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Network meta-analysis is a general approach to integrate the results of multiple studies

in which multiple treatments are compared, often in a pairwise manner. In this tutorial,

we illustrate the procedures for conducting a network meta-analysis for binary outcomes

data in the Bayesian framework using example data. Our goal is to describe the workflow

of such an analysis and to explain how to generate informative results such as ranking

plots and treatment risk posterior distribution plots. The R code used to conduct a

network meta-analysis in the Bayesian setting is provided at GitHub.
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1. INTRODUCTION

Meta-analysis is a quantitative method commonly used to combine the results of multiple studies in
the medical and veterinary sciences. There are several common types of meta-analysis. A pairwise
meta-analysis compares two treatments across multiple studies, whereas a network meta-analysis
involves the simultaneous synthesis of multiple studies to create pairwise comparisons of more
than two treatments. A third type of meta-analysis is multivariate meta-analysis, which is far less
common than the other two types (1, 2). Regardless of the type, meta-analyses can be conducted
using study-level summary data, which are usually reported in the literature. In the human health
sciences, it is also possible to perform meta-analyses using data from individual patients, but
meta-analysis using individual-level data is very rare in veterinary science (3).

In this tutorial, we focus on network meta-analysis, which is becoming increasingly common in
both human health and the veterinary sciences (4–10). Although frequently used as a synonym
for network meta-analysis, a mixed treatment comparisons meta-analysis is a type of network
meta-analysis that can be described as a “A statistical approach used to analyze a network of evidence
with more than two interventions which are being compared indirectly, and at least one pair of
interventions compared both directly and indirectly” (1). Direct comparisons of interventions are
obtained from trials or observational studies that include both interventions and compare them
directly. Indirect comparisons of interventions, on the other hand, are made based on multiple
trials that each included one, but not both, of the interventions of interest and therefore did not
compare the interventions directly as part of the original study. In general, network meta-analysis
offers the advantage of enabling the combined assessment of more than two treatments. A network
meta-analysis that includes the mixed treatment comparisons “component” has the additional
feature of enabling a formal statistical estimation of indirect treatment comparisons that might
not be available in the literature (4, 7). Most network meta-analyses include a mixed treatment
comparisons component, so we use the term network meta-analysis to refer to mixed treatment
comparisons meta-analyses throughout this manuscript. There are some R (11) packages available
for conducting Bayesian network meta-analysis such as gemtc (12) and BUGSnet (13). The output
given by gemtc is limited. For example, gemtc does not have the option to report the summary effect
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as either the relative risk or absolute risk. Further, the output
is not available in a table format. While BUGSnet is limited
to analyzing arm-level data which could be a limitation for
veterinary data which is often reported at the contrast level.

1.1. Rationale
Currently, only a few systematic reviews in veterinary science
have employed network meta-analysis. However, if the trend in
the human health sciences is indicative of what will occur in
veterinary science, we can expect to see more network meta-
analyses of veterinary studies in the future. For example, in 2010,
a PubMed search with the terms “network meta-analysis” OR
“mixed treatment comparison” yielded 10 citations, whereas by
2018, the same search returned 618 citations. The rise in the
use of network meta-analysis is a function of the value that
such an analysis provides to the decision-making community.
Instead of limiting comparisons to those that are made across
just two interventions and published in the literature, as is the
case for pairwise meta-analysis, network meta-analysis allows
the simultaneous comparison of multiple treatments, including
comparisons that are not directly available in the literature.
For many clinical decisions in veterinary medicine, there are
multiple interventions that could be used to prevent or treat
a specific disease or condition. Therefore, decision-makers are
interested in the comparative efficacy of all the options rather
than just pairwise comparisons. To illustrate the limitations of
pairwise meta-analysis, we can use the choice of which antibiotic
to use to treat bovine respiratory disease as an example. The
vast majority of publicly available trials involving antibiotics for
bovine respiratory disease were conducted in order to register
and license a particular product. In those types of trials, the
antibiotic of interest is typically compared with a placebo to
demonstrate that the antibiotic has a significant beneficial effect.
Veterinarians are actually interested in the comparative efficacy
of all the available antibiotics, but for a variety of reasons
(e.g., economic, marketing, and regulatory), few head-to-head
comparisons of antibiotics are available. A networkmeta-analysis
can fill that information gap for veterinarians by providing head-
to-head estimates of the comparative efficacy of antibiotics, even
though those comparisons are not available in the literature.

1.2. Objectives
Our objective is to provide a tutorial illustrating how to conduct
a network meta-analysis of study-level results from multiple
sources. Network meta-analysis can be conducted using a
frequentist approach or a Bayesian approach. We focus on the
Bayesian approach for three reasons:

• First, Bayesian approaches to network meta-analysis are
currently more common than frequentist approaches (14–16).

• Second, the learning curve for the Bayesian approach is steeper
than that for the frequentist approach. There are several
standard packages that can be used to conduct a frequentist
analysis, and the examples provided with the packages are
usually sufficient to enable the analysis to be conducted (17,
18). Therefore a tutorial for the Bayesian approach fills a
larger gap.

• Third, the Bayesian approach allows for many outputs that
enhance understanding of the data. For example, the point
estimate, as well as the posterior distribution of the absolute
risk of each treatment can be obtained from the results
of the Bayesian approach. Therefore, a tutorial focused
on the Bayesian approach to network meta-analysis has
greater utility.

