
Computational and Structural Biotechnology Journal 21 (2023) 4469–4477

Contents lists available at ScienceDirect

Computational and Structural Biotechnology Journal

journal homepage: www.elsevier.com/locate/csbj

Research Article

DBTRG: De Bruijn Trim rotation graph encoding for reliable DNA storage ✩

Yunzhu Zhao a,1, Ben Cao b,1, Penghao Wang a, Kun Wang a, Bin Wang a,∗

a The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian, Liaoning 
116622, China
b School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China

A R T I C L E I N F O A B S T R A C T

Dataset link: https://

github .com /TalentZ111 /DNA -Storage _DBTRG

Keywords:

DNA storage

De Bruijn Trim graph

Dynamic binary sequence

DNA is a high-density, long-term stable, and scalable storage medium that can meet the increased demands on 
storage media resulting from the exponential growth of data. The existing DNA storage encoding schemes tend 
to achieve high-density storage but do not fully consider the local and global stability of DNA sequences and the 
read and write accuracy of the stored information. To address these problems, this article presents a graph-based 
De Bruijn Trim Rotation Graph (DBTRG) encoding scheme. Through XOR between the proposed dynamic binary 
sequence and the original binary sequence, k-mers can be divided into the De Bruijn Trim graph, and the stored 
information can be compressed according to the overlapping relationship. The simulated experimental results 
show that DBTRG ensures base balance and diversity, reduces the likelihood of undesired motifs, and improves 
the stability of DNA storage and data recovery. Furthermore, the maintenance of an encoding rate of 1.92 while 
storing 510 KB images and the introduction of novel approaches and concepts for DNA storage encoding methods 
are achieved.
1. Introduction

By 2025, the total amount of data generated annually in the world 
will reach 175 ZB, growing at a compound annual rate of 61%, as pre-

dicted by the International Data Corporation [1]. Although big data 
has immense value, it also creates problems with data storage. To ad-

dress the urgent need for a new storage medium and accommodate 
large amounts of data, DNA, a high-storage and high-density storage 
medium, has emerged as an answer [2,3]. Encoding, synthesizing, se-

quencing, and decoding are the four processes of information storage 
using DNA molecules [4]. Utilizing proper encoding and error correc-

tion is essential for the long-term preservation and accurate reading of 
digital information in DNA storage [5].

After digital information has been encoded, DNA data storage stores 
artificial DNA sequences [6]. Information may be kept for thousands 
of years in DNA storage because it is highly dense, stable in the long 
term, and able to store substantial information in a small amount of 

✩ This work is supported by 111 Project (No. D23006), the National Natural Science Foundation of China (Nos. 62272079, 61972266, 61802040), Liaoning 
Revitalization Talents Program (No. XLYC2008017), Natural Science Foundation of Liaoning Province (Nos. 2021-MS-344, 2021-KF-11-03, 2022-KF-12-14), the 
Postgraduate Education Reform Project of Liaoning Province (No. LNYJG2022493), the Dalian Outstanding Young Science and Technology Talent Support Program 
(No. 2022RJ08), the Innovation and Entrepreneurship Team of Dalian University (No. XQN202008).

* Corresponding author.

E-mail addresses: zhaoyunzhu7@gmail.com (Y. Zhao), bencaocs@gmail.com (B. Cao), penghaowang926@gmail.com (P. Wang), 17862833837@163.com

(K. Wang), wangbinpaper@gmail.com (B. Wang).

space [7,8]. Ceze et al. [9] used DNA as a digital information storage 
medium and proposed a novel method to encode digital data into DNA 
sequences. They also discussed how to achieve fast reading, random 
access, and error handling. Their research results showed that DNA 
storage systems are high-density, long-term stable, and large-capacity 
digital storage solutions with broad application prospects. Goldman et 
al. [10] suggested an affordable approach to converting information 
files into DNA sequences using Shannon’s information encoding and file 
segregation techniques, which can help store more information without 
affecting data integrity and readability while providing high data den-

sity. Banal et al. [11] suggested a brand-new technique for encoding 
file data into DNA sequences and storing them in silicon capsules. Their 
method labels single-stranded DNA barcodes on the surface to repre-

sent file metadata. Users can simply choose the file set they desire by 
selecting a specific barcode without having to enlarge it. The study also 
made use of fluorescent sorting technologies to access massive molecu-

lar databases with great sensitivity and selectivity. The highest storage 
Available online 11 September 2023
2001-0370/© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc

1 These authors are joint first authors.

https://doi.org/10.1016/j.csbj.2023.09.004

Received 20 June 2023; Received in revised form 4 September 2023; Accepted 5 Sep
Network of Computational and Structural Biotechnology. This is an open access
-nd/4.0/).

tember 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/csbj
http://https://github.com/TalentZ111/DNA-Storage_DBTRG
http://https://github.com/TalentZ111/DNA-Storage_DBTRG
mailto:zhaoyunzhu7@gmail.com
mailto:bencaocs@gmail.com
mailto:penghaowang926@gmail.com
mailto:17862833837@163.com
mailto:wangbinpaper@gmail.com
https://doi.org/10.1016/j.csbj.2023.09.004
https://doi.org/10.1016/j.csbj.2023.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.09.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Y. Zhao, B. Cao, P. Wang et al.

capacity of DNA-based storage currently is less than 1 GB, which is sig-

nificantly less than most electronic data-storage systems, despite DNA 
having theoretically better storage densities, longer storage durations, 
and cheaper maintenance costs [12]. Furthermore, existing synthesis 
and sequencing technologies for DNA necessarily result in a variety of 
storage uncertainties [13]. Consequently, there remain several chal-

lenges in large-scale implementations of DNA storage. This includes 
finding ways to efficiently synthesize and sequence DNA, enhance the 
security and dependability of the storage, and address technical issues 
related to storing and retrieving massive amounts of data [14]. These 
challenges need to be gradually addressed through in-depth research 
and technological innovation to achieve widespread application of DNA 
storage. Adopting an appropriate and efficient encoding strategy can 
not only improve base utilization but also decrease the probability of 
errors during the DNA synthesis and sequencing [15,16].

