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Abstract

In this brief review and perspective, we address the question of whether the immune

responses that bring about immune control of acute HIV infection are the same as, or dis-

tinct from, those that maintain long-term viral suppression once control of viremia has been

achieved. To this end, we describe the natural history of elite and post-treatment control,

noting the lack of data regarding what happens acutely. We review the evidence suggesting

that the two clinical phenotypes may differ in terms of the mechanisms required to achieve

and maintain control, as well as the level of inflammation that persists once a steady state is

achieved. We then describe the evidence from longitudinal studies of controllers who fail

and studies of biologic sex (male versus female), age (children versus adults), and simian

immunodeficiency virus (SIV) (pathogenic/experimental versus nonpathogenic/natural

infection). Collectively, these studies demonstrate that the battle between the inflammatory

and anti-inflammatory pathways during acute infection has long-term consequences, both

for the degree to which control is maintained and the health of the individual. Potent and

stringent control of HIV may be required acutely, but once control is established, the chronic

inflammatory response can be detrimental. Interventional approaches designed to bring

about HIV cure and/or remission should be nuanced accordingly.

Introduction

Identifying the mechanisms by which the host can naturally control HIV or simian immuno-

deficiency virus (SIV) has long been a priority for immunologists. These mechanisms might be

leveraged to develop novel interventions to prevent HIV transmission, control HIV in the

absence of therapy (a “remission”), or even fully eradicate the reservoir (a “cure”) [1]. Towards

this end, groups around the world have recruited and characterized those rare individuals who

maintain near-complete control of the virus in the absence of antiretroviral therapy (ART).

Two distinct clinical phenotypes exist: those who naturally control the virus without any treat-

ment (“elite” controllers) and those who do so but only after receiving prolonged ART (“post-

treatment controllers”).
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Most studies of elite and post-treatment controllers focused on those individuals who are

recruited during a period of long-term host-mediated control. Although often unstated, these

studies assume that those mechanisms that maintain control are the same as those that initially

brought the virus under control. This assumption is convenient but has limitations. In this

brief review and perspective, we challenge this assumption and argue that the optimal immune

response needed to achieve control differs from that needed to maintain control. Untangling

these mechanisms might be needed before we can develop effective prevention and curative

interventions.

Natural history of elite and post-treatment control

The natural history of individuals who are destined to fully control their virus in the absence

of therapy (elite control) or after interrupting therapy (post-treatment control) remains poorly

defined. This is particularly true during the immediate post-infection or post-interruption

period in which the virus likely replicates in the absence of a fully formed host response.

Because most controllers are identified long after the acute viremic phase has resolved, the

kinetics of HIV replication and the immediate host response are poorly understood.

Elite control

Depending on the definition, approximately 0.5% to 1% of untreated individuals eventually

achieve elite control [2]. Although the chronic steady-state biology of HIV control has been

well studied [3–6], little is known about the acute phase. Many, if not most, of these individuals

express the HLA-B�57:01 allele [7, 8]. HLA-B�57:01 has been reported to be under represented

in people presenting with acute infection, suggesting low levels of acute viremia and at least

partial control of the virus during this time [9]. In the prospective United States Department

of Defense HIV Natural History Study and the European-based Choices, Attitudes, and Strate-

gies for Care of Advand Dementia at the End-of-Life (CASCADE) cohorts, the level of viremia

in early infection was lower in controllers than noncontrollers, but data during the acute phase

were lacking [10, 11]. In the prospective Prediction of Muscular Risk in Observational condi-

tions (PRIMO) cohort, eight controllers were identified during early infection (median 2.2

months after infection) and were found on average to have low levels of viremia [12], but there

was substantial variability and no one was diagnosed in acute phase when peak viremia would

have occurred. Low levels of viremia during the acute and/or early phase have also been

reported in several case reports and small cohorts [13–19]. Although data from the acute phase

of peak viremia are scarce, the collective data suggest that peak viremia during the acute phase

is likely lower than that in more typical infection. Elite control is likely driven in part by a

favorable host response that is active during the earliest stages of the infection.

Given the challenges of studying acute infection in elite controllers, animal models may be

needed to advance this story. Elite control has been observed in SIV-infected macaques, partic-

ularly those carrying the MHC class I allele Mamu-B�08 or Mamu-B�17. Approximately 50%

and 25% of Mamu-B�08-positive and Mamu-B�17-positive macaques, respectively, achieve

control following infection with the highly pathogenic SIVmac239 [20, 21]. In humans

infected with HIV, the presence of protective HLA class I molecules such as HLA-B�57 and

HLA-B�27 are less predictive of control. This differential effect of protective alleles may be due

to the nature of the infection; macaques are experimentally infected with a single clone,

whereas humans are naturally infected by a huge diversity of viruses.

In the macaque model, viremia during the acute phase did not differ between those animals

with or without a protective class I allele type; monkeys with Mamu-B�08 had high-level vire-

mia before achieving control [20]. Transient but high-level viremia was also observed in other
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models of SIV control [22]. Therefore, the SIV model suggests that the host immune response

emerges quickly during acute infection but perhaps not until after a transient period of high

viremia. Whether this is true in humans remains unknown. The monkey model will likely be

needed to untangle the complex virus–host interactions that occur prior to the establishment

of elite control.

Post-treatment control

Since the first identification of the post-treatment control phenotype [23], the field has strug-

gled with how to define and study this relatively rare clinical phenotype [24]. There is even an

ongoing debate as to whether post-treatment controllers are simply elite controllers destined

to control their virus even without a period of ART [25, 26]; indeed, in the Short Pulse Anti-

Retroviral Therapy at Seroconversion (SPARTAC) cohort, the frequency of at least transient

control in the absence of therapy was not too different from the degree of transient control

among those who were treated early and then stopped [25].

Arguing for their legitimacy are the observations that the two clinical phenotypes of post-

treatment control and elite control are distinct in a number of important characteristics. The

frequency of post-treatment control among those starting and stopping ART in early infection

is higher than one might expect for natural control (approximately 5% to 20% versus 0.5% to

1%, depending on definitions) [23, 27–32]. The reservoir declines over time in some post-

treatment controllers but is remarkably stable in elite controllers [27, 33]. HIV-specific cluster

of differentiation (CD)8+ T-cell responses are generally low in post-treatment controllers but

high in elite controllers [27, 34, 35]. CD8+ T-cell activation (defined by co-expression of CD38

and HLA-DR) is lower in post-treatment controllers than elite controllers [27]. The distribu-

tion of class I HLA alleles may also be different, as described below.

As with elite controllers, there is a dearth of information regarding what happens during

the immediate post-treatment period when responsibility for virus control shifts from ART to

the host immune response. Perhaps the best data come from a recent study of a therapeutic

vaccine in which post-treatment control was relatively common in the control group [28]. In

this study of people who had started ART early, 4 of 15 (26%) subjects in the placebo arm and

2 of 14 (14%) in the vaccine arm had at least partial control for at least 16 weeks off therapy,

with 2 in the placebo arm exhibiting sustained control. Acute post-ART spikes in viremia were

initially observed in most of these controllers, with levels that were often but not universally

low (100 to 10,000 copies RNA/mL). Similar findings have been observed in a recent multi-

cohort study (the Control of HIV after Antiretroviral Medication Pause [CHAMP] cohort)

[36].

A critical question regarding post-treatment control is the degree to which ART fundamen-

tally switches the balance in favor of the host immune response. This question can be

addressed in part by comparing the pre-ART viral load with the level of post-ART control. The

pre-ART levels of viremia in post-treatment controllers have also been variable, with evidence

from two cohorts suggesting that a low viral load in acute infection predicts a low viral load

post-ART, although the effect was modest [12, 30]. In contrast, in the Viro-Immunologic Sus-

tained Control After Treatment Interruption (VISCONTI) cohort pre-ART viremia was

reported to be much higher in people destined to become post-treatment controllers than

those destined to become elite controllers [27]. Similarly, in the largest study of post-treatment

controllers identified to date (the CHAMP cohort), the level of viremia prior to ART was simi-

lar in individuals who controlled post-ART compared to those who failed to control post-ART

[32]. In contrast, the reservoir size (often estimated by frequency of HIV DNA levels in circu-

lating CD4+ T cells) has been reported to be low during ART in those who eventually achieve
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post-treatment control [27, 34, 37, 38]. These observations, which are admittedly based on

small numbers and incomplete data, suggest that ART can shift the host–virus balance towards

one that favors the host.

Mechanisms of elite control likely differ from those of post-

treatment control

A clue to the central mechanisms underlying elite control of HIV infection is the high fre-

quency of “protective” HLA molecules such as HLA-B�57 and HLA-B�27 and low frequency

of “disease-susceptible” HLA molecules such as HLA-B�35 [8, 39]. In contrast, in the VIS-

CONTI post-treatment controller cohort, HLA-B�35 was highly prevalent, and HLA-B�27 and

B�57 were notably infrequent [27]. In the SPARTAC study, the study cohort was a mixture of

subtype-B–infected male Caucasians and subtype-C–infected female Africans, and in this het-

erogeneous group, one or more disease-susceptible HLA alleles (defined as HLA-B�35:01 or

HLA-B�07:02 for subtype-B and HLA-B�18:01 or HLA-B�58:02 for subtype-C) were also

found in the post-treatment controllers, whereas there was no clear enrichment for the classic

protective alleles [25]. Classically defined protective alleles were rare in another recent cohort

of post-treament controllers [38]. Among post-treatment controllers, the ability of HIV-spe-

cific CD8+ T cells to inhibit viral replication is modest—and similar to that of typical non-con-

trollers—but significantly lower than that of elite controllers. This prompts the question of

whether those controlling HIV after treatment are doing so because of an immune response

that does not rely on generation and persistence of the immunodominant HLA-B-restricted

CD8+ T cell specificities observed in many elite controllers.

The differential distribution of HLA alleles in post-treatment control and elite control may

provide hints as to why levels of T-cell activation or inflammation are lower in the former

group, as has been described [27]. HLA molecules have unique binding affinity for the leuko-

cyte immunoglobulin-like receptors (LILRs), which are believed to play a regulatory role in

dendritic cell function. HLA alleles associated with elite control (HLA-B57 and HLA-B27)

enable the generation of aggressive, highly activated and immunodominant CD8+ T-cell

responses in acute infection [9, 40–42]. These HLA molecules have low binding affinity for the

LILRB2 receptor and hence induce less regulation of dendritic cells and ultimately greater acti-

vation of T cells. In contrast, HLA-B�35 has high binding affinity for LILRB2 and hence likely

induces a greater degree of dendritic cell tolerization and less robust induction of CD8+ T-cell

responses [43].

Collectively, these HLA stories argue that elite control is maintained via sustained and

highly potent HIV-specific CD8+ T-cell activity that is part of a highly activated and inflamma-

tory immune response, whereas post-treatment control is maintained via a less inflammatory

response that may be less dependent on these pathways. This is perhaps not surprising as the

pathway needed to achieve initial control is fundamentally different in these two very distinct

clinical presentations: the amount of “work” that the immune system needs to perform in get-

ting the virus under control is likely much higher in elite control (in which a naïve system is

generating a response during very high levels of HIV replication) versus post-treatment control

(in which an exposed system might be primed to respond well before high viremia emerges).

Less is known about the mechanisms associated with post-treatment control. Putative

immunologic correlates of control include T-cell function (particularly CD4+ T-cell

responses), natural killer (NK) cell function (noncytolytic activities have been observed) and

low T-cell activation (lower than that observed in natural control and during ART) [27].