1.3. Target Audience
We describe the step-wise workflow of a network meta-analysis,
and we provide R, JAGS (19) and BUGS (20) code for end-users
interested in troubleshooting or optimizing their own analyses
(see Appendix for link). It is not our intention to teach the
statistical foundations of network meta-analysis. We believe that
this tutorial will fill a gap between papers that explain the
underlying statistical methodology and the “black box” tutorials
that typically come with statistical packages. Our tutorial is
intended for readers interested in understanding the software-
coding and data-management processes that underlie a network
meta-analysis. It is our hope that by using our tutorial, a reader
would be able to find errors in his or her own network meta-
analysis or modify existing code to produce a new output. We
assume that the reader is familiar with pairwise meta-analysis
[see the companion paper in the frontiers series (21) and the
paper about synthesizing data from intervention studies using
meta-analysis (22) for more details].

2. ORGANIZATION

The tutorial is organized in three parts. First, we provide a basic
introduction to Bayesian networkmeta-analysis and the concepts
in the underlying model. Second, we discuss how to conduct
the analysis, with a focus on the software processes involved.
Third (in the Appendix), we provide actual code that can be
used to conduct a Bayesian networkmeta-analysis. The Appendix
contains detailed instructions on how to run the R code that
will perform the analysis and produce the desired outputs. The
code includes R and jags scripts for executing a network meta-
analysis in an R project, which contains several scripts that the
reader can run to better understand the processes associated with
conducting the analysis and obtaining the output. Not all readers
will want to delve into the mechanisms of the Appendix code.
For readers who want to conduct a network meta-analysis but
are not interested in the mechanics of coding the analysis, we
suggest that they read the first two parts of the tutorial and then
use an R package that includes functions for running a network
meta-analysis, such as gemtc.

3. THE BASICS OF NETWORK
META-ANALYSIS

3.1. Arm-Level Data and Contrast-Level
Data
The first part of a network meta-analysis is data extraction from
the primary sources, preferably based on a systematic review
conducted using an a priori protocol. The data extracted from

Frontiers in Veterinary Science | www.frontiersin.org 2 May 2020 | Volume 7 | Article 271

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Hu et al. MTC Tutorial

the primary sources are study-level summary data (also called
aggregated data) in one of two forms: arm-level data, which
report the effect measures (i.e., absolute odds or absolute risk)
for each arm, or contrast-level data, which show the contrast
of effects, or the effect size (23), between treatment arms (i.e.,
the odds ratio, relative risk, or log odds ratio). Either type of
summary data can be used in a network meta-analysis using
either the Bayesian or the frequentist approach (7).

It is essential, however, that the data extracted for a network
meta-analysis meet the transitivity assumption, that is, that
each enrolled subject in a given study would be eligible for
enrollment in the other studies. For example, in a previous
network meta-analysis of antibiotic treatments for bovine
respiratory disease, data from studies that included antibiotic
metaphylaxis were excluded, because animals that received prior
antibiotic treatment would have limited eligibility for subsequent
antibiotic treatments and would therefore violate the transitivity
assumption (5, 6). Animals that received an antibiotic as a
metaphylactic treatment would be unlikely to receive the same
antibiotic as the first treatment of choice once bovine respiratory
disease was diagnosed. Moreover, the effect of an antibiotic might
be different if the antibiotic was previously used formetaphylactic
treatment in the same animal, so the results from studies with
and without metaphylaxis would not be the same. By limiting the
network of eligible studies for the meta-analysis to those without
metaphylaxis, the transitivity assumption would be more likely
to hold.

3.2. The Comparative Effects Model
A key aspect of network meta-analysis is the comparative effects
model. The comparative effects model forms the basis for the
estimation of the relative treatment effects, which make up the
main output of the network meta-analysis. A commonly used
approach to network meta-analysis is to directly describe the
distributions of the log odds ratio as the measures of the relative
treatment effects and then to transform the log odds ratios into
more interpretable metrics such as odds ratios or risk ratios. The
goal of the comparative effects model is to provide a mechanism
to estimate the comparative treatment effects. A critical aspect of
the comparative effects model and its relation to network meta-
analysis is the consistency assumption. The comparative effects
model provides estimates of basic parameters in the form of log
odds ratios based on comparisons between each treatment of
interest and a baseline treatment. The consistency assumption
allows pairwise comparisons between the treatments of interest
to be estimated as functions of the basic parameters estimated
in the comparative effects model. This consistency assumption is
written as:

dk1 ,k2 = dbk2 − dbk1 ,

where b is the baseline treatment, k1 and k2 are treatments other
than the baseline, and dbk2 is the true effect size (log odds ratio
in this case) of treatment k2 compared with the baseline b. In
lay terms, using the example of bovine respiratory disease, the
consistency assumption says that we can compare the effect of
oxytetracycline (k2) with that of tulathrymycin (k1) if we have

comparisons of the effects of oxytetracycline (k2) and a placebo
(b) and of tulathrymycin (k1) and a placebo (b).

3.2.1. The Fixed Effects Model and the Random

Effects Model

The first factor to consider in the comparative effects model
is whether the intervention effects are fixed effects or random
effects. Suppose there are N studies in a network, which is
composed of K treatments. Let b denote the baseline treatment
of the whole network, and let bi denote the trial-specific baseline
treatment in trial i. It might be the case that bi 6= b. In other
words, the baseline treatment of the model is a placebo, because
most of the studies include a placebo group, but a few studies
lack a placebo arm and therefore use a different treatment as
the baseline comparator. Let yibik be the trial-specific log odds
ratio of treatment k compared with bi in trial i, and let Vibik be
its within-trial variance. Assume a normal distribution for yibik,
such that

yibik ∼ N(θibik,Vibik).