Efficient DNA storage encoding schemes and error-correcting al-

gorithms improve the stability and accuracy of DNA storage systems, 
thus effectively ensuring the long-term preservation of digital informa-

tion [17–19]. Erlich et al. [20] proposed a fountain encoding scheme 
that segments binary files into droplets, and then they performed Luby 
transformation and screening to obtain DNA sequences that met certain 
conditions. Wang et al. [21] proposed an encoding scheme that reduces 
redundancy by hiding addressing, thereby reducing the number of base 
pairs required for storage. This encoding scheme has good adaptability 
to indicators with low self-similarity and stable local GC content, and it 
reduces the error rate in DNA synthesis and sequencing while improv-

ing base utilization and optimizing the reliability and efficiency of DNA 
storage. Ping et al. [22] proposed a yin-yang codec system (YYC), which 
encodes two binary bits into a base and uses yin-yang rules for encod-

ing. This encoding method has good robustness and is highly compatible 
with synthesis and sequencing techniques, thus helping obtain more 
reliable DNA sequences. Qu et al. [23] proposed an efficient Clover 
clustering algorithm that uses a tree data structure to search for specific 
intervals between DNA sequences and can quickly cluster large amounts 
of DNA sequences into fewer groups, which promotes the application 
and implementation of DNA storage technology. DNA encoding was 
an essential innovation in DNA storage; it facilitates the preservation 
of data with as few base sequence errors as feasible under restrictions 
[24]. However, DNA data storage still faces many challenges related 
to technology and cost, such as errors in sequence synthesis, sequenc-

ing, storage, and processing, which need to be overcome to better apply 
DNA storage to practical scenarios [25]. Meiser et al. [26] proposed a 
method of using DNA sequences for information storage and retrieval 
and pointed out that molecular errors also occurred in DNA storage, 
mainly due to synthesis, sequencing, storage, and processing. To solve 
these problems, researchers have proposed various methods, such as 
the Marine Predator algorithm [27] and the maximum independent set 
method [28], to design DNA sequences that meet specific constraints. 
Low-density parity-check (LDPC) codes and Reed-Solomon (RS) codes 
have been used to improve error correction. The emergence of new 
technologies such as nanopore sequencers and assembly techniques is 
expected to help achieve more convenient and efficient reading of and 
access to DNA data storage, which can promote the development and 
application of DNA storage technology [29,30]. Yin et al. [27] proposed 
the Marine Predator algorithm, which constructs sequences that meet 
constraints by raising the lower bounds of the encoding sets. Luncasu et 
al. [28] used the frequency matrix game graph to design sequences that 
satisfied combinatorial constraints, which helped improve the reliability 
and efficiency of DNA storage. Cao et al. [31] combined the frequency 
matrix game graph with the maximum independent set to satisfy con-

straint conditions and achieve a more efficient DNA sequence design. As 
DNA storage technology continues to develop, error-correcting capabili-

ties are also constantly improving. Chen et al. [32] encoded two images 
and a video clip into an artificial chromosome, used LDPC codes for 
error correction, and evaluated and compared the error-correcting capa-
4470

bilities of the LDPC and RS codes through computer simulations. Welzel 
Computational and Structural Biotechnology Journal 21 (2023) 4469–4477

et al. [33] proposed an encoding scheme that supports variable-sized 
encoding sequences that can correct substitution, insertion, loss, and en-

tire DNA chain errors. Compared with other DNA storage technologies, 
DNA-Aeon was reported to have better error-correcting capabilities at 
similar redundancy levels and reduced DNA synthesis costs.

The existing DNA storage encoding schemes tend to achieve high-

density storage and neglect the local and global stability of DNA se-

quences and the read and write accuracy of stored information, which 
raises the possibility of data damage and errors during DNA synthesis 
and sequencing. To address these issues, this article proposes the DB-

TRG encoding scheme based on the graph: the image is first converted 
into binary sequences, then split into two halves (C1 and C2) and sub-

jected to an XOR operation. The binary sequence obtained after XOR is 
encoded using the De Bruijn Trim Graph algorithm, and the dynamic 
binary sequence and C2 are encoded using the Rotating Tree algo-

rithm. Characterization of encode generation rules and RS correction 
are addressing data corruption in DNA storage. In Fig. 1, the over-

all process of the encoding scheme is shown, including the De Bruijn 
Trim Graph algorithm and the Rotating Tree algorithm. The overall 
encoding-decoding process is shown in detail (Supplementary Figure 
S1). According to simulated experimental findings, the encoded DNA 
sequences ensure baseline diversity and balance while also preventing 
the emergence of undesired motifs. Therefore, the exhibited stability 
and robust error-correcting capability of this approach can facilitate 
the extensive adoption of graph-based encoding within the realm of 
DNA storage.

2. Methods

Numerous DNA storage encoding schemes have been proposed that 
have demonstrated practical high-density storage capabilities. How-

ever, these schemes have limitations, such as insufficient consideration 
of DNA sequence stability and read/write accuracy. Further research is 
needed to investigate the stability and information storage mechanisms 
of DNA sequences and to develop more robust DNA storage encoding 
schemes that can meet future needs for DNA data processing and stor-

age. The DBTRG encoding scheme proposed in this article includes the 
De Bruijn Trim Graph algorithm and the Rotating Tree algorithm. In 
the De Bruijn Trim Graph algorithm, the binary sequence obtains the 
dynamic binary sequence according to the local constraint rule and con-

ducts an XOR operation with the dynamic binary sequence. The XOR 
result is mapped into the corresponding base sequence to obtain the 
De Bruijn sequence, and the relationship between nodes is used to re-

alize the compression function of the sequence and improve the base 
utilization. In the Rotating Tree algorithm, the information needed in 
the decoding process is stored by building an index tree and a matrix. 
During data recovery, both parts of the encoded information can be de-

coded simultaneously to obtain the data stored in the DNA sequence.

2.1. De Bruijn Trim graph algorithm

2.1.1. Dynamic binary sequence

To obtain the De Bruijn sequence, the article introduces a dynamic 
binary sequence, obtained by performing XOR operations between the 
binary sequence and the dynamic binary sequence. The dynamic binary 
sequence is generated dynamically by the binary sequence according to 
the local constraint rules, which can ensure that the DNA sequence satis-

fies the local and global GC content of 49%–51%, and the homopolymer 
length of two. Base balance and diversity are ensured to obtain high-

quality DNA sequences. When encoding is performed, constraints must 
be observed to ensure the generation of high-quality and reliable DNA 
sequences [34].

When generating the dynamic binary sequence, the binary sequence 
is divided into several sub-sequences of six bits each. Each sub-sequence 
is XORed with the dynamic binary sequence to obtain a new binary se-
quence. This new binary sequence is then mapped to a base sequence, 



Computational and Structural Biotechnology Journal 21 (2023) 4469–4477Y. Zhao, B. Cao, P. Wang et al.

Fig. 1. Overall process of the De Bruijn Trim Rotation Graph encoding scheme.
with the last two bases of each group being identical to the first two 
bases of the adjacent group, resulting in a De Bruijn sequence. The 
required dynamic binary sequence that satisfies the local and global 
constraints for the generated De Bruijn sequence is shown in Algo-

rithm 1. The process of generating the dynamic binary sequence is as 
follows:

Step 1: For the first group of bases, the first six binary sequences and 
the corresponding base sequences after the dynamic binary sequence 
XOR meet the constraints and non-undesired motifs, that is, TGA.

For example, 110100, the original sequence XORed with the dy-

namic binary sequence, obtains 000011 ⊕ 110111 = 110100. Accord-

ing to the rules of 00, 01, 10, and 11 converted to A, G, C, and T, 
respectively, every two bits of the binary correspond to one base, and 
the resulting base sequence is TGA.

Step 2: Starting with the second group, ensure that the first two 
bases of the group coincide with the last two bases of the previous 
group; that is, it is necessary to ensure that the second set of sequences’ 
XOR becomes 0100xx. The first four binary sequences of the second 
group are XORed by 0011 and 0111 to obtain 0100. The last base 
of each group needs to be determined according to the previous GC 
content, undesired motifs, and the balance of bases at odd and even 
positions.

