most common
joint disease and the major cause of disability
in the adult population; with annual costs of
knee OA being immense, this continues to
be a severe health burden with respect to
morbidity and expense. Age is the primary
OA risk factor, and ageing-related changes
also contribute to pathophysiological
changes triggering OA disease. In addition,
individuals with other specific OA risk
factors, including obesity, altered joint mech-
anical loading, joint injury and inflamma-
tion, as well as genetic components,1 may
undergo an accelerated rate of changes that
are similar to those associated with ageing.2

Although cartilage destruction is the hall-
mark of OA, and collagen erosion is the
pivotal event that determines the irreversible
progression of OA disease, it is now well
established that OA is not only a disorder of
cartilage homeostasis but is a whole-joint dis-
order involving all joint tissues, including the
subchondral bone, menisci and synovial
membrane.3–5 In spite of recent advances,
the mechanisms leading to cartilage destruc-
tion in patients with OA are still not clearly
identified and no successful therapeutic
intervention exists. This brief review elabo-
rates on how nuclear factor (NF-κB) signal-
ling contributes to OA pathophysiology, not
only by modulating stress-related processes,
but also by the hypertrophic-like conversion
of OA chondrocytes.

CARTILAGE DEGRADATION IN OA DISEASE:
PHENOTYPIC SHIFT OF ARTICULAR
CHONDROCYTES
The principal function of articular cartilage
is to adjust to biomechanical forces during
joint movement; a function mediated by the
extracellular matrix (ECM). Cartilage
homeostasis is defined by normal cartilage
ECM compensating for mechanical stress
without structural or cellular damage. The
ECM is produced and maintained by articu-
lar chondrocytes, the unique cell type
residing in articular cartilage, which are
essential for maintaining structural and func-
tional integrity of the cartilage.6 Mechanical,
oxidative and inflammatory stresses activate
signal transduction pathways in cartilage,
which disseminate a phenotypic shift charac-
terised by the release of the chondrocyte
from growth arrest, imbalanced homeostasis,
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hypertrophic-like conversion and aberrant expression of
proinflammatory and catabolic genes.6 As a result, OA
chondrocytes are unable to maintain tissue homeostasis
and fail to replace ECM, especially collagen, once it is
degraded by metalloproteinases (MMPs), in particular
by MMP-13, the major MMP responsible for remodelling
type II collagen in cartilage tissue.7–9 Characteristic fea-
tures of OA chondrocytes in ageing and inflammatory
models include prominent epigenomic alterations10 11

leading to deregulated gene expression, exacerbated
and sustained NF-κB activation, and MMP production,
all of which can be modelled in vitro by interleukin 1
(IL-1β) stimulation.12

The NF-κB pathway is most prominent among the differ-
ent gene signatures in human disease and different experi-
mental OA models, suggesting a key regulatory role for
stress and inflammatory signalling via the canonical NF-κB
pathway in OA pathology.6 12–14 Abnormal NF-κB activa-
tion provokes the loss of the growth-arrested state of articu-
lar chondrocytes, accompanied by the production of
procatabolic mediators, including aggrecanases and MMPs
that induce cartilage degradation, and the proinflamma-
tory cytokines (IL-1β and tumor necrosis factor α,TNF-α)
that induce them. Further, continued NF-κB activation
results in the overexpression and activation of other regu-
latory transcription factors, including E74-like factor 3
(ELF3) and endothelial PAS domain protein 1 (hypoxia
inducible factor 2 alpha) (HIF-2α), which, in turn, further
perpetuate OA disease via modulation of inflammatory
and catabolic mediators,15–17 and by linking hypertrophic-
like conversion with inflammation.18 19 Together, these
multilayered signalling networks collaborate to activate
MMP13 expression and activity, and facilitate the progres-
sion of normal articular chondrocytes to a hypertrophic-
like OA phenotype in vivo, thereby also contributing to
OA onset and/or progression.6