Perhaps the most consistent correlate of post-treatment control is a low reservoir [27, 38].

Based on mathematical modeling, it has also been argued that the early initiation of ART
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prevents the establishment of a large reservoir and that, in this setting, a less effective host

response may be sufficient to maintain durable control after therapy is interrupted [44]. That

the early initiation of ART blunts the establishment of a large reservoir is now well accepted

[45–48]. Early therapy also protects immune function [49, 50], but if started too early, it might

prevent the generation of effective HIV-specific T-cell memory [42]. If therapy is delayed too

long, escape mutants are generated [51], the reservoir size becomes less manageable, and the

immune system is irreversibly damaged. Consistent with these results, treatment of “hyper-

acute” HIV infection (Fiebig 1) fails to cause post-treatment control [52, 53] whereas treatment

of long-term established infection is also rarely protective. Early ART (but not too early) may

be needed (Fig 1). The timing of ART in VISCONTI and other post-treatment controllers

largely supports this concept.

Limitations inherent in cross sectional studies of elite and post-

treatment controllers

The vast majority of mechanistic studies regarding HIV control in people are cross sectional in

nature. These studies have well-known limitations. Specifically, it is difficult, if not impossible,

to determine cause and effect. The study of host genetics and outcome partially addresses this

Fig 1. The time ART is initiated may prove to be critical determinant of post-treatment control. Treatment of “hyperacute”

HIV infection (Fiebig 1) may prevent the development of an effective immune response. During a subsequent treatment

interruption, the virus will rebound rapidly, and there will be limited chance for post-treatment control. In contrast, a delay in

treatment for too long will result in a generation of escape mutants, a large and difficult-to-control reservoir, and a damaged

immune system. ART, antiretroviral therapy; CTL, cytotoxic T lymphocyte.

https://doi.org/10.1371/journal.ppat.1007222.g001
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concern, as the genes were present before the infection and distinguishing cause and effect is

straightforward.

During low-reservoir states, either in elite control or post-treatment control, the activity of

the host response is expected to be low even if it is actively controlling the virus, complicating

the interpretation of any observations made during steady state. This dilemma is well illus-

trated by studies of extraordinary control of the virus in which the host responses were barely

detectable even though they were assumed to be active and effective [54]. The CD8+ T-cell

response during elite control is characterized as one with greater proliferative potential [55];

this suggests that the immune system is largely at rest and waiting to expand as needed when

infrequent bursts of replication occur. Nonactivated central memory CD8+ T cells that target

diverse epitopes and have the capacity to expand and differentiate are also enriched in elite

controllers [56, 57]. These cells are not abundant or particularly active, suggesting that they are

present in vivo but not being stimulated systemically. The nature of these responses is distinct

from the massive, high-magnitude, and apparently highly activated response typical of “hyper-

acute” HIV infection [41, 42].

There is no reason to assume that the pathways that gain control of HIV are not the same as

those that maintain control, but it is almost certainly true that once the control is gained, the

activity of these responses will decline, making it challenging to infer how the immune system

gained control in the first place. Still, longitudinal studies of the chronic phase will likely prove

informative in defining how best to maintain control (and perhaps avoid any collateral

damage).

Can we learn anything from controllers who eventually progress?

Chronic inflammation during elite control has been well-established [58–61]. These inflamma-

tory pathways likely contribute to immune dysfunction [62] and perhaps the development of

cardiovascular disease [63, 64].

Virologic rebound or progression among elite controllers is uncommon [11, 65–68] and

poorly understood. In one multinational observational study of individuals followed from

seroconversion (CASCADE), virus control (<500 copies RNA/mL) occurred in a small minor-

ity (1.4%) but once achieved was maintained in most (the probability of maintaining control

over 20 years was 0.74) [11]. In a multicenter study of controllers (Collaboration of Observa-

tional HIV Epidemiological Research Europe [COHERE]), progression was rare and was pre-

dicted by a low CD4/CD8 ratio and intermittent viremia [67]; similar findings were noted in a

French study [68]. In smaller pathogenesis-oriented studies, heightened inflammation and T-

cell activation predated and often predicted virologic progression [17, 69, 70].

The rates of virologic progression may be higher in post-treatment controllers than elite

controllers. In the CHAMP cohort, post-treatment controllers were identified from a collec-

tion of studies in which individuals were followed from the time they interrupted through at

least 24 weeks. The majority of those who controlled for at least 24 weeks (and hence met the

definition of a post-treatment controller) exhibited virologic rebound within three to four

years [32]; this rate is much higher than that reported in most elite controller cohorts. In the

SPARTAC cohort, there was a trend suggesting that those achieving control in the absence of

ART were more likely to maintain control than those who achieved it after an ART interrup-

tion [25].

The collective natural history studies suggest that post-treatment control is more common

than elite control but perhaps less durable. Two scenarios may explain these trends. Both clini-

cal phenotypes might involve the same mechanism, but a weaker one is sufficient to achieve

post-treatment but not elite control. Alternatively, distinct mechanisms underlie these clinical
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phenotypes, and those involved in post-treatment control work well in an acute setting (when

ART is interrupted) but not in a chronic setting (when control needs to be maintained

indefinitely).

Greater immune control of viremia but more rapid disease

progression among females

The natural history of untreated HIV infection differs by sex. In untreated infection, the viral

load set points in females are 0.33 to 0.78 log10 copies RNA/mL lower than in males [71].

Women are 5-fold more likely than men to be elite controllers [65]. Females are also more

likely than males to clear hepatitis C virus (HCV) in the absence of treatment [72]. Mechanisti-

cally, it has been argued that plasmacytoid dendritic cells (pDCs) in females produce substan-

tially more interferon-alpha in response to stimulation by toll-like receptor 7 (TLR7) ligands

such as HIV-1 and other single-stranded RNA viruses [73] (perhaps, as recently argued,

because TLR7 is on the X chromosome and is expressed at higher levels in females than males)

[74]. Although type I interferon has potent antiviral activities in the acute setting [75], too

much interferon-alpha, or too much of the wrong subtypes of interferon-alpha, can lead to

immune hyperactivation and its well-described detrimental consequences [76–81].

Although women may control HIV more often than men and have lower viral load set

points, women progress to AIDS at a more rapid rate for any given viral load than men [82].

High levels of immune activation for any given level of viremia may account for this apparent

accelerated progression in women [73]. Also, women have a greater tendency for viral rebound

after having achieved elite control [65]. Chronic inflammation has also been a consistent pre-

dictor of virus rebound among established controllers [17, 69, 70] and could contribute to

virologic progression through multiple mechanisms [83], as described below.

Collectively, these observations argue that immune response during acute infection is more

aggressive and effective in females compared with males. This does not come without a cost,

however, because this heightened inflammation during the chronic phase in females is associ-

ated with higher risk of losing virus control and progressing to AIDS. The consistent observa-

tion that women have much higher rates of a number of autoimmune diseases (e.g., systemic

lupus erythematosus [SLE], autoimmune thyroid disease, myasthenia gravis, rheumatoid

arthritis, multiple sclerosis, Sjogren syndrome, scleroderma) [84] is broadly consistent with

these observations. Theoretically, the potent anti-HIV response in females is more effective in

achieving initial control than that observed in males, but the possibly less inflammatory (or

more tolerant) response in males is more effective in maintaining control.

Pediatric versus adult HIV infection: Immunotolerance versus

immune aggression

In pediatric HIV infection, the ability of the immune system to control HIV via an effective

CD8+ T-cell response is largely neutered by the immunotolerant environment of early life [85,

86]. Consequently, viral loads are higher in children than adults; indeed, the median viral

loads are approximately 1.5 log10 higher in young children than in adults at the equivalent

time after infection [87, 88]. Elite control, as defined by having an undetectable viral load by

standard assays, is rare in perinatally infected children but has been reported [89, 90]. Post-

treatment control is also rare but has been reported [35, 91, 92].

In contrast to elite control, long-term non-progression is relatively common. At least 5% of

untreated HIV-infected children maintain normal-for-age CD4 counts through 5 to 10 years

of life with high levels of viremia (“viremic nonprogressors”) [93, 94]. This poorly researched

phenotype has been reported in adults but at frequencies much lower than those observed in
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children [95–97]. Among children, nonprogression during high viremia has been associated

with low levels of T-cell activation in children. As children mature and become adolescents,

the steady-state levels of viremia decline while the levels of immune activation increase [93].

The children versus adult comparison is hence similar to the male versus female compari-

son among adults. The apparently more immunotolerant environment of young life seems to

prevent the immune system from achieving stringent control of HIV replication yet at the

same time protects against chronic inflammation, CD4+ T-cell loss, and disease progression.

Pathogenic versus nonpathogenic SIV infection

SIV infection of monkeys provides additional support for our model. The natural hosts for

SIV have low levels of immune activation and disease progression despite persistently high

viral loads [98, 99], a phenotype that is similar to human viremic nonprogressors [97]; indeed,

these two share a number of similar biologic profiles [95, 96]. Elite control in the natural hosts

for SIV is rare (most animals have viral loads well above 10,000 copies RNA/mL) although not

uncommon in experimental models such as rhesus macaques [20], in which the virus stimu-

lates a profound inflammatory response and causes rapid disease progression.

The double-edged sword effect of HLA-B*57 and HLA-B*27

HLA-B�57:01 is the single human genetic polymorphism most strongly associated with elite

control of HIV infection [7]. The mechanism for this protective effect has yet to be fully

defined. Many have argued that HLA-B�57, HLA-B�27, and other protective alleles present

multiple highly conserved epitopes for CD8+ T-cell recognition, escape from which results in

a significant fitness cost to the virus [100–102]. Perhaps the clearest evidence that epitope spec-

ificity is important is the observation that distinct protective class I alleles in rhesus macaques

(Mamu-B�17) and humans (HLA-B�27:02) target the identical immunodominant epitope

(Nef IW9 IRYPKTFGW in SIV and IRYPLTFGW in HIV) [103, 104] despite independent

evolution of human and rhesus macaque MHC class I. Similarly, the two protective alleles

Mamu-B�08 and HLA-B�27:05 share a similar peptide binding groove and can present the

identical epitopes [20]. It has also been reported that enhanced HIV-specific CD8+ T-cell

function—as defined by proliferative capacity, cytotoxic activities, and the production of mul-

tiple cytokines [5, 6]—has been a consistent predictor of virus control, arguing that the inher-

ent functional capacity of the immune response in addition to the epitopes targeted is a key

factor. This raises the possibility that HLA-B�57:01 and other protective alleles somehow stim-

ulate the generation of highly functional CD8+ T cells directly and independent of the epitopes

targeted [105].

Along these lines, HLA-B�57:01–restricted CD8+ T-cell response during acute infection is

notably more potent and sustained than other HLA-restricted responses [8, 106, 107] Also,

HLA-B�57:01 positivity is associated with the clearance of HCV [108], particularly in North

America [109].

The protective effects associated with HLA-B�57:01 positivity may come at a cost, however,

because this allele is associated with hypersensitivity reactions, most notably to abacavir [110].

Similarly, HLA-B�27:02 and HLA-B�27:05 are protective against HIV but also associated with

a long list of autoimmune disorders [111]. Many of the genes associated with protection

against HIV (including but not limited to HLA-B�57:01 and HLA-B�27) are associated with

higher risk of developing psoriasis among those with HIV and in the general popuation [112].