The difference between a fixed effects model and a random effects
model lies in the assumptions about the nature of the between-
trial variability (24). The choice of the fixed effects or random
effects model depends on the interpretation of the log odds ratio
(θibik) and the assumptions behind that interpretation. A fixed
effects model assumes that there is one true effect size underlying
the trials for each comparison. It follows that all of the differences
in the observed effect sizes are due to random variation (sampling
error) (25), which is akin to assuming that if all the studies were
of infinite size, each would result in the same effect size. In that
scenario, under the consistency assumption, the model would be:

θi,bik = dbik =

{

dbk, for bi = b,
dbk − dbbi , for bi 6= b,

.

In this model, dbk (k ∈ {1, 2, . . . ,K}) are called basic parameters,
whereas dbik (k ∈ {1, 2, . . . ,K}, bi 6= b) are called functional
parameters, because they are a function of the basic parameters
(e.g., dbik = dbk − dbbi ). For example, consider a trial (i = 1) that
compared treatment A with treatment B. We might designate
treatment A as the baseline treatment (b) and treatment B as k.
The model assumes that the log odds ratio observed in study i =
1 is dbk. Any difference between the observed log odds ratio and
dbk is assumed to be due to sampling error. In another trial (i =
2) that compared treatment B to treatment C, we might designate
treatment C as the baseline treatment (bi). When modeling the
data, we would retain treatment B as k. The model then assumes
that the observed log odds ratio in study i = 2 (i.e., treatment
C compared with treatment B) is given by dbk - dbki . Again,
any difference between the observed log odds ratio and dbki is
assumed to be due to sampling error in a fixed effects model.

A random effects model, on the other hand, assumes that
the true effect size can differ from trial to trial, because the
effect sizes in each trial are derived from a distribution of effect
sizes, which is akin to saying that even if the studies were all
of infinite size, there would still be different estimates of the
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effect size due to the distribution of effect sizes in addition to
sampling error. Therefore, in a random effects model, there is an
additional source of variation that needs to be accounted for, that
is, the between-trial variation. The random effectsmodel has been
recommended for cases in which there is heterogeneity among
the results of multiple trials (26). The common distribution of
the between-trial variation is usually assumed to be a normal
distribution (7), so that

θi,bik ∼







N
(

dbk, σ
2
bik

)

, for bi = b,

N
(

dbk − dbbi , σ
2
bik

)

, for bi 6= b,
,

where σ 2
bik

is the between-trial variance. In a pairwise meta-

analysis, because there is only one effect size of interest, there
is inherently only one between-trial variance. By contrast, in a
network meta-analysis, there are at least two, and often many
more, effect sizes, because we have (k ∈ {1, 2, . . . ,K}). It is
often assumed, however, that there is still only a single between-
trial variance for all the treatments, which is referred to as the
homogeneous variance assumption (i.e., σ 2

bik
= σ 2). In lay

terms, this means that if we employ a random effects model
that has three treatments and therefore two effect sizes, we
assume the same σ 2

bik
for dbk1 and dbk2 . Although models that

allow heterogeneous between-trial variances have been proposed
(4, 27), we use a random effects model with an assumption of
homogeneous variance as our example in this tutorial, because
such a model is consistent with our biological understanding of
the types of interventions used in veterinary science.

3.3. Handling Multi-Arm Trials
In a pairwise meta-analysis, only one effect size is obtained from
each study, which means that each effect size is independent
of the others. However, in a network meta-analysis, there is
the potential, and often the desire, to include multi-arm trials,
which creates non-independent observations. For example, a
single trial might compare treatments A, B, and C, resulting
in three comparisons (A to B, B to C, and B to C). If A is
the baseline treatment, then the comparisons between A and
B and between A and C are basic parameters. When data
from such a trial are included in a network meta-analysis, the
assumption of independence is not valid and needs to be adjusted.
A term to adjust for the co-variance of data from multi-arm
trials must be incorporated into the comparative effects model
to correctly reflect the data-generating mechanism. For a single
multi-arm trial with ki treatments, there are (ki−1) comparisons
(yi,b2, yi,b3, . . . , yi,bki )

T . The joint distribution of the comparisons
is given by











yi,b2
yi,b3
...

yi,bki











∼ Nki−1





















θi,b2
θi,b3
...

θi,bki











,











Vi,b2 Vi,b · · · Vi,b

Vi,b Vi,b3 · · · Vi,b

...
...

. . .
...

Vi,b Vi,b · · · Vi,bki





















,

where Vi,b is the observed variance in the baseline arm in
trial i. The derivation of the value of the co-variance can be
found elsewhere (7). For a random effects model, assuming a

homogeneous between-trial variance for all trial-specific effects,
the joint distribution of (θi,b2, θi,b3, . . . , θi,bki )

T is







θi,b2
...

θi,bki






∼ Nki−1













db2
...

dbki






,







σ 2 σ 2/2 . . . σ 2/2
...

...
. . .

...
σ 2/2 σ 2/2 · · · σ 2












.

The reason that the off-diagonal values in the variance–
covariance matrix are equal to half the diagonal values (28) (i.e.,
the correlation is 0.5) is that we want to keep the assumption of
homogeneous between-trial variance valid. For example,

Var(θi,23) = Var(θi,b3 − θi,b2) = Var(θi,b3)+ Var(θi,b2)− 2Cov(θi,b3, θi,b2)

= σ 2 + σ 2 − 2 ∗ σ 2/2 = σ 2.