Synovitis is a feature of the OA joint, in which the acti-
vated canonical NF-κB subunits upregulate the expression
of chemokines (IL-8, chemokine (C-C motif) ligand 5
(CCL5)), cytokines (receptor activator of nuclear factor
kappa-B ligand (RANKL), IL-1β, IL-6, TNF-α), cyclooxy-
genase 2 (COX2) and angiogenic factors (vascular endo-
thelial growth factor, fibroblast growth factor 2).4 5 The
homeostasis of the subchondral bone involves a balance
between bone resorption, mediated by the receptor activa-
tor of nuclear factor kappa B (RANK)/RANKL signalling
pathway that activates NF-κB transcription factors (indu-
cing the expression of IL-1β, IL-6, prostaglandin E2
(PGE2)) and bone formation, controlled by osteoprote-
gerin (OPG). During OA, homeostasis is destroyed and
the OPG/RANK/RANKL signalling pathway is
deregulated.14

CONTRIBUTION OF THE NF-κB PATHWAY TO CARTILAGE
DEGRADATION AND OA PATHOLOGY
NF-κB-mediated transcriptional control arises from the
assembly of homodimers and heterodimers of five

different NF-κB proteins.20 NF-κB dimers are seques-
tered in the cytoplasm with their transcriptional activities
blocked by inhibitory IκB proteins. The two pivotal
kinases IKKα and IKKβ initiate the release of active
NF-κBs from IκBs, so that specific NF-κB dimers might
translocate to the nucleus and regulate the expression of
specific target genes. In response to a host of proinflam-
matory and stress-like stimuli, IKKβ is the dominant
acting IκBα kinase in vivo, controlling the so-called
canonical pathway.20 However, IKKα is specifically
required for the activation of the non-canonical, or alter-
nate, NF-κB pathway, and has a number of in vivo func-
tions as a serine–threonine kinase acting independently
of NF-κB signalling (figure 1).12 21

In chondrocytes, IKKα and IKKβ have different func-
tional roles in ECM remodelling and endochondral ossifi-
cation, which are also developmental events recapitulated
to a certain extent by hypertrophic-like chondrocytes in
OA disease.22–24 Furthermore, in activated OA chondro-
cytes, the canonical NF-κB pathway is an orchestrator of
gene expression programmes leading to the production of
catabolic enzymes, cytokines and inflammatory media-
tors,12 25 and it is believed to play pivotal roles in OA
disease by coordinating a complex, multilayered signalling
network. Table 1 summarises some of the events con-
trolled by IKKα and IKKβ in OA disease.

CONTROL OF INFLAMMATORY/STRESS RESPONSES
BY THE CANONICAL NF-KB PATHWAY
The IKKβ-driven, canonical NF-κB pathway signalling
also has effects on downstream regulators of terminal
chondrocyte differentiation (including HIF-2α, β-catenin
and Runx2), thus linking inflammatory and oxidative
stress responses, with phenotypic and functional changes
in OA chondrocytes. These events further deregulate
chondrocyte homeostasis and normal function
(reviewed6 12). In OA chondrocytes, canonical NF-κB sig-
nalling acts as a sensor of exogenous and endogenous
mechanical stress and inflammatory insults, and thereby
coordinates the expression and activation of an abnormal
cartilage catabolic pathway leading to the onset of OA
disease (see reviews6 12), which also includes modulation
of mitogen-activated protein kinase signalling via tran-
scriptional control of GADD45β.44–46 In addition, NF-κB
signalling plays a central role in disease progression and
perpetuation, mediating a cascade of inflammatory
responses triggered by advance glycation end products,
Toll-like receptor ligands, or released ECM products,
including fibronectin fragments, which lead to the con-
tinued expression of MMPs, aggrecanases, inflammatory
cytokines and chemokines, and to an abnormal differen-
tiation status.26–30 33–41 47