There is no unifying mechanism to explain the apparent connection between HLA,

immune control of HIV, and autoimmunity. A number of possibilities have been proposed,

including shared epitopes [112], unique thymic maturation pathways that result in a T cell
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receptor (TCR) repertoire that is broader and often more autoreactive [107] (and hence more

able to respond to escape mutants, another factor apparently associated with control [113–

115]), an ability to evade regulatory T-cell suppression [116], and a lack of dendritic cell regu-

lation due to poor binding avidity of HLA-B�57 and HLA-B�27 with LILRB2 [43], as described

above.

A recent set of observations regarding the complex interaction between HLA molecules

and NK cell receptors provides another potential mechanism by which particular HLA mole-

cules might substantially modulate the impact of the innate immune response. KIR3DL1 is

expressed on NK cells and, when engaged, inhibits the function of these cells. HLA molecules

bind killer cell immunoglobulin-like receptors (KIRs) and influence NK cell function in com-

plex ways. HLA-B�57:01 is the strongest binder to KIR3DL1 of all HLA allotypes tested [117].

People expressing both HLA-B�57:01 and specific allotypes of KIR3DL1 are more likely to

control HIV than those expressing just HLA-B�57:01 [118]. Co-expression of the KIR3DL1

variant, I47V, further enhances the protective effect of HLA-B�57:01 [119]. The mechanism

for this interaction between HLA and KIR molecules is unknown. One possibility is that NK

cells expressing high levels of KIR3DL1 are licenced to kill HIV-1-infected target cells directly

[120] and are unleashed by altered HLA-B�57:01 and/or peptide expression arising in the

HIV-infected targets [121]. Alternatively, NK cells regulate antiviral CD8 T-cell responses, the

presence of NK cells expressing inhibitory KIRs improving CD8+ T-cell function [122]. A fur-

ther possibility is that KIRs expressed on CD8+ T-cell surface may compete with TCRs that

recognize the same peptide–HLA-B�57:01 complex. Alterations in any of these pathways could

conceivably result in collateral effects and higher or lower risk of autoimmune and hypersensi-

tivity response.

Regardless of the mechanism, the HLA-B�57 and HLA-B�27 riddles once again illustrate

that, although the capacity to generate a potent inflammatory response might be helpful in

clearing or controlling a pathogen, this intrinsic capacity could also lead inflammation-associ-

ated harm.

Concluding remarks

As has been consistently demonstrated in studies of SIV and HIV, potent and sustained

immune responses to chronic pathogens cause collateral damage. Those who are more likely

to achieve elite control are in general more likely to experience disease progression, as shown

by our comparisons of women versus men, adults versus children, and natural versus experi-

mental models of SIV (Fig 2). The most robust predictors of virus control in untreated disease

are also consistently associated with autoimmunity and other inflammatory disorders. Longi-

tudinally, once elite control is achieved, those individuals who exhibit higher levels of inflam-

mation are more likely to lose control over time.

Why might chronic inflammation during periods of virus control eventually cause virologic

rebound? Theoretically, inflammation may enhance virus production and/or result in greater

numbers of susceptible targets for the virus (activated CD4+ T cells), leading to more virus

spread [83]. Alternatively, the persistent inflammation can result in a sustained counter-regu-

latory responses and inhibition of T-cell function, a phenomenon that has been observed in

cancer tissues and is now being targeted by a variety of immune therapies [123]. Up-regulation

of programmed cell death protein 1 (PD-1) and other checkpoint receptors, induction and

expansion of immunosuppressive cell populations (T regulatory cells, myeloid-derived sup-

pressor cells), and the expression of potent immunosuppressive pathways (indoleamine

2,3-dioxygenase, interleukin 10 [IL-10], and transforming growth factor beta [TGFß]) are all

associated with HIV-mediated inflammation. All are now being modified in experimental

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007222 November 1, 2018 9 / 18

https://doi.org/10.1371/journal.ppat.1007222


oncology, and many are being targeted in HIV cure strategies [124]. Similarly, activation of

TLR-mediated type I interferon signalling is currently being pursued as a means to reverse

latency and stimulate sustained immune responses [125, 126].

The recent success of canakinumab, an inhibitor of the inflammatory IL-1ß pathway, in

preventing cardiovascular disease progression and cancer provides proof of concept that

chronic inflammation is harmful and can be targeted therapeutically [127, 128]. The fact that

blocking this pathway also increased the risk for infectious disease complications highlights

the “double-edged sword” problem that we argue here will always need to be addressed in the

context of an HIV cure or remission strategy [129].

Fig 2. Favorable immune responses in order to achieve control of viremia in acute infection and in order to maintain control once achieved as in post-treatment

control. (A) Favorable immune responses to achieve control in acute infection. (B) Favorable immune responses to maintain virus control once achieved. SIV, simian

immunodeficiency virus.

https://doi.org/10.1371/journal.ppat.1007222.g002
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The HIV cure agenda is expanding. Many, if not most, of the approaches now in the clinic

seek to achieve long-term control of a replication-competent reservoir (a “remission”). Many

of these approaches have relied on studies of elite and post-treatment controllers as the inspira-

tion and even as a road map, but perhaps a more nuanced approach may be needed. It seems

that a more holistic approach might be better achieved by examining those states of control

that are more durable and less inflammatory in nature.

References
1. Deeks SG, Lewin SR, Ross AL, Ananworanich J, Benkirane M, Cannon P, et al. International AIDS

Society global scientific strategy: towards an HIV cure 2016. Nat Med. 2016; 22(8):839–50. Epub

2016/07/12. https://doi.org/10.1038/nm.4108 [pii]. PMID: 27400264.

2. Olson AD, Meyer L, Prins M, Thiebaut R, Gurdasani D, Guiguet M, et al. An evaluation of HIV elite con-

troller definitions within a large seroconverter cohort collaboration. PLoS ONE. 2014; 9(1):e86719.

Epub 2014/02/04. https://doi.org/10.1371/journal.pone.0086719 PMID: 24489776; PubMed Central

PMCID: PMCPMC3904947.

3. Walker BD, Yu XG. Unravelling the mechanisms of durable control of HIV-1. Nat Rev Immunol. 2013;

13(7):487–98. Epub 2013/06/26. https://doi.org/10.1038/nri3478 PMID: 23797064.

4. Goulder PJ, Watkins DI. Impact of MHC class I diversity on immune control of immunodeficiency virus

replication. Nat Rev Immunol. 2008; 8(8):619–30. https://doi.org/10.1038/nri2357 PMID: 18617886.

5. Migueles SA, Connors M. Long-term nonprogressive disease among untreated HIV-infected individu-

als: clinical implications of understanding immune control of HIV. Jama. 2010; 304(2):194–201. Epub

2010/07/16. doi: 304/2/194 [pii] https://doi.org/10.1001/jama.2010.925 PMID: 20628133.

6. Deeks SG, Walker BD. Human immunodeficiency virus controllers: mechanisms of durable virus con-

trol in the absence of antiretroviral therapy. Immunity. 2007; 27(3):406–16. https://doi.org/10.1016/j.

immuni.2007.08.010 PMID: 17892849.

7. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M, et al. A whole-genome association

study of major determinants for host control of HIV-1. Science. 2007; 317(5840):944–7. https://doi.org/

10.1126/science.1143767 PMID: 17641165.

8. Pereyra F, Jia X, McLaren PJ, Telenti A, de Bakker PI, Walker BD, et al. The major genetic determi-

nants of HIV-1 control affect HLA class I peptide presentation. Science. 2010; 330(6010):1551–7.

Epub 2010/11/06. doi: science.1195271 [pii] https://doi.org/10.1126/science.1195271 PMID:

21051598.

9. Altfeld M, Addo MM, Rosenberg ES, Hecht FM, Lee PK, Vogel M, et al. Influence of HLA-B57 on clini-

cal presentation and viral control during acute HIV-1 infection. Aids. 2003; 17(18):2581–91. https://doi.

org/10.1097/01.aids.0000096870.36052.b6 PMID: 14685052.

10. Okulicz JF, Marconi VC, Landrum ML, Wegner S, Weintrob A, Ganesan A, et al. Clinical outcomes of

elite controllers, viremic controllers, and long-term nonprogressors in the US Department of Defense

HIV natural history study. J Infect Dis. 2009; 200(11):1714–23. https://doi.org/10.1086/646609 PMID:

19852669.

11. Madec Y, Boufassa F, Porter K, Prins M, Sabin C, d’Arminio Monforte A, et al. Natural history of HIV-

control since seroconversion. Aids. 2013; 27(15):2451–60. Epub 2013/08/06. https://doi.org/10.1097/

01.aids.0000431945.72365.01 PMID: 23912979.

12. Goujard C, Chaix ML, Lambotte O, Deveau C, Sinet M, Guergnon J, et al. Spontaneous control of viral

replication during primary HIV infection: when is "HIV controller" status established? Clin Infect Dis.

2009; 49(6):982–6. https://doi.org/10.1086/605504 PMID: 19681706.

13. Moosa Y, Tanko RF, Ramsuran V, Singh R, Madzivhandila M, Yende-Zuma N, et al. Case report:

mechanisms of HIV elite control in two African women. BMC Infect Dis. 2018; 18(1):54. Epub 2018/01/

27. https://doi.org/10.1186/s12879-018-2961-8 PMID: 29370775; PubMed Central PMCID:

PMCPMC5785875.

14. Goulder PJ, Altfeld MA, Rosenberg ES, Nguyen T, Tang Y, Eldridge RL, et al. Substantial differences

in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J Exp Med. 2001; 193

(2):181–94. PMID: 11148222.

15. Chen I, Cummings V, Fogel JM, Marzinke MA, Clarke W, Connor MB, et al. Low-level Viremia early in

HIV infection. J Acquir Immune Defic Syndr. 2014; 67(4):405–8. Epub 2014/08/21. https://doi.org/10.

1097/QAI.0000000000000298 PMID: 25140905; PubMed Central PMCID: PMCPMC4213245.

16. Miura T, Brumme ZL, Brockman MA, Rosato P, Sela J, Brumme CJ, et al. Impaired replication capac-

ity of acute/early viruses in persons who become HIV controllers. J Virol. 2010; 84(15):7581–91. Epub

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007222 November 1, 2018 11 / 18

https://doi.org/10.1038/nm.4108
http://www.ncbi.nlm.nih.gov/pubmed/27400264
https://doi.org/10.1371/journal.pone.0086719
http://www.ncbi.nlm.nih.gov/pubmed/24489776
https://doi.org/10.1038/nri3478
http://www.ncbi.nlm.nih.gov/pubmed/23797064
https://doi.org/10.1038/nri2357
http://www.ncbi.nlm.nih.gov/pubmed/18617886
https://doi.org/10.1001/jama.2010.925
http://www.ncbi.nlm.nih.gov/pubmed/20628133
https://doi.org/10.1016/j.immuni.2007.08.010
https://doi.org/10.1016/j.immuni.2007.08.010
http://www.ncbi.nlm.nih.gov/pubmed/17892849
https://doi.org/10.1126/science.1143767
https://doi.org/10.1126/science.1143767
http://www.ncbi.nlm.nih.gov/pubmed/17641165
https://doi.org/10.1126/science.1195271
http://www.ncbi.nlm.nih.gov/pubmed/21051598
https://doi.org/10.1097/01.aids.0000096870.36052.b6
https://doi.org/10.1097/01.aids.0000096870.36052.b6
http://www.ncbi.nlm.nih.gov/pubmed/14685052
https://doi.org/10.1086/646609
http://www.ncbi.nlm.nih.gov/pubmed/19852669
https://doi.org/10.1097/01.aids.0000431945.72365.01
https://doi.org/10.1097/01.aids.0000431945.72365.01
http://www.ncbi.nlm.nih.gov/pubmed/23912979
https://doi.org/10.1086/605504
http://www.ncbi.nlm.nih.gov/pubmed/19681706
https://doi.org/10.1186/s12879-018-2961-8
http://www.ncbi.nlm.nih.gov/pubmed/29370775
http://www.ncbi.nlm.nih.gov/pubmed/11148222
https://doi.org/10.1097/QAI.0000000000000298
https://doi.org/10.1097/QAI.0000000000000298
http://www.ncbi.nlm.nih.gov/pubmed/25140905
https://doi.org/10.1371/journal.ppat.1007222


2010/05/28. https://doi.org/10.1128/JVI.00286-10 PMID: 20504921; PubMed Central PMCID:

PMCPMC2897600.