According to this rule, it can be determined that the last base in the 
second group is an A or a T. If it is A, the last two bits of the binary XOR 
are followed by 11. After XORing the last two bits of the second set of 
original sequences, which is 11, with the binary corresponding to A, 
which is 00, the resulting sequence is 00. Therefore, the second group 
of the dynamic sequence would be 010010. The XOR of this sequence 
would result in 011000, and the corresponding base sequence would be 
GAC.

Step 3: The same method can be used to obtain the third group of 
dynamic binary sequences: 111001. The XOR sequence is 001011, and 
the corresponding base sequence is ACT.

2.1.2. De Bruijn Trim graph

The De Bruijn graph (DBG) represents a DNA sequence as a directed 
graph. Given a string 𝑆 = 𝑠1𝑠2… 𝑠𝑛 of length 𝑛, it is divided into a k-

mer sequence of length 𝑘. The structural characteristics of the k-mer 
sequence can be represented using the symbol Σ and the graph 𝐺(𝑉 , 𝐸)
[35]. Here, 𝑉 is the set of all substrings of length 𝑘, that is, the set 
of nodes. 𝐸 represents the connection relationship between adjacent 
k-mers, that is, the set of edges. 𝑉 and 𝐸 are defined as follows:

𝑉 = {𝑣 ∈
∑

𝑘|∃𝑖 ∈ {1, ..., 𝑛} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑣 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖 ∈ 𝑆} (1)

𝐸 = {(𝑣, 𝑣′)|𝑖𝑓 𝑡ℎ𝑒 𝑠𝑢𝑓𝑓𝑖𝑥 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑘− 1 𝑜𝑓 𝑣 𝑖𝑠 𝑎 𝑝𝑟𝑒𝑓𝑖𝑥 𝑜𝑓 𝑣′} (2)

In the DBG, each node represents a k-mer sequence fragment, and 
4471

edges represent the repeat relationship between two k-mer sequence 
Algorithm 1: Algorithm for generating dynamic binary se-

quence.

Input: After the original binary sequence has been divided, XOR.

Output: Dynamic binary sequence.

1 Select a set of adjacent bases in the desirable motifs

2 Save the newly generated sequence

3 Adjacent k-mers overlap (k-1)-mer

4 for indexes and bases do

5 if satisfy the GC content and the balance of bases at positions then

6 select A or T that satisfies the designed motifs

7 else

8 select G or C that satisfies the designed motifs

9 end

10 Convert dynamic base sequence to binary sequence

11 end

12 end

Fig. 2. All k-mers of the sequence have overlapping (𝑘 − 1)-mers and are con-

structed into a De Bruijn graph.

fragments of length 𝑘. Therefore, by constructing the DBG, the size of 
sequence data can be reduced to a manageable range while retaining 
a large amount of information [36]. The DNA sequence is decomposed 
into all possible k-mers (substrings of length 𝑘), and each k-mer is a 
node in the graph. Adjacent k-mers form an edge by overlapping 𝑘 − 1
bases. Fig. 2 can be explained as follows: Let 𝑋 be a DNA sequence on 
the symbol Σ = {A, C, G, T}. Given a reference sequence 𝑋 and an 
integer 𝑘, 𝐷𝐵𝐺(𝑋, 𝑘) represents the DBG with k-mer length of 𝑋. The 
original sequence of this graph is 𝑇𝐶𝐺𝐴𝐴𝐶𝐺𝐴𝑇𝐺𝐺𝐴𝑇𝐶𝐺, and 𝑘 = 3, 
that is, 𝐷𝐵𝐺(𝑋, 3). The De Bruijn Trim graph is the opposite. Since 
edges only exist when there is an overlap of base sequences between 
nodes, this relationship helps to compress the storage space of the base 
sequences. To store the same information using fewer bases during en-

coding, base groups that match the relationship between nodes are first 
obtained, and redundant base pairs are then removed during graph con-
struction.



Y. Zhao, B. Cao, P. Wang et al.

As the DBG divides a sequence into all possible k-mers, any two 
adjacent k-mers share a (𝑘 − 1)-mer. Therefore, the proposed De Bruijn 
Trim graph fully utilizes the overlapping relationship between nodes 
and satisfies the characteristics of a De Bruijn sequence after mapping 
the binary sequences to the base sequences. The De Bruijn Trim graph 
represents a directed graph with overlapping relationships between the 
sequences and is used to show the overlap between the base sequences. 
Although the De Bruijn Trim graph also represents a DNA sequence as 
a directed graph, the k-mer is partitioned in a different way. The De 
Bruijn Trim graph divides the De Bruijn sequence into groups per k-

mer, with the last 𝑘 − 1 bases of the previous group being identical to 
the first 𝑘 − 1 bases of the next group. The edges of the adjacent base 
groups are constructed as a De Bruijn Trim graph, which can clearly 
represent the overlapping relationship in the base sequence and thus 
facilitate the removal of duplicated base pairs. Equations (3)–(6) can be 
used to describe this process.

Assuming 𝑆 = 𝑠1𝑠2… 𝑠𝑛, 𝑆 is divided into k-mers every three bases, 
resulting in a sliding window sequence with a step size of three. The 
element of the sliding window sequence at position 𝑘 is denoted as 𝑤𝑘, 
where 𝑘 ranges from 1 to 𝑛∕3.

𝑤1 = 𝑠1𝑠2𝑠3,𝑤2 = 𝑠4𝑠5𝑠6, ...,𝑤𝑘 = 𝑠𝑛−2𝑠𝑛−1𝑠𝑛 (3)

The last two bases of the current k-mer must be identical to the first 
two bases of the next adjacent k-mer. Therefore, this constraint can be 
expressed as follows:

(𝑠𝑖+1, 𝑠𝑖+2) = (𝑠𝑖+3, 𝑠𝑖+4), 𝑖= 1,4,7,...,𝑛−5 (4)

In summary, the constraint of k-mer partitioning can be expressed as 
follows:

𝑤𝑖 = (𝑠3𝑖−2𝑠3𝑖−1𝑠3𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ [1, 𝑛∕3] (5)

(𝑠3𝑖+1, 𝑠3𝑖+2 = 𝑠3𝑖+4, 𝑠3𝑖+5) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ [1, 𝑛∕3 − 2] (6)

Each k-mer of the De Bruijn sequence forms a node, and the con-

nected nodes have overlapping (𝑘 − 1)-mers. Then, one (𝑘 − 1)-mer of 
one of the nodes is removed, which improves base utilization. Even if 
there are cases where the constraints are not met during the process of 
converting the binary code into bases, by compressing the De Bruijn se-

quence, a base sequence that satisfies the constraints can be created. 
The De Bruijn Trim graph compresses the De Bruijn sequence to sat-

isfy local and global constraints and reduce storage space, as shown in 
Fig. 3. For example, ATC and TCG can be represented as ATCG. There 
will be one redundant base pair every six bases, which is removed as 
redundancy. The dynamic binary sequence and the original binary se-

quence are mapped and compressed after XOR, and the compressed 
sequence complies with the local GC content and homopolymer length 
constraints. Given a set of base pairs, ATC, the next set must be TCG 
or TCC, which can be compressed into ATCC or ATCG in the De Bruijn 
Trim graph.