3.4. Choice of Priors
So far, we have described the comparative effects model, which
describes how the data were generated. The next step is to
estimate the parameters of the distributions of interest, that
is, the basic parameters for each treatment and the between-
trial variance. For a frequentist approach, model parameters
are regarded as unknown fixed population characteristics (14)
and estimation could be performed using a likelihood approach.
The frequentist approach does not use prior information to
estimate the parameters. By contrast, the Bayesian approach to
estimation calculates the posterior distribution of the parameters
by using the data (likelihood) to update prior information. In the
Bayesian approach, it is necessary obtain a prior distribution of
the parameters, so that the prior distribution can be updated to
give the posterior distribution.

Prior distributions must be selected for the basic parameters
dbk (k ∈ {1, 2, . . . ,K}) and, if a random effects model is
employed, also the between-trial variance σ 2. There is no need
to select a prior for the correlation of multi-arm trials, because
that correlation is constrained to 0.5 by the homogeneous
variance assumption. Vague or flat priors such as N(0, 10, 000)
are recommended for the basic parameters (7). However, The
induced prior on odds ratio (OR), has a big probability on an
unrealistic region of odds ratio such that Pr(OR > 1,000) ≈

0.47 and Pr(OR > 1029) ≈ 0.25. However, it provides vague
information on the realistic region of the odds ratio and as a
result, the posterior distribution depends little on such prior
distribution (29). There is no strict rule for selecting a prior for
σ 2. The general practice is to set weakly informative priors, such
as σ ∼ Unif(0, 2) or σ ∼ Unif(0, 5), or non-informative priors
such as 1/σ 2 ∼ Gamma(0.001, 0.001). In cases where the data
are insufficient, a non-informative prior for σ 2 would be likely to
make the posterior distribution include extremely large or small
values (30, 31). Lambert et al. (31) conducted a simulation study
using 13 vague priors and found that the use of different vague
prior distributions led to markedly different results, particularly
in small studies. On the basis of those results, Lambert et al.
(31) suggested that in any Bayesian analysis, researchers should
assess the sensitivity of the results to the choice of the prior
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FIGURE 1 | An example of the formatting of the BUGS code for the comparative model. This code was modified from code originally published elsewhere (7).

distribution for σ 2, because “vague” is not the same in all cases.
For example, if the prior chosen for the between-study variance
is Unif(0,5), a sensitivity analysis for that prior could look at
how the posterior estimates of the treatment effects (e.g., the log
odds ratios or the absolute risks) in the network meta-analysis
would change if the prior is changed to Unif(0,2), Unif(0,10),
or some other distribution. If the posterior estimates do not
change substantially, the results can be considered insensitive to
the choice of prior parameter values. Informative priors can be
considered if there are reasonable estimates of σ 2 available from
another, larger network meta-analysis that has the same context
and similar treatments as the analysis under construction (7, 32).
Having considered the choice of a random effects or fixed effects
model, the handling of multi-arm trials, and the choice of priors,
the specification of the comparative effects model is complete.
Figure 1 illustrates an example of the coding of a comparative
effects model in the general_model.bug code.

3.5. The Baseline Effects Model–the Log
Odds of the Event
After defining the comparative effects model and the priors for
the parameters to be estimated, the next step in a Bayesian
network meta-analysis is to model the baseline effect. Although it

is possible to conduct a Bayesian network meta-analysis without
a baseline effects model, the baseline effects model allows for
some unique and informative outputs from the analysis. If we
are only interested in the estimates of the log odds ratios and
the odds ratios, then there is no need to make a baseline effects
model. The baseline effects model refers to the distribution of the
event for the baseline treatment, that is, the log odds of the event
for the baseline treatment. For example, if in one study 40 out
of 100 animals in the baseline group experienced the event, the
trial-specific log odds of the event would be log(( 40

100 )/(
60
100 )). A

different trial would have different log odds of the event; however,
the log odds of the event are assumed to arise from the same
distribution in all trials. The reason for modeling the distribution
of the event risk in the baseline group is to enable absolute effects
(i.e., absolute risk) and comparative effects to be estimated on a
risk scale rather than on an odds scale. For example, if we know
the log odds ratio for all treatments compared with the baseline
treatment, then, given the absolute risk for any one treatment, we
can know the absolute risk for every treatment. For example, if
we have a log odds ratio of 0.9809 for the comparison between
treatment A and the baseline treatment, and if the baseline event
risk is 0.2 (e.g., 20 out of 100 exposed subjects experienced the
event), then we can determine that the absolute risk for treatment
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A is 0.4, using the formula

p =
OR× pb

1− pb +OR× pb
,

where pb is the absolute risk for the baseline treatment, and p
is the absolute risk for any non-baseline treatment. The absolute
effect of the baseline treatment is often selected for baseline effect
modeling, because the baseline treatment is usually the most
common treatment in the network meta-analysis, which means
that it has the most data available for estimation of the posterior
distribution of the log odds of the event. Suppose there are Nb

studies that have the baseline arm. Let θi,b (i ∈ {1, . . . ,Nb}) be the
trial-specific baseline effect (log odds of the event) in a trial i (i.e.,
the log odds). We can use the following formulation to model the
baseline effect:

θi,b ∼ N(m, σ 2
m).