17. Walker-Sperling VE, Pohlmeyer CW, Veenhuis RT, May M, Luna KA, Kirkpatrick AR, et al. Factors

Associated With the Control of Viral Replication and Virologic Breakthrough in a Recently Infected

HIV-1 Controller. EBioMedicine. 2017; 16:141–9. Epub 2017/02/06. https://doi.org/10.1016/j.ebiom.

2017.01.034 PMID: 28159573; PubMed Central PMCID: PMCPMC5474502.

18. Kuang XT, Li X, Anmole G, Mwimanzi P, Shahid A, Le AQ, et al. Impaired Nef function is associated

with early control of HIV-1 viremia. J Virol. 2014; 88(17):10200–13. Epub 2014/06/27. https://doi.org/

10.1128/JVI.01334-14 PMID: 24965469; PubMed Central PMCID: PMCPMC4136354.

19. Yue L, Pfafferott KJ, Baalwa J, Conrod K, Dong CC, Chui C, et al. Transmitted virus fitness and host T

cell responses collectively define divergent infection outcomes in two HIV-1 recipients. PLoS Pathog.

2015; 11(1):e1004565. Epub 2015/01/09. https://doi.org/10.1371/journal.ppat.1004565 PMID:

25569444; PubMed Central PMCID: PMCPMC4287535.

20. Loffredo JT, Maxwell J, Qi Y, Glidden CE, Borchardt GJ, Soma T, et al. Mamu-B*08-positive

macaques control simian immunodeficiency virus replication. J Virol. 2007; 81(16):8827–32. Epub

2007/06/01. https://doi.org/10.1128/JVI.00895-07 PMID: 17537848; PubMed Central PMCID:

PMCPMC1951344.

21. Yant LJ, Friedrich TC, Johnson RC, May GE, Maness NJ, Enz AM, et al. The high-frequency major

histocompatibility complex class I allele Mamu-B*17 is associated with control of simian immunodefi-

ciency virus SIVmac239 replication. J Virol. 2006; 80(10):5074–7. https://doi.org/10.1128/JVI.80.10.

5074-5077.2006 PMID: 16641299.

22. Pandrea I, Gaufin T, Gautam R, Kristoff J, Mandell D, Montefiori D, et al. Functional Cure of SIVagm

Infection in Rhesus Macaques Results in Complete Recovery of CD4 T Cells and Is Reverted by CD8

Cell Depletion. PLoS Pathog. 2011; 7(8):e1002170. Epub 2011/08/11. https://doi.org/10.1371/journal.

ppat.1002170 PMID: 21829366; PubMed Central PMCID: PMC3150280.

23. Hocqueloux L, Prazuck T, Avettand-Fenoel V, Lafeuillade A, Cardon B, Viard JP, et al. Long-term

immunovirologic control following antiretroviral therapy interruption in patients treated at the time of pri-

mary HIV-1 infection. Aids. 2010; 24(10):1598–601. Epub 2010/06/16. PMID: 20549847.

24. Martin GE, Frater J. Post-treatment and spontaneous HIV control. Curr Opin HIV AIDS. 2018. Epub

2018/06/08. https://doi.org/10.1097/COH.0000000000000488 PMID: 29878914.

25. Martin GE, Gossez M, Williams JP, Stohr W, Meyerowitz J, Leitman EM, et al. Post-treatment control

or treated controllers? Viral remission in treated and untreated primary HIV infection. Aids. 2017; 31

(4):477–84. Epub 2017/01/07. https://doi.org/10.1097/QAD.0000000000001382 PMID: 28060012;

PubMed Central PMCID: PMC5278888.

26. Wen Y, Li JZ. Post-treatment HIV controllers or spontaneous controllers in disguise? Aids. 2017; 31

(4):587–9. Epub 2017/01/25. https://doi.org/10.1097/QAD.0000000000001381 PMID: 28118234.

27. Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, et al. Post-treat-

ment HIV-1 controllers with a long-term virological remission after the interruption of early initiated anti-

retroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013; 9(3):e1003211. Epub 2013/03/22.

https://doi.org/10.1371/journal.ppat.1003211 PMID: 23516360; PubMed Central PMCID:

PMC3597518.

28. Sneller MC, Justement JS, Gittens KR, Petrone ME, Clarridge KE, Proschan MA, et al. A randomized

controlled safety/efficacy trial of therapeutic vaccination in HIV-infected individuals who initiated antire-

troviral therapy early in infection. Sci Transl Med. 2017; 9(419). Epub 2017/12/08. https://doi.org/10.

1126/scitranslmed.aan8848 PMID: 29212716.

29. Lodi S, Meyer L, Kelleher AD, Rosinska M, Ghosn J, Sannes M, et al. Immunovirologic control 24

months after interruption of antiretroviral therapy initiated close to HIV seroconversion. Arch Intern

Med. 2012; 172(16):1252–5. Epub 2012/07/25. https://doi.org/10.1001/archinternmed.2012.2719 [pii].

PMID: 22826124.

30. Fidler S, Olson AD, Bucher HC, Fox J, Thornhill J, Morrison C, et al. Virological Blips and Predictors of

Post Treatment Viral Control After Stopping ART Started in Primary HIV Infection. J Acquir Immune

Defic Syndr. 2017; 74(2):126–33. Epub 2016/11/16. https://doi.org/10.1097/QAI.0000000000001220

PMID: 27846036; PubMed Central PMCID: PMC5228612.

31. Stohr W, Fidler S, McClure M, Weber J, Cooper D, Ramjee G, et al. Duration of HIV-1 viral suppres-

sion on cessation of antiretroviral therapy in primary infection correlates with time on therapy. PLoS

ONE. 2013; 8(10):e78287. Epub 2013/11/10. https://doi.org/10.1371/journal.pone.0078287 PMID:

24205183; PubMed Central PMCID: PMCPMC3808338.

32. Namazi G, Fajnzylber JM, Aga E, Bosch R, Acosta EP, Sharaf R, et al. The Control of HIV after Antire-

troviral Medication Pause (CHAMP) study: post-treatment controllers identified from 14 clinical stud-

ies. J Infect Dis. 2018. Epub 2018/08/08. https://doi.org/10.1093/infdis/jiy479 PMID: 30085241.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007222 November 1, 2018 12 / 18

https://doi.org/10.1128/JVI.00286-10
http://www.ncbi.nlm.nih.gov/pubmed/20504921
https://doi.org/10.1016/j.ebiom.2017.01.034
https://doi.org/10.1016/j.ebiom.2017.01.034
http://www.ncbi.nlm.nih.gov/pubmed/28159573
https://doi.org/10.1128/JVI.01334-14
https://doi.org/10.1128/JVI.01334-14
http://www.ncbi.nlm.nih.gov/pubmed/24965469
https://doi.org/10.1371/journal.ppat.1004565
http://www.ncbi.nlm.nih.gov/pubmed/25569444
https://doi.org/10.1128/JVI.00895-07
http://www.ncbi.nlm.nih.gov/pubmed/17537848
https://doi.org/10.1128/JVI.80.10.5074-5077.2006
https://doi.org/10.1128/JVI.80.10.5074-5077.2006
http://www.ncbi.nlm.nih.gov/pubmed/16641299
https://doi.org/10.1371/journal.ppat.1002170
https://doi.org/10.1371/journal.ppat.1002170
http://www.ncbi.nlm.nih.gov/pubmed/21829366
http://www.ncbi.nlm.nih.gov/pubmed/20549847
https://doi.org/10.1097/COH.0000000000000488
http://www.ncbi.nlm.nih.gov/pubmed/29878914
https://doi.org/10.1097/QAD.0000000000001382
http://www.ncbi.nlm.nih.gov/pubmed/28060012
https://doi.org/10.1097/QAD.0000000000001381
http://www.ncbi.nlm.nih.gov/pubmed/28118234
https://doi.org/10.1371/journal.ppat.1003211
http://www.ncbi.nlm.nih.gov/pubmed/23516360
https://doi.org/10.1126/scitranslmed.aan8848
https://doi.org/10.1126/scitranslmed.aan8848
http://www.ncbi.nlm.nih.gov/pubmed/29212716
https://doi.org/10.1001/archinternmed.2012.2719
http://www.ncbi.nlm.nih.gov/pubmed/22826124
https://doi.org/10.1097/QAI.0000000000001220
http://www.ncbi.nlm.nih.gov/pubmed/27846036
https://doi.org/10.1371/journal.pone.0078287
http://www.ncbi.nlm.nih.gov/pubmed/24205183
https://doi.org/10.1093/infdis/jiy479
http://www.ncbi.nlm.nih.gov/pubmed/30085241
https://doi.org/10.1371/journal.ppat.1007222


33. Hatano H, Delwart EL, Norris PJ, Lee TH, Dunn-Williams J, Hunt PW, et al. Evidence for persistent

low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretro-

viral therapy. J Virol. 2009; 83(1):329–35. https://doi.org/10.1128/JVI.01763-08 PMID: 18945778.

34. Goujard C, Girault I, Rouzioux C, Lecuroux C, Deveau C, Chaix ML, et al. HIV-1 control after transient

antiretroviral treatment initiated in primary infection: role of patient characteristics and effect of therapy.

Antivir Ther. 2012; 17(6):1001–9. Epub 2012/08/07. https://doi.org/10.3851/IMP2273 PMID: 22865544.

35. Frange P, Faye A, Avettand-Fenoel V, Bellaton E, Descamps D, Angin M, et al. HIV-1 virological

remission lasting more than 12 years after interruption of early antiretroviral therapy in a perinatally

infected teenager enrolled in the French ANRS EPF-CO10 paediatric cohort: a case report. Lancet

HIV. 2016; 3(1):e49–54. Epub 2016/01/15. https://doi.org/10.1016/S2352-3018(15)00232-5 [pii].

PMID: 26762993.

36. Namazi G, Fajnzylber J, Aga E, Bosch R, Acosta EP, Jacobson J, et al., editors. The CHAMP Cohort:

Post-treatment controllers identified from 9 clinical studies. Program and Abstracts of the 25th Confer-

ence on Retroviruses and Opportunistic Infections; March 4–8, 2018; Boston, MA Abstract 231.

37. Assoumou L, Weiss L, Piketty C, Burgard M, Melard A, Girard PM, et al. A low HIV-DNA level in

peripheral blood mononuclear cells at antiretroviral treatment interruption predicts a higher probability

of maintaining viral control. Aids. 2015; 29(15):2003–7. Epub 2015/09/12. https://doi.org/10.1097/

QAD.0000000000000734 [pii]. PMID: 26355572.

38. Sharaf R, Lee GQ, Sun X, Etemad B, Aboukhater LM, Hu Z, et al. HIV-1 proviral landscapes distin-

guish posttreatment controllers from noncontrollers. J Clin Invest. 2018. Epub 2018/07/20. https://doi.

org/10.1172/JCI120549 PMID: 30024859.

39. Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, Goedert JJ, et al. HLA and HIV-1: hetero-

zygote advantage and B*35-Cw*04 disadvantage. Science. 1999; 283(5408):1748–52. PMID:

10073943.

40. Altfeld M, Kalife ET, Qi Y, Streeck H, Lichterfeld M, Johnston MN, et al. HLA Alleles Associated with

Delayed Progression to AIDS Contribute Strongly to the Initial CD8(+) T Cell Response against HIV-1.

PLoS Med. 2006; 3(10). https://doi.org/10.1371/journal.pmed.0030403 PMID: 17076553.

41. Ndhlovu ZM, Kamya P, Mewalal N, Kloverpris HN, Nkosi T, Pretorius K, et al. Magnitude and Kinetics

of CD8+ T Cell Activation during Hyperacute HIV Infection Impact Viral Set Point. Immunity. 2015; 43

(3):591–604. Epub 2015/09/13. https://doi.org/10.1016/j.immuni.2015.08.012 [pii]. PMID: 26362266;

PubMed Central PMCID: PMC4575777.

42. Takata H, Buranapraditkun S, Kessing C, Fletcher JL, Muir R, Tardif V, et al. Delayed differentiation of

potent effector CD8+ T cells reducing viremia and reservoir seeding in acute HIV infection. Sci Transl

Med. 2017; 9(377). Epub 2017/02/17. doi: eaag1809 [pii] https://doi.org/10.1126/scitranslmed.

aag18099/377/eaag1809 [pii]. PMID: 28202771.

43. Bashirova AA, Martin-Gayo E, Jones DC, Qi Y, Apps R, Gao X, et al. LILRB2 interaction with HLA

class I correlates with control of HIV-1 infection. PLoS Genet. 2014; 10(3):e1004196. Epub 2014/03/

08. https://doi.org/10.1371/journal.pgen.1004196 [pii]. PMID: 24603468; PubMed Central PMCID:

PMC3945438.

44. Conway JM, Perelson AS. Post-treatment control of HIV infection. Proc Natl Acad Sci U S A. 2015;

112(17):5467–72. Epub 2015/04/15. https://doi.org/10.1073/pnas.1419162112 PMID: 25870266;

PubMed Central PMCID: PMCPMC4418889.

45. Ananworanich J, Chomont N, Eller LA, Kroon E, Tovanabutra S, Bose M, et al. HIV DNA Set Point is

Rapidly Established in Acute HIV Infection and Dramatically Reduced by Early ART. EBioMedicine.

2016. Epub 2016/07/28. doi: S2352-3964(16)30330-9 [pii] https://doi.org/10.1016/j.ebiom.2016.07.

024 PMID: 27460436.

46. Archin NM, Vaidya NK, Kuruc JD, Liberty AL, Wiegand A, Kearney MF, et al. Immediate antiviral ther-

apy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infec-

tion. Proc Natl Acad Sci U S A. 2012; 109(24):9523–8. Epub 2012/05/31. https://doi.org/10.1073/

pnas.1120248109 PMID: 22645358.

47. Jain V, Hartogensis W, Bacchetti P, Hunt PW, Hatano H, Sinclair E, et al. Antiretroviral Therapy Initi-

ated Within 6 Months of HIV Infection Is Associated With Lower T-Cell Activation and Smaller HIV

Reservoir Size. J Infect Dis. 2013; 208(8):1202–11. Epub 2013/07/16. https://doi.org/10.1093/infdis/

jit311 PMID: 23852127; PubMed Central PMCID: PMC3778965.

48. Persaud D, Patel K, Karalius B, Rainwater-Lovett K, Ziemniak C, Ellis A, et al. Influence of age at viro-

logic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in peri-

natally infected adolescents. JAMA Pediatr. 2014; 168(12):1138–46. Epub 2014/10/07. https://doi.org/

10.1001/jamapediatrics.2014.1560 PMID: 25286283; PubMed Central PMCID: PMCPMC4324476.

49. Schuetz A, Deleage C, Sereti I, Rerknimitr R, Phanuphak N, Phuang-Ngern Y, et al. Initiation of ART

during early acute HIV infection preserves mucosal Th17 function and reverses HIV-related immune

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007222 November 1, 2018 13 / 18

https://doi.org/10.1128/JVI.01763-08
http://www.ncbi.nlm.nih.gov/pubmed/18945778
https://doi.org/10.3851/IMP2273
http://www.ncbi.nlm.nih.gov/pubmed/22865544
https://doi.org/10.1016/S2352-3018(15)00232-5
http://www.ncbi.nlm.nih.gov/pubmed/26762993
https://doi.org/10.1097/QAD.0000000000000734
https://doi.org/10.1097/QAD.0000000000000734
http://www.ncbi.nlm.nih.gov/pubmed/26355572
https://doi.org/10.1172/JCI120549
https://doi.org/10.1172/JCI120549
http://www.ncbi.nlm.nih.gov/pubmed/30024859
http://www.ncbi.nlm.nih.gov/pubmed/10073943
https://doi.org/10.1371/journal.pmed.0030403
http://www.ncbi.nlm.nih.gov/pubmed/17076553
https://doi.org/10.1016/j.immuni.2015.08.012
http://www.ncbi.nlm.nih.gov/pubmed/26362266
https://doi.org/10.1126/scitranslmed.aag18099/377/eaag1809
https://doi.org/10.1126/scitranslmed.aag18099/377/eaag1809
http://www.ncbi.nlm.nih.gov/pubmed/28202771
https://doi.org/10.1371/journal.pgen.1004196
http://www.ncbi.nlm.nih.gov/pubmed/24603468
https://doi.org/10.1073/pnas.1419162112
http://www.ncbi.nlm.nih.gov/pubmed/25870266
https://doi.org/10.1016/j.ebiom.2016.07.024
https://doi.org/10.1016/j.ebiom.2016.07.024
http://www.ncbi.nlm.nih.gov/pubmed/27460436
https://doi.org/10.1073/pnas.1120248109
https://doi.org/10.1073/pnas.1120248109
http://www.ncbi.nlm.nih.gov/pubmed/22645358
https://doi.org/10.1093/infdis/jit311
https://doi.org/10.1093/infdis/jit311
http://www.ncbi.nlm.nih.gov/pubmed/23852127
https://doi.org/10.1001/jamapediatrics.2014.1560
https://doi.org/10.1001/jamapediatrics.2014.1560
http://www.ncbi.nlm.nih.gov/pubmed/25286283
https://doi.org/10.1371/journal.ppat.1007222


activation. PLoS Pathog. 2014; 10(12):e1004543. Epub 2014/12/17. https://doi.org/10.1371/journal.

ppat.1004543 PMID: 25503054; PubMed Central PMCID: PMCPMC4263756.

50. Okulicz JF, Le TD, Agan BK, Camargo JF, Landrum ML, Wright E, et al. Influence of the timing of anti-

retroviral therapy on the potential for normalization of immune status in human immunodeficiency virus

1-infected individuals. JAMA Intern Med. 2015; 175(1):88–99. Epub 2014/11/25. https://doi.org/10.

1001/jamainternmed.2014.4010 PMID: 25419650; PubMed Central PMCID: PMCPMC4286496.

51. Deng K, Pertea M, Rongvaux A, Wang L, Durand CM, Ghiaur G, et al. Broad CTL response is required to

clear latent HIV-1 due to dominance of escape mutations. Nature. 2015; 517(7534):381–5. Epub 2015/01/

07. https://doi.org/10.1038/nature14053 [pii]. PMID: 25561180; PubMed Central PMCID: PMC4406054.

52. Colby DJ, Trautmann L, Pinyakorn S, Leyre L, Pagliuzza A, Kroon E, et al. Rapid HIV RNA rebound

after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection.

Nat Med. 2018. Epub 2018/06/13. https://doi.org/10.1038/s41591-018-0026-6 PMID: 29892063.

53. Henrich TJ, Hatano H, Bacon O, Hogan LE, Rutishauser R, Hill A, et al. HIV-1 persistence following

extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational

study. PLoS Med. 2017; 14(11):e1002417. Epub 2017/11/08. https://doi.org/10.1371/journal.pmed.

1002417 PMID: 29112956; PubMed Central PMCID: PMCPMC5675377.

54. Mendoza D, Johnson SA, Peterson BA, Natarajan V, Salgado M, Dewar RL, et al. Comprehensive

analysis of unique cases with extraordinary control over HIV replication. Blood. 2012; 119(20):4645–

55. Epub 2012/04/12. https://doi.org/10.1182/blood-2011-10-381996 PMID: 22490332; PubMed Cen-

tral PMCID: PMC3367872.

55. Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, Hallahan CW, et al. HIV-specific

CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat

Immunol. 2002; 3(11):1061–8. https://doi.org/10.1038/ni845 PMID: 12368910.

56. Ndhlovu ZM, Proudfoot J, Cesa K, Alvino DM, McMullen A, Vine S, et al. Elite controllers with low to

absent effector CD8+ T cell responses maintain highly functional, broadly directed central memory

responses. J Virol. 2012; 86(12):6959–69. Epub 2012/04/20. https://doi.org/10.1128/JVI.00531-12

PMID: 22514340; PubMed Central PMCID: PMC3393560.

57. Ndhlovu ZM, Stampouloglou E, Cesa K, Mavrothalassitis O, Alvino DM, Li JZ, et al. The Breadth of

Expandable Memory CD8+ T Cells Inversely Correlates with Residual Viral Loads in HIV Elite Control-

lers. J Virol. 2015; 89(21):10735–47. Epub 2015/08/14. https://doi.org/10.1128/JVI.01527-15 [pii].

PMID: 26269189; PubMed Central PMCID: PMC4621138.

58. Hunt PW, Brenchley J, Sinclair E, McCune JM, Roland M, Page-Shafer K, et al. Relationship between

T Cell Activation and CD4(+) T Cell Count in HIV-Seropositive Individuals with Undetectable Plasma

HIV RNA Levels in the Absence of Therapy. J Infect Dis. 2008; 197(1):126–33. https://doi.org/10.

1086/524143 PMID: 18171295.

59. Hatano H, Yukl SA, Ferre AL, Graf EH, Somsouk M, Sinclair E, et al. Prospective Antiretroviral Treat-

ment of Asymptomatic, HIV-1 Infected Controllers. PLoS Pathog. 2013; 9(10):e1003691. Epub 2013/

10/17. https://doi.org/10.1371/journal.ppat.1003691 PMID: 24130489; PubMed Central PMCID:

PMC3795031.

60. Noel N, Boufassa F, Lecuroux C, Saez-Cirion A, Bourgeois C, Dunyach-Remy C, et al. Elevated IP10

levels are associated with immune activation and low CD4(+) T-cell counts in HIV controller patients.

Aids. 2014; 28(4):467–76. Epub 2014/01/01. https://doi.org/10.1097/QAD.0000000000000174 PMID:

24378753.

61. Krishnan S, Wilson EM, Sheikh V, Rupert A, Mendoza D, Yang J, et al. Evidence for innate immune

system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014; 209(6):931–9. Epub 2013/

11/05. https://doi.org/10.1093/infdis/jit581 PMID: 24185941; PubMed Central PMCID: PMC3935475.