The De Bruijn Trim Graph algorithm is divided into three parts: 
processing of the dynamic binary sequence, construction of the De 
Bruijn Trim graph, and compression of the De Bruijn sequence. First, 
the binary sequence is grouped at intervals of six bits, and a new bi-

nary sequence is designed with a four-bit prefix and suffix matching. 
Subsequently, all the matching binary sequences are merged, and the 
dynamic binary sequence is obtained by XORing with the binary se-

quence. Next, the binary sequence and the dynamic binary sequence 
are XOR-mapped to obtain a new binary sequence. Then, based on the 
rule that one base is represented by two binary bits, the new binary se-

quence is mapped into the corresponding base sequence, which is the 
De Bruijn sequence. Finally, the De Bruijn sequence is k-merized for 
further analysis and processing. K-merization refers to dividing the se-

quence into strings containing k bases. A window of length k slides 
along the entire base sequence one base at a time, and each sliding pro-
4472

duces a k-sized subsequence. Therefore, a base sequence of length m 
Computational and Structural Biotechnology Journal 21 (2023) 4469–4477

Fig. 3. All adjacent k-mers in the sequence have overlapping (𝑘 − 1)-mers and 
are constructed into a De Bruijn Trim graph.

can be divided into 𝑚 − 2 k-mers. Here, the base sequence is divided 
into groups of three bases, namely 3-mers. Each 3-mer serves as a node 
in the graph. Since adjacent nodes have overlapping (𝑘 − 1)-mers, con-

necting them forms the De Bruijn Trim graph. This graph can show the 
overlapping relationships and order of the sequences. Since every two 
base groups in the De Bruijn Trim graph share a common base pair, 
compression can be performed; that is, the first node takes the entire k-

mer, and each subsequent node only takes the final base and combines 
it with the previous k-1 bases to obtain the compressed DNA sequence. 
The De Bruijn Trim Graph algorithm flow is shown in Fig. 4. C1 and C2 
represent two halves of the binary sequence obtained by converting the 
images. In this article, C1 corresponds to the first half of the original 
binary, and C2 corresponds to the second half of the original binary. 
After applying the XOR operation between C1 and C2, the De Bruijn 
Trim Graph algorithm is used for encoding. On the other hand, C2 is 
encoded using the Rotating Tree algorithm. The combination of these 
two encoding methods can effectively reduce the number of undesired 
motifs and increase the encoding rate.

2.2. Rotating Tree Algorithm

To improve base utilization, information storage can be compressed 
during the encoding process [37]. The Huffman tree encoding with the 
rotating table does not meet sufficient constraints, which will lead to er-

rors in the procedures of synthesis and sequencing in vitro DNA storage 
[38,39]. The Rotating Tree algorithm is proposed to obtain the matrix 
by deleting the same base pair at the same index position in the ro-

tating table. The Rotating Tree algorithm combines the index tree with 
rotating encoding to achieve compression encoding and modifies the ro-

tating table into a matrix. To fulfill the requirement of local GC content, 
it is necessary to adjust the position of base pairs in the matrix. Specifi-

cally, one can achieve this by cyclically shifting elements, ensuring that 
each row has an equal number of repeated base pairs. This approach 
helps maintain the balance of local GC content. Therefore, to avoid 
the occurrence of homopolymers in this process as much as possible, 
the continuous occurrence of repeated base pairs should be considered 
when setting the matrix. And to ensure that the homopolymer length 
is at most 2, which means that consecutive repeated base pairs (such 
as AA, GG, CC, and TT) are not allowed, it is essential to prevent these 
combinations from appearing in the matrix. This can be achieved by 
placing non-repetitive base pairs at the corresponding positions in the 
matrix. For example, if “AA”occurs, the next possible selection should 
not be “AA”as it would result in “AAAA”, which does not meet the re-

quirement of a maximum homopolymer length of 2. If AA, GG, CC, and 
TT are not present in the matrix, then the homopolymer length of any 
two base pair combinations is at most 2.

The set 𝑥 contains four bases: {𝐴, 𝐶, 𝐺, 𝑇 }. Let 𝑥𝑖 denote a distinct 

combination of two bases (with the bases being different) from set 𝑥. 



Computational and Structural Biotechnology Journal 21 (2023) 4469–4477Y. Zhao, B. Cao, P. Wang et al.

Fig. 4. Schematic illustration of an instance of a DNA storage encoding strategy using the De Bruijn Trim Graph algorithm.
Twelve distinct combinations can be formed, such as 𝑥1 = 𝐴𝐶, 𝑥2 =
𝐴𝐺, … , 𝑥12 = 𝑇𝐺. The 𝑖-th row of the matrix can be expressed as fol-

lows:

(𝑀𝑖1,𝑀𝑖2, ...,𝑀𝑖12) = (𝑥𝑖, 𝑥𝑖+1, ..., 𝑥12, 𝑥1, 𝑥2, ..., 𝑥𝑖−1) (7)

Here, the 𝑖-th row of the matrix is represented as 𝑀𝑖1, 𝑀𝑖2, … , 𝑀𝑖12, 
where 𝑀𝑖𝑗 represents the element in the 𝑖-th row and 𝑗-th column. 
𝑥1, 𝑥2, … , 𝑥12 represent the 12 base pairs in the first row, and each 𝑥𝑖
represents the corresponding base pair. The 𝑖-th row represents the base 
pairs starting from 𝑥𝑖 and is cyclically shifted left 𝑖 − 1 positions along 
the column direction. The matrix can be represented by a 12 ×12 𝑚𝑎𝑡𝑟𝑖𝑥, 
given by

𝑀𝑎𝑡𝑟𝑖𝑥 =

⎡⎢⎢⎢⎢⎣

𝑥1 𝑥2 ⋯ 𝑥12
𝑥2 𝑥3 ⋯ 𝑥1
⋮ ⋮ ⋱ ⋮
𝑥12 𝑥1 ⋯ 𝑥11

⎤⎥⎥⎥⎥⎦
(8)

Additionally, it should be emphasized that in the Rotating Tree al-

gorithm, the index tree pertains to a specialized tree structure utilized 
for the purpose of an index (code), which is built using decimal num-

bers and their corresponding frequencies. And the index tree is designed 
such that the leaves of the tree are strictly ordered according to the 
index values ranging from 0 to 10. While the index tree is being con-

structed, the code is controlled at [0, 10], which corresponds to the index 
in the matrix. Each base pair in the matrix corresponds to an index in 
the range [0, 10]. The Rotating Tree algorithm is shown in Fig. 5. First, 
the binary blocks are converted to decimals and sorted by frequency. 
Then, the index tree is constructed following the rules of the Huffman 
tree, with each layer containing the frequency, decimal number, and 
code. Next, the code corresponding to the original decimal number is 
found based on the index tree. Finally, the matrix is used to map the 
corresponding base pairs. During the encoding process, the first base 
pair after the first code is directly selected, and for the second code, the 
base pair that follows the code is determined based on the base pair cor-

responding to the first code. The DNA sequence obtained after matrix 
4473

mapping has a homopolymer length of 2, which ensures base balance 
and diversity. The dynamic binary sequence and the second half of the 
original binary are encoded into DNA sequences by the Rotating Tree 
algorithm and stored for subsequent decoding work.