This means that the trial-specific baseline effects come from a
normal distribution with mean m and variance σ 2

m. As with
the comparative effects model, we need to select priors for the
baseline effects model. The selection of prior distributions for
m and σ 2

m follows the same considerations as the selection of
priors for the effect parameters, that is, the priors should be
weakly informative or non-informative [e.g., m ∼ N(0, 10000),
and σm ∼ Unif(0, 5)]. From a coding perspective, there are two
ways to incorporate a baseline effects model into the comparative
effects model. The first approach is to run separate models,
beginning with the baseline effects model. The baseline model
yields the posterior distribution summaries of m and σm (or
σ 2
m). The posterior means (denoted by m̂, σ̂ 2

m) are then inserted
into the comparative effects model and the baseline effect can
be generated from N(m̂, σ̂ 2

m) in the comparative effects model.
Other quantities of interest (e.g., the absolute risk for the other
treatments) can then be estimated. The first approach relies on
the assumption that the posterior distribution of the baseline
effect is approximately normal. Dias et al. (33) suggests checking
that assumption (e.g., with Q-Q plot or Kolmogorov–Smirnov
test), although the assumption is usually found to hold. The
second approach to incorporate the baseline effects model into
the comparative effects model is simultaneous modeling of
the baseline effect and the comparative effects. That approach
can have a substantial impact on the relative effect estimates,
however. For more details on the simultaneous modeling of
baseline and comparative effects, refer to Dias et al. (33). Figure 2
shows the incorporation of a baseline effects model, which can be
used to obtainm and σm (or σ 2

m).

4. THE WORKFLOW FOR CONDUCTING A
BAYESIAN NETWORK META-ANALYSIS

4.1. Data Input
The data used in network meta-analyses are typically arranged in
one of three formats: one study per row, one comparison per row
(contrast-level data), or one arm per row (arm-level data only).
In our network meta-analysis functions, we use the one-study-
per-row format. The example data that we use in the following

FIGURE 2 | An example of the formatting of the BUGS code for the baseline

effects model. This code was modified from code originally published

elsewhere (7).

analysis are shown in arm-level format in Table 1. In the example
data, there are five treatments (A, B, C, D, and E). The baseline
treatment is A. It is essential that the baseline treatment is
indexed as one (1) and that the data are organized such that the
baseline treatment arms are always the “Arm1” treatment. If there
are trials with more than two arms, then corresponding columns
(e.g., “Number of Events in Arm.1,” “Arm.3,” “Arm3”) can simply
be added to the dataset. Table 2 shows the same data arranged in
contrast-level format.

4.2. Running the Analysis
After we select studies that meet the transitivity assumption,
extract the data and arrange them in the necessary format,
decide upon a fixed or random effects model, set the priors for
the basic parameters, determine the boundaries of the between-
trial variance based on the data, and obtain m̂ and σ̂m (or σ̂ 2

m)
from the baseline effects model, the next step is to run the
network meta-analysis.

4.3. A Description of the Workflow of a
Network Meta-Analysis
The workflow of a Bayesian network meta-analysis can be
described as follows:

1. Use the comparative effects model and a Markov chain Monte
Carlo (MCMC) process to obtain the posterior distributions
of the log odds ratios for the basic parameters. From those
basic parameters, obtain the posterior distributions of the
functional parameters. After running the model the next sub-
steps are to:

a. Assess the convergence by evaluating the trace plots and
convergence criteria such as the potential scale reduction
factor proposed by Gelman and Rubin (34).

Frontiers in Veterinary Science | www.frontiersin.org 6 May 2020 | Volume 7 | Article 271

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Hu et al. MTC Tutorial

TABLE 1 | Example data arranged in arm-level format.

Study Number of

event in

arm.1

Number of

event in

arm.2

Number of

event in

arm.3

Total

number in

arm.1

Total

number in

arm.2

Total

number

in arm.3

Total Arm.1 Arm.2 Arm.3 Number

of arms

Arm1 Arm2 Arm3

1 25 17 20 41 84 100 225 A B C 3 1 2 3

2 36 32 41 84 125 A B 2 1 2

3 19 7 25 25 50 A B 2 1 2

4 20 5 25 50 75 A B 2 1 2

5 41 47 50 100 150 A B 2 1 2

6 122 69 160 314 474 A E 2 1 5

7 236 53 402 399 801 A E 2 1 5

8 23 15 27 52 79 A E 2 1 5

9 175 166 281 274 555 B E 2 2 5

10 57 20 119 118 237 B E 2 2 5

11 19 12 100 100 200 B E 2 2 5

12 19 7 100 100 200 B E 2 2 5

13 16 21 258 254 512 B E 2 2 5

14 42 15 50 100 150 A B 2 1 2

15 64 34 154 154 308 A C 2 1 3

16 34 15 53 106 159 A C 2 1 3

17 70 42 130 129 259 A C 2 1 3

18 92 31 121 121 242 A C 2 1 3

19 35 20 45 90 135 A C 2 1 3

20 41 62 59 117 176 A C 2 1 3

21 37 15 43 85 128 A C 2 1 3

22 16 21 18 35 53 A C 2 1 3

23 70 35 122 123 245 A B 2 1 2

24 204 71 300 300 600 A D 2 1 4

25 111 66 523 526 1049 C E 2 3 5

26 60 50 305 297 602 B C 2 2 3

The last two columns are the treatment indexes used to distinguish different treatments in the code.

b. Check the goodness of the model’s fit using the (residual)
deviance. It is the posterior mean of the difference in the
negative 2× log likelihood between the current model and
the saturated model (35). An empirical rule to check if
the model fits well (7) is that the value of the residual
deviance should be close to the number of independent
data points (36).

c. Obtain the summary information [mean, standard
deviation (SD)] of the distributions of basic parameters
and functional parameters from the comparative effects
model and also the summary information (mean, SD) of
the distributions of basic parameters from the pairwise
comparative effects model.