62. Sanchez JL, Hunt PW, Reilly CS, Hatano H, Beilman GJ, Khoruts A, et al. Lymphoid fibrosis occurs in

long-term nonprogressors and persists with antiretroviral therapy but may be reversible with curative

interventions. J Infect Dis. 2015; 211(7):1068–75. Epub 2014/10/26. https://doi.org/10.1093/infdis/

jiu586 jiu586 [pii]. PMID: 25344521.

63. Hsue PY, Hunt PW, Schnell A, Kalapus SC, Hoh R, Ganz P, et al. Role of viral replication, antiretroviral

therapy, and immunodeficiency in HIV-associated atherosclerosis. Aids. 2009; 23(9):1059–67. https://

doi.org/10.1097/QAD.0b013e32832b514b PMID: 19390417.

64. Pereyra F, Lo J, Triant VA, Wei J, Buzon MJ, Fitch KV, et al. Increased coronary atherosclerosis and

immune activation in HIV-1 elite controllers. Aids. 2012; 26(18):2409–12. Epub 2012/10/04. https://

doi.org/10.1097/QAD.0b013e32835a9950 PMID: 23032411; PubMed Central PMCID: PMC3660105.

65. Yang OO, Cumberland WG, Escobar R, Liao D, Chew KW. Demographics and natural history of

HIV-1-infected spontaneous controllers of viremia. Aids. 2017; 31(8):1091–8. Epub 2017/03/17.

https://doi.org/10.1097/QAD.0000000000001443 PMID: 28301422; PubMed Central PMCID:

PMCPMC5657480.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007222 November 1, 2018 14 / 18

https://doi.org/10.1371/journal.ppat.1004543
https://doi.org/10.1371/journal.ppat.1004543
http://www.ncbi.nlm.nih.gov/pubmed/25503054
https://doi.org/10.1001/jamainternmed.2014.4010
https://doi.org/10.1001/jamainternmed.2014.4010
http://www.ncbi.nlm.nih.gov/pubmed/25419650
https://doi.org/10.1038/nature14053
http://www.ncbi.nlm.nih.gov/pubmed/25561180
https://doi.org/10.1038/s41591-018-0026-6
http://www.ncbi.nlm.nih.gov/pubmed/29892063
https://doi.org/10.1371/journal.pmed.1002417
https://doi.org/10.1371/journal.pmed.1002417
http://www.ncbi.nlm.nih.gov/pubmed/29112956
https://doi.org/10.1182/blood-2011-10-381996
http://www.ncbi.nlm.nih.gov/pubmed/22490332
https://doi.org/10.1038/ni845
http://www.ncbi.nlm.nih.gov/pubmed/12368910
https://doi.org/10.1128/JVI.00531-12
http://www.ncbi.nlm.nih.gov/pubmed/22514340
https://doi.org/10.1128/JVI.01527-15
http://www.ncbi.nlm.nih.gov/pubmed/26269189
https://doi.org/10.1086/524143
https://doi.org/10.1086/524143
http://www.ncbi.nlm.nih.gov/pubmed/18171295
https://doi.org/10.1371/journal.ppat.1003691
http://www.ncbi.nlm.nih.gov/pubmed/24130489
https://doi.org/10.1097/QAD.0000000000000174
http://www.ncbi.nlm.nih.gov/pubmed/24378753
https://doi.org/10.1093/infdis/jit581
http://www.ncbi.nlm.nih.gov/pubmed/24185941
https://doi.org/10.1093/infdis/jiu586
https://doi.org/10.1093/infdis/jiu586
http://www.ncbi.nlm.nih.gov/pubmed/25344521
https://doi.org/10.1097/QAD.0b013e32832b514b
https://doi.org/10.1097/QAD.0b013e32832b514b
http://www.ncbi.nlm.nih.gov/pubmed/19390417
https://doi.org/10.1097/QAD.0b013e32835a9950
https://doi.org/10.1097/QAD.0b013e32835a9950
http://www.ncbi.nlm.nih.gov/pubmed/23032411
https://doi.org/10.1097/QAD.0000000000001443
http://www.ncbi.nlm.nih.gov/pubmed/28301422
https://doi.org/10.1371/journal.ppat.1007222


66. Sajadi MM, Constantine NT, Mann DL, Charurat M, Dadzan E, Kadlecik P, et al. Epidemiologic char-

acteristics and natural history of HIV-1 natural viral suppressors. J Acquir Immune Defic Syndr. 2009;

50(4):403–8. Epub 2009/02/14. https://doi.org/10.1097/QAI.0b013e3181945f1e PMID: 19214118;

PubMed Central PMCID: PMCPMC2697612.

67. Chereau F, Madec Y, Sabin C, Obel N, Ruiz-Mateos E, Chrysos G, et al. Impact of CD4 and CD8

dynamics and viral rebounds on loss of virological control in HIV controllers. PLoS ONE. 2017; 12(4):

e0173893. Epub 2017/04/06. https://doi.org/10.1371/journal.pone.0173893 PMID: 28380038;

PubMed Central PMCID: PMCPMC5381858.

68. Grabar S, Selinger-Leneman H, Abgrall S, Pialoux G, Weiss L, Costagliola D. Loss of long-term non-

progressor and HIV controller status over time in the French Hospital Database on HIV—ANRS CO4.

PLoS ONE. 2017; 12(10):e0184441. Epub 2017/10/03. https://doi.org/10.1371/journal.pone.0184441

PMID: 28968404; PubMed Central PMCID: PMCPMC5624574.

69. Pernas M, Tarancon-Diez L, Rodriguez-Gallego E, Gomez J, Prado JG, Casado C, et al. Factors

Leading to the Loss of Natural Elite Control of HIV-1 Infection. J Virol. 2017. Epub 2017/12/08. https://

doi.org/10.1128/JVI.01805-17 PMID: 29212942; PubMed Central PMCID: PMCPMC5809746.

70. Noel N, Lerolle N, Lecuroux C, Goujard C, Venet A, Saez-Cirion A, et al. Immunologic and Virologic

Progression in HIV Controllers: The Role of Viral "Blips" and Immune Activation in the ANRS CO21

CODEX Study. PLoS ONE. 2015; 10(7):e0131922. Epub 2015/07/07. https://doi.org/10.1371/journal.

pone.0131922 [pii]. PMID: 26146823; PubMed Central PMCID: PMC4493076.

71. Gandhi M, Bacchetti P, Miotti P, Quinn TC, Veronese F, Greenblatt RM. Does patient sex affect

human immunodeficiency virus levels? Clin Infect Dis. 2002; 35(3):313–22. https://doi.org/10.1086/

341249 PMID: 12115098.

72. Baden R, Rockstroh JK, Buti M. Natural history and management of hepatitis C: does sex play a role?

J Infect Dis. 2014; 209 Suppl 3:S81–5. Epub 2014/06/27. https://doi.org/10.1093/infdis/jiu057 PMID:

24966194.

73. Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK, Kulkarni S, et al. Sex differences in the Toll-like

receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med. 2009; 15(8):955–9.

https://doi.org/10.1038/nm.2004 PMID: 19597505.

74. Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, et al. TLR7 escapes X chromo-

some inactivation in immune cells. Sci Immunol. 2018; 3(19). Epub 2018/01/28. https://doi.org/10.

1126/sciimmunol.aap8855 PMID: 29374079.

75. Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, Boritz E, et al. Type I interferon responses in

rhesus macaques prevent SIV infection and slow disease progression. Nature. 2014; 511(7511):601–

5. Epub 2014/07/22. https://doi.org/10.1038/nature13554 [pii]. PMID: 25043006.

76. Hardy GA, Sieg S, Rodriguez B, Anthony D, Asaad R, Jiang W, et al. Interferon-alpha is the primary

plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers.

PLoS ONE. 2013; 8(2):e56527. Epub 2013/02/26. https://doi.org/10.1371/journal.pone.0056527 [pii].

PMID: 23437155; PubMed Central PMCID: PMC3577907.

77. Favre D, Mold J, Hunt PW, Kanwar B, Loke P, Seu L, et al. Tryptophan catabolism by indoleamine

2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med.

2010; 2(32):32ra6. https://doi.org/10.1126/scitranslmed.3000632 PMID: 20484731.

78. Le Saout C, Hasley RB, Imamichi H, Tcheung L, Hu Z, Luckey MA, et al. Chronic Exposure to Type-I

IFN under Lymphopenic Conditions Alters CD4 T Cell Homeostasis. PLoS Pathog. 2014; 10(3):

e1003976. Epub 2014/03/08. https://doi.org/10.1371/journal.ppat.1003976 PMID: 24603698; PubMed

Central PMCID: PMC3946368.

79. Fernandez S, Tanaskovic S, Helbig K, Rajasuriar R, Kramski M, Murray JM, et al. CD4+ T-cell defi-

ciency in HIV patients responding to antiretroviral therapy is associated with increased expression of

interferon-stimulated genes in CD4+ T cells. J Infect Dis. 2011; 204(12):1927–35. Epub 2011/10/19.

https://doi.org/10.1093/infdis/jir659 PMID: 22006994.

80. Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, et al. Gut Epithelial Barrier Dys-

function and Innate Immune Activation Predict Mortality in Treated HIV Infection. J Infect Dis. 2014.

Epub 2014/04/24. doi: jiu238 [pii] https://doi.org/10.1093/infdis/jiu238 PMID: 24755434.

81. Lavender KJ, Gibbert K, Peterson KE, Van Dis E, Francois S, Woods T, et al. Interferon Alpha Sub-

type-Specific Suppression of HIV-1 Infection In Vivo. J Virol. 2016; 90(13):6001–13. Epub 2016/04/22.

https://doi.org/10.1128/JVI.00451-16 PMID: 27099312; PubMed Central PMCID: PMCPMC4907223.

82. Sterling TR, Vlahov D, Astemborski J, Hoover DR, Margolick JB, Quinn TC. Initial plasma HIV-1 RNA

levels and progression to AIDS in women and men. N Engl J Med. 2001; 344(10):720–5. https://doi.

org/10.1056/NEJM200103083441003 PMID: 11236775.

83. Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: implications for

curative approaches to HIV infection. Immunol Rev. 2013; 254(1):326–42. Epub 2013/06/19. https://

doi.org/10.1111/imr.12065 PMID: 23772629; PubMed Central PMCID: PMC3694608.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007222 November 1, 2018 15 / 18

https://doi.org/10.1097/QAI.0b013e3181945f1e
http://www.ncbi.nlm.nih.gov/pubmed/19214118
https://doi.org/10.1371/journal.pone.0173893
http://www.ncbi.nlm.nih.gov/pubmed/28380038
https://doi.org/10.1371/journal.pone.0184441
http://www.ncbi.nlm.nih.gov/pubmed/28968404
https://doi.org/10.1128/JVI.01805-17
https://doi.org/10.1128/JVI.01805-17
http://www.ncbi.nlm.nih.gov/pubmed/29212942
https://doi.org/10.1371/journal.pone.0131922
https://doi.org/10.1371/journal.pone.0131922
http://www.ncbi.nlm.nih.gov/pubmed/26146823
https://doi.org/10.1086/341249
https://doi.org/10.1086/341249
http://www.ncbi.nlm.nih.gov/pubmed/12115098
https://doi.org/10.1093/infdis/jiu057
http://www.ncbi.nlm.nih.gov/pubmed/24966194
https://doi.org/10.1038/nm.2004
http://www.ncbi.nlm.nih.gov/pubmed/19597505
https://doi.org/10.1126/sciimmunol.aap8855
https://doi.org/10.1126/sciimmunol.aap8855
http://www.ncbi.nlm.nih.gov/pubmed/29374079
https://doi.org/10.1038/nature13554
http://www.ncbi.nlm.nih.gov/pubmed/25043006
https://doi.org/10.1371/journal.pone.0056527
http://www.ncbi.nlm.nih.gov/pubmed/23437155
https://doi.org/10.1126/scitranslmed.3000632
http://www.ncbi.nlm.nih.gov/pubmed/20484731
https://doi.org/10.1371/journal.ppat.1003976
http://www.ncbi.nlm.nih.gov/pubmed/24603698
https://doi.org/10.1093/infdis/jir659
http://www.ncbi.nlm.nih.gov/pubmed/22006994
https://doi.org/10.1093/infdis/jiu238
http://www.ncbi.nlm.nih.gov/pubmed/24755434
https://doi.org/10.1128/JVI.00451-16
http://www.ncbi.nlm.nih.gov/pubmed/27099312
https://doi.org/10.1056/NEJM200103083441003
https://doi.org/10.1056/NEJM200103083441003
http://www.ncbi.nlm.nih.gov/pubmed/11236775
https://doi.org/10.1111/imr.12065
https://doi.org/10.1111/imr.12065
http://www.ncbi.nlm.nih.gov/pubmed/23772629
https://doi.org/10.1371/journal.ppat.1007222


84. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016; 16(10):626–

38. Epub 2016/08/23. https://doi.org/10.1038/nri.2016.90 PMID: 27546235.

85. Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F, Wang XY, et al. Neonatal innate

TLR-mediated responses are distinct from those of adults. J Immunol. 2009; 183(11):7150–60. Epub

2009/11/18. https://doi.org/10.4049/jimmunol.0901481 PMID: 19917677; PubMed Central PMCID:

PMCPMC4556237.