Among the downstream effectors of IKKβ-driven
NF-κB signalling that play a central role in OA disease
by coordinating a complex, multilayered signalling
network, is HIF-2α (for review, see ref 12). HIF-2α has
been shown to have central roles in OA disease by
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interconnecting inflammatory ECM degradative pro-
cesses with chondrocyte hypertrophic conversion due to
its control of genes involved in endochondral ossifica-
tion18 and inflammatory factors,19 and its ability to
trigger MMP13 via concerted actions between CCAAT-
enhancer-binding protein beta (C/EBPβ) and
RUNX2.32 ELF3 is another direct NF-κB target with
central roles in cartilage catabolism and OA disease.
ELF3 is an epithelium-specific member of the E26

transformation-specific sequence family of transcription
factors49 with functional roles in epithelial cell differenti-
ation, apoptosis and gut development.49–51 More
recently, ELF3 has been shown to participate in a feed-
back loop with NF-κB signalling, by constitutively activat-
ing and stabilising canonical NF-κB in prostate cancer.52

In response to stress/inflammatory stimuli and depend-
ing, at least in part, on canonical NF-κB (p65/p50) sig-
nalling, ELF3 is induced in different tissues and cell

Table 1 Summary of the contribution of IKKα and IKKβ to chondrocyte catabolism and cartilage degradative processes

Contribution of IKKα and IKKβ to chondrocyte catabolism and cartilage degradation References

Controls MMP, PGE2, COL10 and NO expression induced by RAGE 26–28

Participates in the TLR-driven MMP expression and NO production 29, 30

Regulates the expression of mediators of inflammation: ELF3, NOS2, IL-1, COX2 5, 15, 16, 25, 31

Links inflammation and hypertrophic-like conversion via HIF-2α, RUNX2, C/EBPβ 18, 19, 32

Perpetuates cartilage damage modulating signals driven by ECM products 33–38

Triggers inappropriate differentiation via IL-8 and GROα modulation 39–41

Decreases SOX9 expression and activity leading to abnormal matrix production and phenotype 42 43

Controls MAPK signalling, ECM remodelling, apoptosis and hypertrophy via GADD45β 44–46

Controls aggrecanase activity (ADAMTS5 expression) during OA development 47

Modulates collagenase activity via IKKα-mediated control of MMP10 and TIMP3* 42, 48

Hypertrophic-like conversion via IKKα control of RUNX2, COL10 and VEGF-A expression* 42, 48

*Indicates contribution of IKKα (via kinase-independent actions).
C/EBPβ, CCAAT-enhancer-binding protein beta; ECM, extracellular matrix; ELF3, E74-like factor 3; GROα, chemokine (C-X-C motif) ligand 1;
HIF-2α, endothelial PAS domain protein 1 (hypoxia inducible factor 2 alpha); IKKα, IκB kinase alpha; IL-1, interleukin 1; MAPK,
mitogen-activated protein kinase; MMP, metalloproteinases; NOS2, nitric oxide synthase 2, inducible; OA, Osteoarthritis; RAGE, advanced
glycosylation end product-specific receptor; SOX9, SRY (sex determining region Y)-box 9; TIMP3, tissue inhibitor of MMP 3; TLR, toll-like
receptor; VEGF-A, vascular endothelial growth factor A.

Figure 1 Contribution of IKKα and IKKβ to chondrocyte pathophysiology. IKKβ and IKKα, the activating kinases of the canonical

and non-canonical NF-κB pathways, respectively, contribute to maintain normal chondrocyte homeostasis and are major players

in cartilage pathology. The IKKβ-controled canonical NF-κB signaling orchestrates most stress/inflammatory responses and

modulates, among others, hypertrophy or matrix remodeling, either directly or via downstream mediators including HIF2α or

ELF3. The non-canonical NFκB signaling, controlled by IKKα, mediates adaptive immunity and participates in cell survival and

differentiation processess in different cell types. In chondrocytes, IKKα mediates chondrocyte hypertrophic differentiation and