2. Use pairwise comparative effects models and the MCMC
process to obtain the posterior distribution of the log odds
ratio for the treatments that have direct comparisons that can
be used later to check the consistency assumption. This step
is essentially a series of Bayesian pairwise meta-analyses based
on direct estimates. Hence, no indirect evidence is used in the
estimation procedure. After running the model again the next
sub-steps are to:

a. Ensure convergence by evaluating the trace plots and
convergence criteria.

b. Obtain the summary information of the distributions
of basic parameters and functional parameters from the
pairwise comparative effects model.

3. Using data from Step 1 and 2, assess the consistency
assumption for the treatment comparisons for which there
is direct evidence. This is done by subtracting the mean
estimated log odds ratios obtained from the posterior
distributions of the pairwise meta-analyses from the mean
estimated log odds ratios obtained from the posterior
distributions of the network meta-analysis and looking
for inconsistencies (37). The “indirect estimates” can be
obtained by

d̂indir = Var(d̂indir)

(

d̂NMA

Var(d̂NMA)
−

d̂dir

Var(d̂dir)

)

,

1

Var(d̂indir)
=

1

Var(d̂NMA)
−

1

Var(d̂dir)
,
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and should be consistent with the direct estimates. For
example, if the pairwise comparison of treatment A with
treatment B gives a mean difference in effect size of 1.2, then
the indirect comparison of those treatments should give a
mean difference in effect size that is positive and of similar
magnitude. The hypothesis that the difference between the
direct and indirect estimates is zero can be tested using a z-
score and corresponding p-value. Such hypothesis tests are
often very low powered, however, so it is recommended to
also visually evaluate the magnitude and direction of the
indirect effects and determine if they are consistent with the
direct effects.

If there is no evidence of inconsistency, and residual deviance is

also not a concern, then the network meta-analysis is complete.
If there is inconsistency, then it is necessary to evaluate the

included studies to determine the cause of the inconsistency. In

our experience, we once identified an issue with inconsistency
that appeared to be linked to a single study that contained results

that were not consistent with those of the other studies in the

network. In that situation, we removed the problematic study
from the network and performed the network meta-analysis

without it. More information about that example can be found
elsewhere (6).

The next step is to convert the distributional information
about the basic and functional parameters into a form that
is appropriate for presentation and interpretation. First, we
will discuss the estimates of the treatment effects (i.e., the
log odds ratios, odds ratios, and risk ratios). Then, we will
discuss how to derive information from those estimates. In

TABLE 3 | The estimated log odds ratio from all possible pairwise comparisons in

the network meta-analysis of five treatment groups.

E −0.648 −0.689 −0.475 −2.576

(−2.304_0.983) D −0.041 0.174 −1.928

(−1.394_0.017) (−1.646_1.559) C 0.214 −1.887

(−1.058_0.108) (−1.421_1.797) (−0.422_0.850) B −2.101

(−3.208_-1.969) (−3.451_-0.415) (−2.404_−1.398) (−2.653_−1.577) A

All the point estimates are the posterior mean of the log odds ratio of the upper left

treatment to the lower right treatment. For example, −2.101 is the posterior mean of

the log odds ratio of treatment B to treatment A. (−2.653_−1.577) is the 95% credible

interval of the log odds ratio of treatment B to treatment A.

TABLE 2 | Example data in contrast-level format.

Study Arm.1 Arm.2 Arm.3 Number of

arms

lor 2 lor 3 se 2 se 3 Arm1 Arm2 Arm3 V PLA lo

1 A B C 3 −1.82 −1.83 0.42 0.41 1 2 3 0.10 0.45

2 A B 2 −2.46 0.53 1 2 1.97

3 A B 2 −2.10 0.65 1 2 1.15

4 A B 2 −3.58 0.69 1 2 1.39

5 A B 2 −1.64 0.42 1 2 1.52

6 A E 2 −2.43 0.23 1 5 1.17

7 A E 2 −2.23 0.18 1 5 0.35

8 A E 2 −2.65 0.62 1 5 1.75

9 B E 2 −0.07 0.17 2 5

10 B E 2 −1.51 0.31 2 5

11 B E 2 −0.54 0.40 2 5

12 B E 2 −1.14 0.47 2 5

13 B E 2 0.31 0.34 2 5

14 A B 2 −3.39 0.48 1 2 1.66

15 A C 2 −0.92 0.25 1 3 −0.34

16 A C 2 −2.38 0.40 1 3 0.58

17 A C 2 −0.88 0.26 1 3 0.15

18 A C 2 −2.22 0.30 1 3 1.15

19 A C 2 −2.51 0.44 1 3 1.25

20 A C 2 −0.70 0.34 1 3 0.82

21 A C 2 −3.36 0.52 1 3 1.82

22 A C 2 −1.67 0.83 1 3 2.08

23 A B 2 −1.22 0.27 1 2 0.30

24 A D 2 −1.92 0.18 1 4 0.75

25 C E 2 −0.63 0.17 3 5

26 B C 2 −0.19 0.21 2 3

“lor 2” is the column of log odds ratio of “Arm 2” to “Arm 1.” “se 2” shows the corresponding within-trial standard error. The column labeled “V” contains the variance of the log odds of

“Arm 1” only if the trial has more than two arms, as discussed in the section “Multi-arm trials.” The column labeled “PLA lo” contains the log odds for the baseline treatment.
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reality, the distributions of the treatment effects are obtained
during the performance of the network meta-analysis. When
the MCMC process is conducted, each simulation yields an

TABLE 4 | The estimated odds ratio from all possible pairwise comparisons in the

network meta-analysis of five treatment groups.