86. Kollmann TR, Levy O, Montgomery RR, Goriely S. Innate immune function by Toll-like receptors: dis-

tinct responses in newborns and the elderly. Immunity. 2012; 37(5):771–83. Epub 2012/11/20. https://

doi.org/10.1016/j.immuni.2012.10.014 PMID: 23159225; PubMed Central PMCID:

PMCPMC3538030.

87. Mphatswe W, Blanckenberg N, Tudor-Williams G, Prendergast A, Thobakgale C, Mkhwanazi N, et al.

High frequency of rapid immunological progression in African infants infected in the era of perinatal

HIV prophylaxis. Aids. 2007; 21(10):1253–61. https://doi.org/10.1097/QAD.0b013e3281a3bec2

PMID: 17545701.

88. Lyles RH, Munoz A, Yamashita TE, Bazmi H, Detels R, Rinaldo CR, et al. Natural history of human

immunodeficiency virus type 1 viremia after seroconversion and proximal to AIDS in a large cohort of

homosexual men. Multicenter AIDS Cohort Study. J Infect Dis. 2000; 181(3):872–80. https://doi.org/

10.1086/315339 PMID: 10720507.

89. Ananworanich J, Pancharoen C, Sirivichayakul S, Buranapraditkun S, Apateerapong W, Ubolyam S,

et al. Undetectable plasma HIV-1 RNA with strong gag-pol specific interferon-gamma ELISPOT

response in an HIV-1 clade A/E-infected child untreated with antiretroviral therapy. Asian Pac J Allergy

Immunol. 2004; 22(2–3):165–9. Epub 2004/11/30. PMID: 15565954.

90. Tang Y, Huang S, Dunkley-Thompson J, Steel-Duncan JC, Ryland EG, St John MA, et al. Correlates

of spontaneous viral control among long-term survivors of perinatal HIV-1 infection expressing human

leukocyte antigen-B57. Aids. 2010; 24(10):1425–35. Epub 2010/06/12. https://doi.org/10.1097/QAD.

0b013e32833a2b5b PMID: 20539088; PubMed Central PMCID: PMCPMC2903552.

91. McMahon JH, Chang J, Tennakoon S, Dantanarayana A, Solomon A, Cherry C, et al. Post-treatment

control in an adult with perinatally acquired HIV following cessation of antiretroviral therapy. Aids.

2017; 31(9):1344–6. Epub 2017/05/12. https://doi.org/10.1097/QAD.0000000000001472 PMID:

28492397.

92. Persaud D, Gay H, Ziemniak C, Chen YH, Piatak M Jr., Chun TW, et al. Absence of detectable HIV-1

viremia after treatment cessation in an infant. N Engl J Med. 2013; 369(19):1828–35. Epub 2013/10/

25. https://doi.org/10.1056/NEJMoa1302976 PMID: 24152233.

93. Muenchhoff M, Adland E, Karimanzira O, Crowther C, Pace M, Csala A, et al. Nonprogressing HIV-

infected children share fundamental immunological features of nonpathogenic SIV infection. Sci Transl

Med. 2016; 8(358):358ra125. Epub 2016/09/30. https://doi.org/10.1126/scitranslmed.aag1048 PMID:

27683550.

94. Ssewanyana I, Elrefaei M, Dorsey G, Ruel T, Jones NG, Gasasira A, et al. Profile of T cell immune

responses in HIV-infected children from Uganda. J Infect Dis. 2007; 196(11):1667–70. Epub 2007/11/

17. https://doi.org/10.1086/522013 PMID: 18008251.

95. Klatt NR, Bosinger SE, Peck M, Richert-Spuhler LE, Heigele A, Gile JP, et al. Limited HIV Infection of

Central Memory and Stem Cell Memory CD4+ T Cells Is Associated with Lack of Progression in Vire-

mic Individuals. PLoS Pathog. 2014; 10(8):e1004345. Epub 2014/08/29. https://doi.org/10.1371/

journal.ppat.1004345 [pii]. PMID: 25167059; PubMed Central PMCID: PMC4148445.

96. Rotger M, Dalmau J, Rauch A, McLaren P, Bosinger SE, Martinez R, et al. Comparative transcrip-

tomics of extreme phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and rhe-

sus macaque. J Clin Invest. 2011; 121(6):2391–400. Epub 2011/05/11. https://doi.org/10.1172/

JCI45235 PMID: 21555857; PubMed Central PMCID: PMC3104754.

97. Choudhary SK, Vrisekoop N, Jansen CA, Otto SA, Schuitemaker H, Miedema F, et al. Low immune

activation despite high levels of pathogenic human immunodeficiency virus type 1 results in long-term

asymptomatic disease. J Virol. 2007; 81(16):8838–42. https://doi.org/10.1128/JVI.02663-06 PMID:

17537849.

98. Silvestri G, Sodora DL, Koup RA, Paiardini M, O’Neil SP, McClure HM, et al. Nonpathogenic SIV Infec-

tion of Sooty Mangabeys Is Characterized by Limited Bystander Immunopathology Despite Chronic

High-Level Viremia. Immunity. 2003; 18(3):441–52. PMID: 12648460.

99. Chahroudi A, Bosinger SE, Vanderford TH, Paiardini M, Silvestri G. Natural SIV hosts: showing AIDS

the door. Science. 2012; 335(6073):1188–93. Epub 2012/03/10. https://doi.org/10.1126/science.

1217550 PMID: 22403383.

100. Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM, Feeney M, et al. HIV evolution: CTL escape

mutation and reversion after transmission. Nat Med. 2004; 10(3):282–9. https://doi.org/10.1038/

nm992 PMID: 14770175.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007222 November 1, 2018 16 / 18

https://doi.org/10.1038/nri.2016.90
http://www.ncbi.nlm.nih.gov/pubmed/27546235
https://doi.org/10.4049/jimmunol.0901481
http://www.ncbi.nlm.nih.gov/pubmed/19917677
https://doi.org/10.1016/j.immuni.2012.10.014
https://doi.org/10.1016/j.immuni.2012.10.014
http://www.ncbi.nlm.nih.gov/pubmed/23159225
https://doi.org/10.1097/QAD.0b013e3281a3bec2
http://www.ncbi.nlm.nih.gov/pubmed/17545701
https://doi.org/10.1086/315339
https://doi.org/10.1086/315339
http://www.ncbi.nlm.nih.gov/pubmed/10720507
http://www.ncbi.nlm.nih.gov/pubmed/15565954
https://doi.org/10.1097/QAD.0b013e32833a2b5b
https://doi.org/10.1097/QAD.0b013e32833a2b5b
http://www.ncbi.nlm.nih.gov/pubmed/20539088
https://doi.org/10.1097/QAD.0000000000001472
http://www.ncbi.nlm.nih.gov/pubmed/28492397
https://doi.org/10.1056/NEJMoa1302976
http://www.ncbi.nlm.nih.gov/pubmed/24152233
https://doi.org/10.1126/scitranslmed.aag1048
http://www.ncbi.nlm.nih.gov/pubmed/27683550
https://doi.org/10.1086/522013
http://www.ncbi.nlm.nih.gov/pubmed/18008251
https://doi.org/10.1371/journal.ppat.1004345
https://doi.org/10.1371/journal.ppat.1004345
http://www.ncbi.nlm.nih.gov/pubmed/25167059
https://doi.org/10.1172/JCI45235
https://doi.org/10.1172/JCI45235
http://www.ncbi.nlm.nih.gov/pubmed/21555857
https://doi.org/10.1128/JVI.02663-06
http://www.ncbi.nlm.nih.gov/pubmed/17537849
http://www.ncbi.nlm.nih.gov/pubmed/12648460
https://doi.org/10.1126/science.1217550
https://doi.org/10.1126/science.1217550
http://www.ncbi.nlm.nih.gov/pubmed/22403383
https://doi.org/10.1038/nm992
https://doi.org/10.1038/nm992
http://www.ncbi.nlm.nih.gov/pubmed/14770175
https://doi.org/10.1371/journal.ppat.1007222


101. Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, Moodley E, et al. CD8+ T-cell

responses to different HIV proteins have discordant associations with viral load. Nat Med. 2007; 13

(1):46–53. https://doi.org/10.1038/nm1520 PMID: 17173051.

102. Schneidewind A, Brockman MA, Yang R, Adam RI, Li B, Le Gall S, et al. Escape from the dominant

HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in

human immunodeficiency virus type 1 replication. J Virol. 2007; 81(22):12382–93. Epub 2007/09/07.

https://doi.org/10.1128/JVI.01543-07 PMID: 17804494; PubMed Central PMCID: PMCPMC2169010.

103. Maness NJ, Yant LJ, Chung C, Loffredo JT, Friedrich TC, Piaskowski SM, et al. Comprehensive

immunological evaluation reveals surprisingly few differences between elite controller and progressor

Mamu-B*17-positive Simian immunodeficiency virus-infected rhesus macaques. J Virol. 2008; 82

(11):5245–54. https://doi.org/10.1128/JVI.00292-08 PMID: 18385251.

104. Adland E, Hill M, Lavandier N, Csala A, Edwards A, Chen F, et al. Differential Immunodominance Hier-

archy of CD8(+) T-Cell Responses in HLA-B*27:05- and -B*27:02-Mediated Control of HIV-1 Infec-

tion. J Virol. 2018; 92(4). Epub 2017/11/24. https://doi.org/10.1128/JVI.01685-17 PMID: 29167337;

PubMed Central PMCID: PMCPMC5790925.

105. Migueles SA, Mendoza D, Zimmerman MG, Martins KM, Toulmin SA, Kelly EP, et al. CD8(+) T-cell

Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated

through Various Epitopes and Human Leukocyte Antigen Types. EBioMedicine. 2015; 2(1):46–58.

Epub 2015/07/03. https://doi.org/10.1016/j.ebiom.2014.12.009 [pii]. PMID: 26137533; PubMed Cen-

tral PMCID: PMC4485486.