2.3. Data recovery

During data recovery, the DNA sequence can be divided into the De 
Bruijn Trim Graph sequence and the Rotating Tree sequence by remov-

ing the check bits after RS error correction. The process of transforming 
the DNA sequence into the original binary is a two-step process that in-

volves first transforming the Rotating Tree sequence and then the De 
Bruijn Trim Graph sequence. The Rotating Tree decoding divides ev-

ery two bases into a base pair, and each base pair can be found in the 
matrix. Each base pair corresponds to a code, and the code correspond-

ing to the first set of base pairs defaults to the index corresponding to 
that base pair in the matrix. The first base pair is in the first row of the 
matrix, and then the second base pair is in the matrix. The index ob-

tained by the intersection of the two base pairs is the second code. The 
third code is found by the second base pair and the third base pair, and 
the process is iterated until the codes corresponding to all base pairs 
are found. According to the code and index tree, we find the corre-

sponding decimal of the code and convert it into binary to obtain the 
dynamic binary sequence and C2. The De Bruijn Trim Graph decoding 
first requires the extension of the De Bruijn Trim Graph sequence into a 
De Bruijn sequence following the procedure used to construct the DBG. 
The De Bruijn sequence is converted to binary and XORed with the dy-

namic binary sequence to obtain C1. The data recovery is completed by 
merging C1 and C2 (Fig. 6).

3. Results

To demonstrate the performance of DBTRG in a DNA storage system, 
constraints, encoding rate, error-correcting capability, and other aspects 
were analyzed in detail. “Random Access in Large-Scale DNA Data Stor-

age”proved that undesired motifs in practical experiments did lead to a 
high error rate in DNA sequences [2,42]. The results of the simulated 
experiments demonstrate that DBTRG can meet local and global con-
straints while ensuring the encoding rate, local base balance, diversity, 



Computational and Structural Biotechnology Journal 21 (2023) 4469–4477Y. Zhao, B. Cao, P. Wang et al.

Fig. 5. Schematic illustration of an instance of a DNA storage encoding strategy using the Rotating Tree algorithm.
Fig. 6. Procedure for transforming binary digits from DNA sequences.

and lower probability of undesired motifs. The evaluation results show 
that this approach improves the quality and stability of DNA sequences.

3.1. Encoding performance

To validate the performance of the DBTRG encoding scheme in DNA 
storage systems, DBTRG was compared with previous representative 
works in terms of encode rate, local constraints, and error correction. 
The comparison results are shown in Table 1. The analysis of the table 
4474

data shows that one of the advantages of the DBTRG encoding scheme is 
its ability to control the local GC content within the range of 49%-51%, 
which is better than other representative works. In addition, the DBTRG 
encoding scheme has strict control over the length of homopolymers, 
thus ensuring high base-balance diversity. Therefore, the DBTRG en-

coding scheme exhibits good performance in terms of local GC content 
and homopolymer length. In the process of encoding, an XOR mapping 
between the dynamic binary sequence and its original binary sequence 
is proposed, and the resulting De Bruijn sequence is compressed. Af-

ter the compression is finished, DNA sequences that satisfy the local GC 
content constraints can be generated while ensuring the homopolymer 
length of two. The DNA sequence that satisfies the above constraint con-

ditions improves the reliability and stability of DNA storage [40]. The 
encode rate after adding check bits for verification and error correction 
in the DNA sequence is 1.92.

3.2. Encode fragment performance analysis

To verify the local encoding performance of DBTRG, this section 
compares the local GC content of the sequences after DBTRG encoding 
and YYC encoding. The DNA sequences generated by the two encoding 
methods are taken as 600 bases each and divided into small fragments 
of seven bases each, and then the GC content of each small fragment is 
calculated. This processing method can better compare the differences 
in the local GC content of the two encoding methods and help evalu-

ate their impact on DNA storage performance. As shown in Fig. 7, the 
red line represents the results obtained from the DNA sequence gener-

ated by the DBTRG encoding, and the black line represents the results 
obtained from the DNA sequence generated by the YYC encoding. The 
changes in the curve clearly show that the DNA sequence obtained by 
the graph-based DBTRG encoding scheme in this article has a better lo-

cal GC content balance; this balance can ensure that the generated DNA 
sequences have good base balance and diversity, thereby improving the 

stability and reliability of DNA storage [43]. When the DNA sequence 



Computational and Structural Biotechnology Journal 21 (2023) 4469–4477Y. Zhao, B. Cao, P. Wang et al.

Table 1

Comparison of various DNA-based data storage methods.

Scheme Goldman [10] Grass [41] Anavy [42] Erlich [20] Ping [22] This work

Input data (Mbytes) 0.75 0.08 6.4 2.15 1.40 0.50

Encoding potential (bits/nt) 1.58 1.78 1.93 1.98 1.95 1.92

Error-correcting algorithms Repetition RS RS Fountain RA RS

Robustness against excessive errors Yes Yes Yes No Yes Yes

GC content (%) of sequences 22.5–82.5 12.5–100 — 40–60 40–60 49–51

Maximum homopolymer length (nt) 1 3 — 4 4 2
Fig. 7. Comparison of the two DNA storage systems’ partial local GC base con-

tent.

is long, the change in the local GC content has a greater influence on 
the reliability of DNA storage. Therefore, to improve the efficiency and 
reliability of DNA storage, special attention should be paid to balancing 
the local GC content. The De Bruijn sequence obtained by the dynamic 
binary sequence and the DNA sequence obtained after compressing the 
stored information ensure local base balance and diversity, thus im-

proving the accuracy of reading and writing stored information and 
effectively reducing the error rate during the DNA synthesis and se-

quencing.

3.3. Undesired motifs

Undesired motifs are inappropriate combinations of adjacent bases 
in DNA sequences that can result in interactions between adjacent bases 
and increase the rate of synthesis or sequencing errors, thereby affect-

ing the stability and reliability of DNA storage. Compared with other 
bases, G and T are more prone to random errors. Thus, even identi-

cal bases can have inconsistent error rates because their neighbors are 
different. Among all undesired motifs, the ones with the highest er-

ror rate are TGC, CGC, GTC, and GTG, followed by GAC, CAC, GCG, 
AGA, and ATA. The following is the error rate for each combination of 
undesired motifs: “GTC”: 0.009, “TGC”: 0.0085, “CGC”: 0.008, “GTG”: 
0.008, “GAC”: 0.0068, “GCG”: 0.0067, “AGA”: 0.0065, “ATA”: 0.0067, 
“CAC”: 0.006, “ACT”: 0.0055, “TCT”: 0.0052, “TAT”: 0.0044 [44]. To 
verify the performance of DNA sequences encoded by DBTRG, the num-

ber of undesired motifs in 2000 base sequences was locally counted, 
and the same was done for the sequences encoded by YYC. The results 
of the comparison of the two encoding methods are shown in Fig. 8. 
It indicates that the number of undesired motifs in the DNA sequence 
encoded by YYC is higher than that in the DNA sequence encoded by 
4475

DBTRG. Therefore, encoding by DBTRG reduces the occurrence of un-
Fig. 8. Comparison of the occurrence of undesired motifs in the two DNA stor-

age systems.

desired motifs and improves the reliability and stability of the encoded 
DNA sequence.