MMP13-driven collagenase activity in a kinase-independent manner in vitro. These processes have implications in osteoarthritis

disease, where abnormal chondrocyte phenotype, enhanced collagenase activity, and the imbalance between anabolism and

catabolism, lead to irreversible extracellular matrix degradation and cartilage destruction.
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types, where it mediates inflammation by controlling the
expression of nitric oxide synthase 2 (NOS2) or COX2,
among other targets.31 53 In chondrocytes, ELF3 expres-
sion is increased in OA cartilage and induced in vitro by
IL-1β, thereby contributing to the IL-1β-mediated repres-
sion of the collagen, type II, alpha 1 (COL2A1) pro-
moter16 and the activation of MMP13 transcription.15

NF-κB-INDEPENDENT ACTIONS OF IKKα IN ARTICULAR
CHONDROCYTES
During OA, chondrocytes undergo phenotypic modula-
tion, and display increased expression and activities of
matrix-degrading enzymes, and abnormal production of
matrix structural proteins, including type X collagen.
Importantly, factors that drive chondrocyte hypertrophy,
including Notch signalling, indian hedgehog (IHH),
RUNX2 and HIF-2α, have all been implicated in OA
disease.12 18 19 32 54–58 The knockdown (KD) of either
IKKα or IKKβ in three-dimensional cultures of human
articular OA chondrocytes revealed essential and differ-
ential roles for IKKα and IKKβ on ECM remodelling
and terminal differentiation.42 While the contribution of
IKKβ predominantly involved downregulation of SRY
(sex determining region Y)-box 9 (SOX9) expression42

and activity,43 surprisingly, IKKα KD led to a more pro-
nounced alteration of the hypertrophic-like conversion
of articular chondrocytes. The KD of IKKα (IKKα KD)
dramatically stabilised the ECM, enhanced cell viability
and strongly suppressed chondrocyte differentiation
towards a hypertrophic-like state. Importantly, while
IKKα loss did not modify MMP-13 protein levels, it did
inhibit collagenase activity, as revealed by the markedly
suppressed accumulation of type II collagen fragments
containing the 3/4C neo-epitope (COL2–3/4C).42

Importantly, the functional effects of IKKα on ECM
remodelling, and subsequent aspects of chondrocyte dif-
ferentiation towards a hypertrophic-like state, are evolu-
tionarily conserved between human OA chondrocytes
and immature murine articular chondrocytes, indicating
that these properties of IKKα are intrinsic to chondro-
cytes and independent of other acquired phenotypes
specifically linked to OA-affected cartilage.48 IKKα does
not regulate MMP-13 gene expression, but positively
modulates ECM remodelling by directly upregulating
the messenger RNA (mRNA) encoding the procollagen-
ase activator MMP-10 and by post-transcriptionally sup-
pressing TIMP (tissue inhibitor of MMP) 3 protein
levels. Together, these processes maintain maximal
MMP-13 activity, which is required for ECM remodelling
leading to chondrocyte differentiation. Thus, IKKα dir-
ectly modulates total collagenase and MMP-13 activities
both in human OA and in differentiating primary
murine chondrocytes.
Previous evidence revealed that IKKα is essential for

keratinocyte differentiation in murine embryonic devel-
opment,59 60 but independent of NF-κB activation and its
kinase activity.61 The abnormal skeletal development of