106. Altfeld M, Allen TM, Yu XG, Johnston MN, Agrawal D, Korber BT, et al. HIV-1 superinfection despite

broad CD8(+) T-cell responses containing replication of the primary virus. Nature. 2002; 420

(6914):434–9. https://doi.org/10.1038/nature01200 PMID: 12459786.

107. Kosmrlj A, Read EL, Qi Y, Allen TM, Altfeld M, Deeks SG, et al. Effects of thymic selection of the T-cell

repertoire on HLA class I-associated control of HIV infection. Nature. 2010; 465(7296):350–4. Epub

2010/05/07. doi: nature08997 [pii] https://doi.org/10.1038/nature08997 PMID: 20445539.

108. Kim AY, Kuntzen T, Timm J, Nolan BE, Baca MA, Reyor LL, et al. Spontaneous control of HCV is

associated with expression of HLA-B 57 and preservation of targeted epitopes. Gastroenterology.

2011; 140(2):686–96 e1. Epub 2010/09/30. https://doi.org/10.1053/j.gastro.2010.09.042 PMID:

20875418; PubMed Central PMCID: PMCPMC3021586.

109. Huang H, Duggal P, Thio CL, Latanich R, Goedert JJ, Mangia A, et al. Fine-mapping of genetic loci

driving spontaneous clearance of hepatitis C virus infection. Sci Rep. 2017; 7(1):15843. Epub 2017/

11/22. https://doi.org/10.1038/s41598-017-16011-2 PMID: 29158528; PubMed Central PMCID:

PMCPMC5696522.

110. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al. HLA-B*5701 screening for

hypersensitivity to abacavir. N Engl J Med. 2008; 358(6):568–79. https://doi.org/10.1056/

NEJMoa0706135 PMID: 18256392.

111. Bowness P. Hla-B27. Annu Rev Immunol. 2015; 33:29–48. Epub 2015/04/12. https://doi.org/10.1146/

annurev-immunol-032414-112110 PMID: 25861975.

112. Chen H, Hayashi G, Lai OY, Dilthey A, Kuebler PJ, Wong TV, et al. Psoriasis patients are enriched for

genetic variants that protect against HIV-1 disease. PLoS Genet. 2012; 8(2):e1002514. Epub 2012/

05/12. https://doi.org/10.1371/journal.pgen.1002514 PMID: 22577363; PubMed Central PMCID:

PMC3343879.

113. Ladell K, Hashimoto M, Iglesias MC, Wilmann PG, McLaren JE, Gras S, et al. A molecular basis for

the control of preimmune escape variants by HIV-specific CD8+ T cells. Immunity. 2013; 38(3):425–

36. Epub 2013/03/26. https://doi.org/10.1016/j.immuni.2012.11.021 PMID: 23521884.

114. Pohlmeyer CW, Buckheit RW 3rd, Siliciano RF, Blankson JN. CD8+ T cells from HLA-B*57 elite sup-

pressors effectively suppress replication of HIV-1 escape mutants. Retrovirology. 2013; 10:152. Epub

2013/12/18. https://doi.org/10.1186/1742-4690-10-152 PMID: 24330837; PubMed Central PMCID:

PMCPMC3878989.

115. Chen H, Ndhlovu ZM, Liu D, Porter LC, Fang JW, Darko S, et al. TCR clonotypes modulate the protec-

tive effect of HLA class I molecules in HIV-1 infection. Nat Immunol. 2012; 13(7):691–700. Epub 2012/

06/12. https://doi.org/10.1038/ni.2342 PMID: 22683743; PubMed Central PMCID: PMCPMC3538851.

116. Elahi S, Dinges WL, Lejarcegui N, Laing KJ, Collier AC, Koelle DM, et al. Protective HIV-specific CD8+

T cells evade Treg cell suppression. Nat Med. 2011; 17(8):989–95. Epub 2011/07/19. https://doi.org/

10.1038/nm.2422 PMID: 21765403; PubMed Central PMCID: PMCPMC3324980.

117. Saunders PM, Pymm P, Pietra G, Hughes VA, Hitchen C, O’Connor GM, et al. Killer cell immunoglob-

ulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition. J Exp

Med. 2016; 213(5):791–807. Epub 2016/04/06. https://doi.org/10.1084/jem.20152023 PMID:

27045007; PubMed Central PMCID: PMCPMC4854737.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007222 November 1, 2018 17 / 18

https://doi.org/10.1038/nm1520
http://www.ncbi.nlm.nih.gov/pubmed/17173051
https://doi.org/10.1128/JVI.01543-07
http://www.ncbi.nlm.nih.gov/pubmed/17804494
https://doi.org/10.1128/JVI.00292-08
http://www.ncbi.nlm.nih.gov/pubmed/18385251
https://doi.org/10.1128/JVI.01685-17
http://www.ncbi.nlm.nih.gov/pubmed/29167337
https://doi.org/10.1016/j.ebiom.2014.12.009
http://www.ncbi.nlm.nih.gov/pubmed/26137533
https://doi.org/10.1038/nature01200
http://www.ncbi.nlm.nih.gov/pubmed/12459786
https://doi.org/10.1038/nature08997
http://www.ncbi.nlm.nih.gov/pubmed/20445539
https://doi.org/10.1053/j.gastro.2010.09.042
http://www.ncbi.nlm.nih.gov/pubmed/20875418
https://doi.org/10.1038/s41598-017-16011-2
http://www.ncbi.nlm.nih.gov/pubmed/29158528
https://doi.org/10.1056/NEJMoa0706135
https://doi.org/10.1056/NEJMoa0706135
http://www.ncbi.nlm.nih.gov/pubmed/18256392
https://doi.org/10.1146/annurev-immunol-032414-112110
https://doi.org/10.1146/annurev-immunol-032414-112110
http://www.ncbi.nlm.nih.gov/pubmed/25861975
https://doi.org/10.1371/journal.pgen.1002514
http://www.ncbi.nlm.nih.gov/pubmed/22577363
https://doi.org/10.1016/j.immuni.2012.11.021
http://www.ncbi.nlm.nih.gov/pubmed/23521884
https://doi.org/10.1186/1742-4690-10-152
http://www.ncbi.nlm.nih.gov/pubmed/24330837
https://doi.org/10.1038/ni.2342
http://www.ncbi.nlm.nih.gov/pubmed/22683743
https://doi.org/10.1038/nm.2422
https://doi.org/10.1038/nm.2422
http://www.ncbi.nlm.nih.gov/pubmed/21765403
https://doi.org/10.1084/jem.20152023
http://www.ncbi.nlm.nih.gov/pubmed/27045007
https://doi.org/10.1371/journal.ppat.1007222


118. Martin MP, Qi Y, Gao X, Yamada E, Martin JN, Pereyra F, et al. Innate partnership of HLA-B and

KIR3DL1 subtypes against HIV-1. Nat Genet. 2007; 39(6):733–40. https://doi.org/10.1038/ng2035

PMID: 17496894.

119. Martin MP, Naranbhai V, Shea PR, Qi Y, Ramsuran V, Vince N, et al. Killer cell immunoglobulin-like

receptor 3DL1 variation modifies HLA-B*57 protection against HIV-1. J Clin Invest. 2018; 128

(5):1903–12. Epub 2018/02/21. https://doi.org/10.1172/JCI98463 PMID: 29461980.

120. Alter G, Heckerman D, Schneidewind A, Fadda L, Kadie CM, Carlson JM, et al. HIV-1 adaptation to

NK-cell-mediated immune pressure. Nature. 2011; 476(7358):96–100. Epub 2011/08/05. https://doi.

org/10.1038/nature10237 PMID: 21814282; PubMed Central PMCID: PMC3194000.

121. Altfeld M, Goulder P. ’Unleashed’ natural killers hinder HIV. Nat Genet. 2007; 39(6):708–10. Epub

2007/05/31. https://doi.org/10.1038/ng0607-708 PMID: 17534364.

122. Waggoner SN, Cornberg M, Selin LK, Welsh RM. Natural killer cells act as rheostats modulating antivi-

ral T cells. Nature. 2011; 481(7381):394–8. Epub 2011/11/22. https://doi.org/10.1038/nature10624

PMID: 22101430; PubMed Central PMCID: PMCPMC3539796.

123. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013; 39

(1):1–10. Epub 2013/07/31. https://doi.org/10.1016/j.immuni.2013.07.012 [pii]. PMID: 23890059.

124. Barouch DH, Deeks SG. Immunologic strategies for HIV-1 remission and eradication. Science. 2014;

345(6193):169–74. Epub 2014/07/12. https://doi.org/10.1126/science.1255512 [pii]. PMID:

25013067; PubMed Central PMCID: PMC4096716.

125. Vibholm L, Schleimann MH, Hojen JF, Benfield T, Offersen R, Rasmussen K, et al. Short-Course Toll-

Like Receptor 9 Agonist Treatment Impacts Innate Immunity and Plasma Viremia in Individuals With

Human Immunodeficiency Virus Infection. Clin Infect Dis. 2017; 64(12):1686–95. Epub 2017/03/23.

https://doi.org/10.1093/cid/cix201 PMID: 28329286.

126. Lim SY, Osuna CE, Hraber PT, Hesselgesser J, Gerold JM, Barnes TL, et al. TLR7 agonists induce

transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral ther-

apy. Sci Transl Med. 2018; 10(439). Epub 2018/05/04. https://doi.org/10.1126/scitranslmed.aao4521

PMID: 29720451; PubMed Central PMCID: PMCPMC5973480.

127. Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ, et al. Effect of interleukin-1beta

inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory

results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017; 390(10105):1833–42.

Epub 2017/09/01. https://doi.org/10.1016/S0140-6736(17)32247-X PMID: 28855077.

128. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory

Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017; 377(12):1119–31. Epub

2017/08/29. https://doi.org/10.1056/NEJMoa1707914 PMID: 28845751.

129. Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018;

18(2):91–104. Epub 2017/10/11. https://doi.org/10.1038/nri.2017.112 PMID: 28990586.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007222 November 1, 2018 18 / 18

https://doi.org/10.1038/ng2035
http://www.ncbi.nlm.nih.gov/pubmed/17496894
https://doi.org/10.1172/JCI98463
http://www.ncbi.nlm.nih.gov/pubmed/29461980
https://doi.org/10.1038/nature10237
https://doi.org/10.1038/nature10237
http://www.ncbi.nlm.nih.gov/pubmed/21814282
https://doi.org/10.1038/ng0607-708
http://www.ncbi.nlm.nih.gov/pubmed/17534364
https://doi.org/10.1038/nature10624
http://www.ncbi.nlm.nih.gov/pubmed/22101430
https://doi.org/10.1016/j.immuni.2013.07.012
http://www.ncbi.nlm.nih.gov/pubmed/23890059
https://doi.org/10.1126/science.1255512
http://www.ncbi.nlm.nih.gov/pubmed/25013067
https://doi.org/10.1093/cid/cix201
http://www.ncbi.nlm.nih.gov/pubmed/28329286
https://doi.org/10.1126/scitranslmed.aao4521
http://www.ncbi.nlm.nih.gov/pubmed/29720451
https://doi.org/10.1016/S0140-6736(17)32247-X
http://www.ncbi.nlm.nih.gov/pubmed/28855077
https://doi.org/10.1056/NEJMoa1707914
http://www.ncbi.nlm.nih.gov/pubmed/28845751
https://doi.org/10.1038/nri.2017.112
http://www.ncbi.nlm.nih.gov/pubmed/28990586
https://doi.org/10.1371/journal.ppat.1007222