3.4. Error correction performance

Errors are inevitable during the synthesis and sequencing of DNA. To 
reduce the error rate of DNA sequences during storage, error-correcting 
algorithms can be used to detect and correct errors. In this article, indels 
are converted into substitutions in the De Bruijn Trim Graph encoding 
DNA sequence according to the nature of the encoding itself. If the in-

dels do not conform to the odd position of A/T and the even position of 
G/C, the base at the corresponding position is deleted or added, which is 
converted into substitution errors. Then RS error correction is added to 
improve the reliability and stability of DNA storage. Fountain encoding 
typically uses a random distribution method to write data blocks into 
DNA sequences, which requires sufficient redundant sequences to re-

cover the data, whereas RS codes divide data into several equally sized 
blocks, encode each block, and then write them into DNA sequences. 
This division method makes RS codes more powerful in error correc-

tion for each data block because each data block is separately encoded 
with error correction. The simulation experiment is conducted under 
the following conditions: an indel rate of 2.04 × 10−3 and a substitution 
rate of 4.5 × 10−3 [44]. We conducted a comprehensive assessment of 
the combined DBTRG approach, and the experimental results are pre-

sented in the Fig. 9, 10, and 11. In handling indel errors, Fountain had 
a better data recovery rate, while DBTRG had a slightly better data re-

covery performance when the error rate was higher. However, when 
handling substitution errors, DBTRG’s data recovery performance was 
significantly better than Fountain’s. By comparing the error correction 
performance of DBTRG and Fountain encoding with the same redundant 
bases, it can be seen that before the crossing point, Fountain encoding 

has better data recovery ability, but after the crossing point, DBTRG 



Y. Zhao, B. Cao, P. Wang et al.

Fig. 9. Data recovery rates of two encoding schemes under mixed errors.

Fig. 10. Error correction analysis for the schemes regarding indel errors.

has significantly better recovery performance. It can be found that the 
DBTRG encoding scheme has better error correction performance.

4. Conclusion

Previous DNA storage encoding schemes have mainly focused on 
high storage density but have not fully considered the local and global 
stability of DNA sequences or the accuracy of information retrieval. 
Therefore, to ensure the quality and reliability of stored data, it is 
necessary to further study and optimize encoding schemes with full 
consideration of the stability and accuracy of DNA sequences. This ar-

ticle describes a graph-based DBTRG encoding scheme that adopts the 
De Bruijn Trim Graph algorithm and the Rotating Tree algorithm. To 
construct De Bruijn sequences that satisfy the overlapping relationship 
between k-mers, this article designs a dynamic binary sequence. By ap-

plying XOR and mapping the original binary sequence with the dynamic 
binary sequence, the De Bruijn sequence is partitioned into k-mers, and 
a De Bruijn Trim graph is constructed according to the overlapping re-

lationship between bases, thereby achieving high storage density and 
low error rates. In the Rotating Tree algorithm, the index tree is used 
4476

to compress the data to obtain the code. Then, the rotating table is im-
Computational and Structural Biotechnology Journal 21 (2023) 4469–4477

Fig. 11. Error correction analysis for the schemes regarding substitution errors.

proved based on previous work to obtain a matrix that can better meet 
the constraints, and the code is converted into base pairs by the ma-

trix. Therefore, the constraints of local GC content and homopolymer 
length can be effectively met, and base balance and diversity can be en-

sured. To ensure read and write accuracy during DNA storage, DBTRG 
uses encoding properties and RS codes for verification and correction. 
The results of simulated experiments indicate that the DBTRG encoding 
scheme proposed in this article achieves local GC content of 49%-51% 
and homopolymer length of 2, which ensures base balance and diversity 
and reduces the probability of undesired motifs. In addition, DBTRG can 
maintain the encoding rate of 1.92, enhancing the stability and data re-

covery rate of DNA storage. This work provides valuable insights for the 
optimization of DNA storage and encoding methods for future research.

Our future work will continue to focus on optimizing the graph-

based DBTRG encoding scheme to increase storage density and obtain 
more stable DNA sequences. We will attempt to solve the encoding 
problem through graph construction, obtain higher-quality DNA se-

quences, and reduce redundancy. Furthermore, the application of deep 
learning techniques in related fields, such as using them for DNA se-

quence classification, prediction, or exploring patterns within DNA se-

quences, has the potential to inspire and guide future research on DNA 
storage and encoding [45,46]. This will ensure that the stored data 
can be safely kept in a smaller physical space and can be effectively 
retrieved and searched. This will help DNA storage systems possess 
greater reliability while achieving high-density storage.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

The data and code are available at the GitHub repository: https://

github .com /TalentZ111 /DNA -Storage _DBTRG

Appendix A. Supplementary material

Supplementary material related to this article can be found online 

at https://doi .org /10 .1016 /j .csbj .2023 .09 .004.

https://github.com/TalentZ111/DNA-Storage_DBTRG
https://github.com/TalentZ111/DNA-Storage_DBTRG
https://doi.org/10.1016/j.csbj.2023.09.004


Computational and Structural Biotechnology Journal 21 (2023) 4469–4477Y. Zhao, B. Cao, P. Wang et al.

References

[1] Kirola M, Memoria M, Shuaib M, et al. A referenced framework on new challenges 
and cutting-edge research trends for big-data processing using machine learning 
approaches. In: 2023 international conference on smart computing and application 
(ICSCA). IEEE; 2023. p. 1–5.

[2] Bornholt J, Lopez R, Carmean D, et al. A DNA-based archival storage system. In: 
Proceedings of the twenty-first international conference on architectural support for 
programming languages and operating systems; 2016. p. 637–49.

[3] Bencurova E, Akash A, Dobson RCJ, et al. DNA storage—from natural biology to 
synthetic biology. Comput Struct Biotechnol J 2023.

[4] Doricchi A, Platnich CM, Gimpel A, et al. Emerging approaches to DNA data storage: 
challenges and prospects. ACS Nano 2022;16(11):17552–71.

[5] Zhirnov V, Zadegan RM, Sandhu GS, et al. Nucleic acid memory. Nat Mater 
2016;15(4):366–70.

[6] Ping Z, Ma D, Huang X, et al. Carbon-based archiving: current progress and future 
prospects of DNA-based data storage. GigaScience 2019;8(6). giz075.

[7] Dong Y, Sun F, Ping Z, et al. DNA storage: research landscape and future prospects. 
Nat Sci Rev 2020;7(6):1092–107.

[8] Cao B, Wang B, Zhang Q. GCNSA: DNA storage encoding with a graph convolutional 
network and self-attention. iScience 2023;26(3).

[9] Ceze L, Nivala J, Strauss K. Molecular digital data storage using DNA. Nat Rev Genet 
2019;20(8):456–66.