E 0.743 0.535 0.650 0.080

(0.100_2.672) D 1.347 1.678 0.196

(0.248_1.017) (0.193_4.753) C 1.305 0.157

(0.347_1.114) (0.241_6.033) (0.656_2.341) B 0.127

(0.040_0.140) (0.032_0.660) (0.090_0.247) (0.070_0.207) A

All the point estimates are the posterior mean of the log odds ratio of the upper left

treatment to the lower right treatment. For example, 0.127 is the posterior mean of the

odds ratio of treatment B to treatment A.

TABLE 5 | The estimated risk ratio from all possible pairwise comparisons in the

network meta-analysis of five treatment groups with the summary of baseline risk

to be mean = 0.713, median = 0.728, 2.5% limit = 0.45, 97.5% limit = 0.899.

E 0.781 0.616 0.711 0.252

(0.208_2.309) D 1.074 1.260 0.423

(0.326_1.012) (0.263_2.543) C 1.200 0.411

(0.422_1.083) (0.310_3.059) (0.736_1.894) B 0.356

(0.102_0.496) (0.094_0.900) (0.205_0.675) (0.168_0.621) A

All the point estimates are the posterior mean of the risk ratio of the upper left treatment

to the lower right treatment. For example, 0.356 is the posterior mean of the risk ratio of

treatment B to treatment A.

TABLE 6 | Summary of the distribution of the rankings for the five treatments.

Treatment Mean SD 2.5% 50% 97.5%

A 4.99 0.09 5 5 5

C 3.25 0.74 2 3 4

D 2.86 1.21 1 3 4

B 2.60 0.75 1 3 4

E 1.29 0.54 1 1 3

odds ratio, a baseline event risk, and a risk ratio. The posterior
distributions of the parameters and the summary statistics for the
distributions are then extracted from the raw data produced by
the simulations. Thus, it is possible to report the following:

• All possible log odds ratios with 95% credible intervals as
shown in Table 3. These are estimated from the model using
the indirect and direct information.

• All possible pairwise odds ratios with 95% credible intervals
(Table 4). These are estimated by converting each log odds
ratio to an odds ratio during each simulation and then
obtaining the posterior distribution of the odds ratios. These
cannot be obtained by exponentiation of themean or the limits
of the posterior distribution of the log odds ratio.

• All possible pairwise risk ratios with 95% credible intervals
(Table 5). These estimates are obtained for each simulation by
using the basic parameters (log odds ratios) and the baseline
risk to calculate the probability of an event for each treatment
with the expit formula. For example, if for a particular
simulation the log odds ratio for treatment B compared with
treatment A is 0.9809 (odds ratio of 2.667), and the baseline
risk for treatment A is 20%, then the risk of an event for
treatment B is 40%. The treatment event risks are then used
to create risk ratio estimates (40/20%).

Apart from estimating all possible pairwise treatment effects
using direct and indirect data on different scales, it is also possible
to create other outputs that help to illustrate aspects of the data.

TABLE 7 | The probability of being the best treatment and the probability of being

the worst treatment.

Treatment Probability of being best Probability of being worst

A 0.000 0.992

B 0.033 0.000

C 0.015 0.000

D 0.201 0.008

E 0.751 0.000

FIGURE 3 | The ranking plot. The left column is the treatment name with the number of studies including that treatment. The right column is the posterior mean

ranking of the absolute risk of each treatment and 95% credible interval. Lower rankings have lower incidence of the disease.
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There are many options, but here we discuss only a few. Many
outputs are based on the creation of an indicator variable that
takes a given value at a frequency proportional to the probability
of an event. The indicators can be created during the simulation
process or post-hoc in R. The code in the Appendix provides
examples of both approaches.

• The average ranking of each treatment (Table 6). Once the
event probability has been determined for each simulation, it
is then possible to rank the event risk across all the treatments.
A numerical value ranging from 1 to the total number of
treatments is then assigned to each treatment. The researcher
can determine what is considered a good or high rank based
on the event and what value to assign the most desirable rank.

TABLE 8 | The probability that one treatment is better than another, i.e., has lower

disease incidence during the study period.

A 0.000 0.000 0.008 0.000

1.000 B 0.757 0.587 0.052

1.000 0.243 C 0.476 0.028

0.992 0.413 0.524 D 0.206

1.000 0.948 0.972 0.794 E

The upper quadrant provides the probability that the row treatment is better than the

column. For example, there is probability of zero that “A” (1st row) is better than “B” (2nd

column) and a probability of 0 that “A” is better than “E”.

Usually, a rank of 1 is assigned as the preferred result. For
example, consider one simulation where the probability of an
event for treatments A, B, C, D, and E is 10, 15, 17, 20, and 30%,
respectively. If the event is a desirable characteristic, such as a
cure, then the treatments A, B, C, D, and E would be assigned
the ranks 5, 4, 3, 2, and 1, respectively. In the next simulation,
the probability of the event for treatments A, B, C, D, and E
might be 5, 22, 17, 24, and 33%, respectively, so treatments A,
B, C, D, and E would be ranked as 5, 3, 4, 2, and 1, respectively.
In a Bayesian analysis, the posterior samples from all three
chains can be used to create a posterior distribution of the
rankings. The summary statistics of the posterior distribution
of the rankings can be reported. Often the mean or median of
the posterior distribution of the rankings and the 95% credible
intervals of the rankings are used to create a ranking plot, as
shown in Figure 3.