IKKα knockout (KO) mice was due to failed epidermal
differentiation, which disrupted normal epidermal–
mesodermal interactions.62 Subsequent molecular ana-
lysis uncovered the role of IKKα as a critical regulator of
Smad4-independent TGFβ-Smad2/3 signalling that dir-
ectly induces c-Myc antagonists, which are required for
terminal epidermal cell differentiation.63 Interestingly,
we also found that kinase-independent functions of IKKα
are required for primary chondrocyte differentiation
towards hypertrophy.48 Thus, rescuing IKKα expression
in both IKKα KD human OA chondrocytes and IKKα KO
murine chondrocytes using viral transduction of murine
wild type IKKα or a recombinant IKKα kinase-dead
mutant, IKKα(K44M), fully restored collagenase activity
and the ability of articular chondrocytes to differentiate
towards hypertrophy.48 Detailed analyses revealed that
the enforced expression of a kinase-dead IKKα mutant
(even at physiological protein levels) completely rescued
the expression of markers of hypertrophy, including
Runx2 and Col10a1, to wild-type levels. Importantly, the
kinase-dead mutant also reversed the accumulation of
TIMP-3 in IKKα KD human OA chondrocytes and the
suppression of MMP10 mRNA and protein levels in IKKα
KO murine chondrocytes, both of which were associated
with the recovery of type II collagen remodelling in these
primary articular chondrocytes. Taken together, these
observations represent strong evidence that the func-
tional effects of IKKα in chondrocytes are independent
of its serine–threonine kinase activity and thus also inde-
pendent of the IKKα-dependent non-canonical NF-κB
signalling pathway.48 Interestingly, TGFβ-Smad2/3 signal-
ling has also been reported to positively regulate MMP-10
transcription in breast cancer epithelial cells, but a role
for IKKα in this context was not determined.64 Future
work will, in part, determine if IKKα, in a manner
independent of its kinase activity, operates via
TGFβ-dependent Smad2/3 signalling to activate MMP-10
transcription and simultaneously suppresses TIMP-3
levels in differentiating chondrocytes.

CONCLUSION
A better understanding of the mechanisms involved in
the initiation and progression of OA disease stands
essential for the development of effective, specific and
successful treatment options for the disease, as well for
the identification of predictive biomarkers that allow us
to identify early stages of disease or individuals at high
risk of developing OA. The IKKβ-driven canonical
NF-κB signalling pathway coordinates mechanical,
inflammatory and oxidative stress-activated events
leading normal chondrocytes to become activated and
hypertrophic-like. In vitro experiments with primary
chondrocytes indicate that IKKα also functions as a posi-
tive mediator of this process independent of its kinase
activity. Thus, controlling the mechanisms of action of
IKKα or IKKβ holds potential for the development of
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therapeutic strategies to attenuate the onset and/or pro-
gression of OA disease pathology.
Novel strategies are being developed by selective inhib-

ition of key molecules in the NF-κB signalling, in par-
ticular the canonical activation of RelA/p65 (by using
small interfering RNA targeted to the RelA/p65 mRNA)
or p50 (via annexin A4 modulatory effects).14 Indeed,
non-specific therapeutic approaches that affect the
NF-κB pathway are available, such as non-steroidal anti-
inflammatory drugs, glucocorticoids, glucosamine, thal-
idomide and nutriceuticals, such as curcumin and
sirtuin,65 as well as, potentially, anticytokine therapies
such as dual acting anti-IL-1β/α, IL-1 receptor antago-
nists and anti-TNF-α. Novel strategies are being devel-
oped by selective inhibition of key molecules in the
canonical NF-κB pathway. One in vitro study using
human primary chondrocytes showed that NAPA
(2-(N-acetyl)-L-phenylalanylamido-2-deoxy-β-D-glucose), a
derivative of glucosamine, inhibited IKKα kinase activity
and its nuclear translocation.66 However, it remains to
be demonstrated that NAPA does not also inhibit the
nuclear translocation of specific transcription factors
required for chondrocyte differentiation or other factors
involved in collagen synthesis or remodelling.
Importantly, there is no in vivo study linking NF-κB and
IKKs to OA. Therefore, we are currently working to val-
idate our in vitro observations in inductive OA disease
models in mice to elucidate the mechanisms of action
by which IKKβ and IKKα differentially drive pathways
that impact on chondrocyte homeostasis to contribute to
OA disease onset and/or progression.
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