[10] Goldman N, Bertone P, Chen S, et al. Towards practical, high-capacity, 
low-maintenance information storage in synthesized DNA. Nature 
2013;494(7435):77–80.

[11] Banal JL, Shepherd TR, Berleant J, et al. Random access DNA memory using Boolean 
search in an archival file storage system. Nat Mater 2021;20(9):1272–80.

[12] Xu C, Zhao C, Ma B, et al. Uncertainties in synthetic DNA-based data storage. Nucleic 
Acids Res 2021;49(10):5451–69.

[13] Antkowiak PL, Lietard J, Darestani MZ, et al. Low cost DNA data storage using 
photolithographic synthesis and advanced information reconstruction and error cor-

rection. Nat Commun 2020;11(1):5345.

[14] Zhang Y, Ren Y, Liu Y, et al. Preservation and encryption in DNA digital data storage. 
ChemPlusChem 2022;87(9):e202200183.

[15] Ezekannagha C, Welzel M, Heider D, et al. DNAsmart: multiple attribute ranking 
tool for DNA data storage systems. Comput Struct Biotechnol J 2023;21:1448–60.

[16] Mu Z, Cao B, Wang P, et al. RBS: a rotational coding based on blocking strategy for 
DNA storage. IEEE Trans Nanobiosci 2023.

[17] Li X, Chen M, Wu H. Multiple errors correction for position-limited DNA sequences 
with GC balance and no homopolymer for DNA-based data storage. Brief Bioinform 
2023;24(1). bbac484.

[18] Rasool A, Jiang Q, Wang Y, et al. Evolutionary approach to construct robust codes 
for DNA-based data storage. Front Genet 2023;14:415.

[19] Rasool A, Qu Q, Wang Y, et al. Bio-constrained codes with neural network for 
density-based DNA data storage. Mathematics 2022;10(5):845.

[20] Erlich Y, Zielinski D. DNA fountain enables a robust and efficient storage architec-

ture. Science 2017;355(6328):950–4.

[21] Penghao W, Mu Z, Sun L, et al. Hidden addressing encoding for DNA storage. Front 
Bioeng Biotechnol 2022:1220.

[22] Ping Z, Chen S, Zhou G, et al. Towards practical and robust DNA-based data archiv-

ing using the Yin–Yang codec system. Nat Comput Sci 2022;2(4):234–42.

[23] Qu G, Yan Z, Wu H. Clover: tree structure-based efficient DNA clustering for DNA-

based data storage. Brief Bioinform 2022;23(5):bbac336.

[24] Zheng Y, Cao B, Wu J, et al. High net information density DNA data storage by the 
MOPE encoding algorithm. IEEE/ACM Trans Comput Biol Bioinform 2023.

[25] Meiser LC, Nguyen BH, Chen JY, et al. Synthetic DNA applications in information 
technology. Nat Commun 2022;13(1):352.

[26] Meiser LC, Antkowiak PL, Koch J, et al. Reading and writing digital data in DNA. 
Nat Protoc 2020;15(1):86–101.

[27] Yin Q, Zheng Y, Wang B, et al. Design of constraint coding sets for archive DNA

storage. IEEE/ACM Trans Comput Biol Bioinform 2021;19(6):3384–94.

[28] Luncasu V, Raschip M. A graph-based approach for the DNA word design problem. 
IEEE/ACM Trans Comput Biol Bioinform 2020;18(6):2747–52.

[29] Song L, Geng F, Gong ZY, et al. Robust data storage in DNA by de Bruijn graph-based 
de novo strand assembly. Nat Commun 2022;13(1):5361.

[30] Park SJ, Park H, Kwak HY, et al. BIC codes: bit insertion-based constrained codes 
with error correction for DNA storage. IEEE Trans Emerg Top Comput 2023.

[31] Cao B, Shi P, Zheng Y, et al. FMG: an observable DNA storage coding method based 
on frequency matrix game graphs. Comput Biol Med 2022;151:106269.

[32] Chen W, Han M, Zhou J, et al. An artificial chromosome for data storage. Nat Sci 
Rev 2021;8(5):nwab028.

[33] Welzel M, Schwarz PM, Löchel HF, et al. DNA-Aeon provides flexible arithmetic 
coding for constraint adherence and error correction in DNA storage. Nat Commun 
2023;14(1):628.

[34] Cao B, Zhang X, Cui S, et al. Adaptive coding for DNA storage with high storage 
density and low coverage. NPJ Syst Biol Appl 2022;8(1):23.

[35] Limasset A, Cazaux B, Rivals E, et al. Read mapping on de Bruijn graphs. BMC 
Bioinform 2016;17(1):1–12.

[36] Yu C, Mao K, Zhao Y, et al. Stliter: a novel algorithm to iteratively build the com-

pacted de Bruijn graph from many complete genomes. IEEE/ACM Trans Comput 
Biol Bioinform 2021;19(4):2471–83.

[37] Ren Y, Zhang Y, Liu Y, et al. DNA-based concatenated encoding system for high-

reliability and high-density data storage. Small Methods 2022;6(4):2101335.

[38] Mishra P, Bhaya C, Pal AK, et al. Compressed DNA coding using minimum variance 
Huffman tree. IEEE Commun Lett 2020;24(8):1602–6.

[39] Liu Y, Ren Y, Li J, et al. In vivo processing of digital information molecularly with 
targeted specificity and robust reliability. Sci Adv 2022;8(31):eabo7415.

[40] Zhang JX, Yordanov B, Gaunt A, et al. A deep learning model for predicting next-

generation sequencing depth from DNA sequence. Nat Commun 2021;12(1):4387.

[41] Grass RN, Heckel R, Puddu M, et al. Robust chemical preservation of digital in-

formation on DNA in silica with error-correcting codes. Angew Chem, Int Ed 
2015;54(8):2552–5.

[42] Anavy L, Vaknin I, Atar O, et al. Data storage in DNA with fewer synthesis cycles 
using composite DNA letters. Nat Biotechnol 2019;37(10):1229–36.

[43] Löchel HF, Welzel M, Hattab G, et al. Fractal construction of constrained code words 
for DNA storage systems. Nucleic Acids Res 2022;50(5) e30-e30.

[44] Organick L, Ang SD, Chen YJ, et al. Random access in large-scale DNA data storage. 
Nat Biotechnol 2018;36(3):242–8.

[45] Lei J, Li J, Liu J, et al. GALFusion: multi-exposure image fusion via a global-local 
aggregation learning network. IEEE Trans Instrum Meas 2023.