• The probability of being the best (or worst) treatment
(Table 7). Using the data from the rankings, it is possible
to sum the number of times each treatment received the
highest (or lowest) rank. The sum can then be reported as the
probability that the treatment has the highest (or lowest) rank,
which is colloquially interpreted as the probability of being the
best (or worst) treatment.

• All possible pairwise comparisons of the probability of being
better (Table 8). Using the ranking data, which are based
on the event risk data for each treatment, it is possible to

FIGURE 4 | The network plot. Each node represents treatment and the number is the corresponding number of studies including that treatment. An edge between

two nodes (treatments) means there were studies comparing these two treatments.
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FIGURE 5 | The posterior distribution of the event risk of each treatment.

sum the proportion of times that one treatment is ranked
higher (or has a higher event rate) than another treatment.
This can be done using either the ranking data or the event
risk data, which both give the same result. In our example
data, the probability that B, C, D, and E were better than A
was 10%, whereas the probability that B was better than C
was 50%.

4.4. Plots Commonly Used to Show the
Results of a Network Meta-Analysis
There are various types of plots that can be used to present the
results of a network meta-analysis. Examples of three of the most
common types are shown below.

• The network plot as shown in Figure 4. This plot is a visual
representation of the network of evidence. Although we did
not discuss the network plot until the end of the tutorial,
because it is not technically part of the network meta-analysis,
this plot should actually be generated before the networkmeta-
analysis is undertaken. The code provided in the Appendix
illustrates how to create the network plot using packages from
R. There are also other approaches that can be used to create

the network plot. The code in the Appendix includes some
common metrics used to describe networks, which are not
discussed further here (38).

• The posterior distribution of the event risk (Figure 5).
This plot illustrates the posterior distribution of the event
risk for each treatment using all posterior samples of
that risk.

• The ranking plot (Figure 3). The ranking plot uses the data
from the posterior distribution of the rankings to create a
forest plot-like graphic using the means and 95% credible
intervals of the rankings.

5. DISCUSSION

In this tutorial, we described the conceptual framework for a
network meta-analysis, explained the step-wise workflow for
conducting a network meta-analysis, and provided code in
the Appendix that illustrates the mechanics of conducting a
Bayesian network meta-analysis. The Bayesian inference tool
used in this tutorial is JAGS. Stan Development Team (39),
as an alternative Bayesian inference instrument, could also be
used to conduct network-meta analysis. As we mentioned in
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the introduction section, other packages for network meta-
analysis like gemtc and BUGSnet are also available. Compared
with gemtc, the outputs in our code are more flexible and are
shown in table format. Our code can also deal with arm-level
data as well as contrast-level data in comparison to BUGSnet.
Despite these advantages, there are some limitations. Our code
focuses on the binary outcome. gemtc and BUGSnet provide
functions handling other types of outcome like continuous and
count outcomes.

Network meta-analysis, as a popular method of
simultaneously comparing multiple treatments, still presents
challenges since it not only has the challenges as in a standard
pairwise meta-analysis but also increases the complexity due
to the network structure (40). Therefore, some assumptions
are made to ensure the validness of a network meta-analysis.
The transitivity assumption is that studies can be combined
only when they are clinically and methodologically similar
(41, 42). This means according to the Cochrane Handbook of
Systematic Reviews “that different sets of randomized trials
are similar, on average, in all important factors other than
the intervention comparison being made” (43). For example,
the distributions of effect modifiers should be similar across
studies (44). Practically, in our BRD example, the transitivity
assumption means that each study population would have been
eligible for any of the other studies and all study populations
were eligible for all treatments. An example of a situation
that would violate this transitivity assumption would be a
comparison of antibiotic treatment efficacy where one group
of trials assessed the response to 1st treatment and another
group of trials assessed the treatment response of cattle with a
1st treatment failure (re-pull). Obviously, the cattle in the 1st
treatment response are not eligible for the 1st treatment failure
studies. The validity of indirect and combined estimates of
relative effects would be threatened if this assumption is violated
(43). Consistency assumption is a manifestation of transitivity.
As we discussed in section 3.2, it requires that the indirect
evidence must be consistent with direct evidence. Violation of

the consistency assumption would result in inconsistency (45).
Although inconsistency model have been proposed to mitigate
the violation of this assumption in some way, one still should be
cautious when combining studies and choosing which model to
use. This tutorial focuses on the statistical aspect of conducting
a network meta-analysis while aspects such as defining the
research question, searching for studies and assessing the risk
of bias within each study (46, 47) are not in the scope of
this tutorial.

For readers that are interested in running a simple network
meta-analysis without going into any detailed explanation of the
underlying process, we believe that the instructions that come
with any one of the ever-growing number of software packages
for network meta-analysis will provide sufficient information for
a successful analysis to be conducted (12, 15–17). More details
about interpreting the results of a network meta-analysis can be
found on this paper (48).
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APPENDIX

The tutorial R project with instructions, data set, scripts,
bugs are available at https://github.com/a-oconnor/NETWORK_
MA_FRONTIERS_TUTORIAL.
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