[46] Li X, Han P, Chen W, et al. MARPPI: boosting prediction of protein–protein 
interactions with multi-scale architecture residual network. Brief Bioinform 
2023;24(1):bbac524.
4477

http://refhub.elsevier.com/S2001-0370(23)00316-1/bib385303FCEF97C7FA2DCF4A50C2D3E6CEs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib385303FCEF97C7FA2DCF4A50C2D3E6CEs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib385303FCEF97C7FA2DCF4A50C2D3E6CEs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib385303FCEF97C7FA2DCF4A50C2D3E6CEs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibAD59EFCD17B79F680B093BCF8CAAA363s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibAD59EFCD17B79F680B093BCF8CAAA363s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibAD59EFCD17B79F680B093BCF8CAAA363s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib3AC1D6422B7104DF3C6302B1D972E7C7s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib3AC1D6422B7104DF3C6302B1D972E7C7s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibD007306DD7D74193E12341260C93BC6Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibD007306DD7D74193E12341260C93BC6Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib09382B8E13F2FC8E1FC413850350B74Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib09382B8E13F2FC8E1FC413850350B74Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib89BFF2449DDA84AFF5E8F4B383B93397s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib89BFF2449DDA84AFF5E8F4B383B93397s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib9E1220144D17876C170EA84021D48DF6s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib9E1220144D17876C170EA84021D48DF6s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib965A0EEDBB539287C465BD15BF24235Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib965A0EEDBB539287C465BD15BF24235Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib740882DB8F40DA78B23DB3166F72AA55s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib740882DB8F40DA78B23DB3166F72AA55s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib5545CAC089F92F0A2E84ADE069EB1FA7s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib5545CAC089F92F0A2E84ADE069EB1FA7s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib5545CAC089F92F0A2E84ADE069EB1FA7s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib4D11369BBC150010BBAFF0CD7129AFFAs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib4D11369BBC150010BBAFF0CD7129AFFAs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib76C468ADC5D5415DD3B337D9140AFD1As1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib76C468ADC5D5415DD3B337D9140AFD1As1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibAF4BFCDEA0CEC162D8E489C5BC43DE5Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibAF4BFCDEA0CEC162D8E489C5BC43DE5Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibAF4BFCDEA0CEC162D8E489C5BC43DE5Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibAAD94B0B5201F15ADA71289E6F1C7301s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibAAD94B0B5201F15ADA71289E6F1C7301s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibFDA1FCF9288ED383313AD29AEB6FCBBBs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibFDA1FCF9288ED383313AD29AEB6FCBBBs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib6C0D99AE094B49B8B202326178A3A14Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib6C0D99AE094B49B8B202326178A3A14Fs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib5608A7535A22F802ABE2EEDB70A2B5EEs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib5608A7535A22F802ABE2EEDB70A2B5EEs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib5608A7535A22F802ABE2EEDB70A2B5EEs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib4DAA920D458FE261D55FDC365F72545Ds1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib4DAA920D458FE261D55FDC365F72545Ds1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib2F96438152DB5A26BB7D4B1103E329A2s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib2F96438152DB5A26BB7D4B1103E329A2s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib2E6363C3BC64EDE7DDF99D6E0DED9D7Bs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib2E6363C3BC64EDE7DDF99D6E0DED9D7Bs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibA698629548EEA288CE9B843DBE301DDFs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibA698629548EEA288CE9B843DBE301DDFs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib8576B2D0564ED7F6D15D6B6C1121CD7Es1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib8576B2D0564ED7F6D15D6B6C1121CD7Es1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib372D3000C9A9252EC01F916081127DCBs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib372D3000C9A9252EC01F916081127DCBs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibE89826D1503754F55DA2281DC536AB82s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibE89826D1503754F55DA2281DC536AB82s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib6DED9B2A7957B5E22B837A6F1117A083s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib6DED9B2A7957B5E22B837A6F1117A083s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibB3DBF8ADCD5325778ED558F07E3C23EEs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibB3DBF8ADCD5325778ED558F07E3C23EEs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib30148A4CF00F7E0B2297B00BE02F5D38s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib30148A4CF00F7E0B2297B00BE02F5D38s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibB57F1A578AA846F57BDCB37E29E13657s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibB57F1A578AA846F57BDCB37E29E13657s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib08EEE7BD96BC13874D6CAE5B5440CCC8s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib08EEE7BD96BC13874D6CAE5B5440CCC8s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibC0626C85C7C852E4AFF4CDAE8A99ADB3s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibC0626C85C7C852E4AFF4CDAE8A99ADB3s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibB22DEB9C3D009764A57B6DC24D4329FAs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibB22DEB9C3D009764A57B6DC24D4329FAs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib5C6169D0242BEFEB58CB0719F1E5CCFBs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib5C6169D0242BEFEB58CB0719F1E5CCFBs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib77535AED34D8A7C1DF9356CC810E1100s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib77535AED34D8A7C1DF9356CC810E1100s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib77535AED34D8A7C1DF9356CC810E1100s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibBDD97C2F6F372E8C35D83D9D0DE45365s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibBDD97C2F6F372E8C35D83D9D0DE45365s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibA84E73EB052DEBAC68DD80A578C52518s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibA84E73EB052DEBAC68DD80A578C52518s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib940C6725325FF58D551005569855C850s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib940C6725325FF58D551005569855C850s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib940C6725325FF58D551005569855C850s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib6EF6BF18E2CDC2C81877F547346209C0s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib6EF6BF18E2CDC2C81877F547346209C0s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib51A0E060E9F04C1894AB24A498FB73A8s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib51A0E060E9F04C1894AB24A498FB73A8s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibB61E72DDB699774F56C34D29E8E7F1ACs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibB61E72DDB699774F56C34D29E8E7F1ACs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib089E0D94B93601EC86FBFE6972EEC449s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib089E0D94B93601EC86FBFE6972EEC449s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib866E4C9AB008576A91F988734CE2EC50s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib866E4C9AB008576A91F988734CE2EC50s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib866E4C9AB008576A91F988734CE2EC50s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib6AD6C7F3AC03CA7E0D10E5AEA1EEB75As1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib6AD6C7F3AC03CA7E0D10E5AEA1EEB75As1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib3AE368EB6A6C271A83A33F684CC00F66s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib3AE368EB6A6C271A83A33F684CC00F66s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib87AD5F3D5B7B5C4DD6562E0D6637295Bs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bib87AD5F3D5B7B5C4DD6562E0D6637295Bs1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibA1301DFD21FF96BC44AF1468C4D7A7D8s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibA1301DFD21FF96BC44AF1468C4D7A7D8s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibEC5558001F54F4646CAB4BA33B8B6831s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibEC5558001F54F4646CAB4BA33B8B6831s1
http://refhub.elsevier.com/S2001-0370(23)00316-1/bibEC5558001F54F4646CAB4BA33B8B6831s1

	DBTRG: De Bruijn Trim rotation graph encoding for reliable DNA storage
	1 Introduction
	2 Methods
	2.1 De Bruijn Trim graph algorithm
	2.1.1 Dynamic binary sequence
	2.1.2 De Bruijn Trim graph

	2.2 Rotating Tree Algorithm
	2.3 Data recovery

	3 Results
	3.1 Encoding performance
	3.2 Encode fragment performance analysis
	3.3 Undesired motifs
	3.4 Error correction performance

	4 Conclusion
	Declaration of competing interest
	Data availability
	Appendix A Supplementary material
	References


