
at SciVerse ScienceDirect

Neurobiology of Aging 34 (2013) 2077.e1e2077.e9
Contents lists available
Neurobiology of Aging

journal homepage: www.elsevier .com/locate/neuaging
Estrogen-related receptor gamma and hearing function: evidence of a role in
humans and mice

Lisa S. Nolan a, Hannes Maier b, Irm Hermans-Borgmeyer c, Giorgia Girotto d, Russell Ecob a,
Nicola Pirastu d, Barbara A. Cadge a, Christian Hübner c, Paolo Gasparini d, David P. Strachan e,
Adrian Davis a, Sally J. Dawson a,*

aUCL Ear Institute, University College London, London, UK
b Institute of Audioneurotechnology (VIANNA) and Department of Experimental Otology, ENT-Clinics, Medical University Hannover, Hannover, Germany
cCentre for Molecular Neurobiology (ZMNH), Hamburg and Institute of Human Genetics, Jena, Germany
d Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”-DMS, University of Trieste, Trieste, Italy
eDivision of Community Health Sciences, St George’s University of London, London, UK
a r t i c l e i n f o

Article history:
Received 16 October 2012
Received in revised form 5 February 2013
Accepted 15 February 2013
Available online 26 March 2013

Keywords:
Age-related hearing loss
Estrogen
Gene
ESRRG
* Corresponding author at: UCL Ear Institute, 332 Gr
8EE, UK. Tel.: þ44 (0)20 76798935; fax: þ44 (0)20 76

E-mail address: sally.dawson@ucl.ac.uk (S.J. Dawso

0197-4580 � 2013 Elsevier Inc.
http://dx.doi.org/10.1016/j.neurobiolaging.2013.02.009

Open access under CC B
a b s t r a c t

Since estrogen is thought to protect pre-menopausal women from age-related hearing loss, we inves-
tigated whether variation in estrogen-signalling genes is linked to hearing status in the 1958 British Birth
Cohort. This analysis implicated the estrogen-related receptor gamma (ESRRG) gene in determining adult
hearing function and was investigated further in a total of 6134 individuals in 3 independent cohorts: (i)
the 1958 British Birth Cohort; (ii) a London ARHL case-control cohort; and (iii) a cohort from isolated
populations of Italy and Silk Road countries. Evidence of an association between the minor allele of single
nucleotide polymorphism (SNP) rs2818964 and hearing status was found in females, but not in males in
2 of these cohorts: p ¼ 0.0058 (London ARHL) and p ¼ 0.0065 (Carlantino, Italy). Furthermore, assess-
ment of hearing in Esrrg knock-out mice revealed a mild 25-dB hearing loss at 5 weeks of age. At
12 weeks, average hearing thresholds in female mice(-/-) were 15 dB worse than in males(-/-). Together
these data indicate ESRRG plays a role in maintenance of hearing in both humans and mice.

� 2013 Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

The progressive loss of auditory function with advancing years,
age-related hearing loss (ARHL), is the most common sensory
ailment exhibited by the elderly population. Recent estimates
suggest that 438 million individuals worldwide experience
moderate or severe forms of hearing loss, a large proportion of
which is adult onset (Stevens et al., 2011). The etiology of ARHL is
complex; the heritability is estimated to be between 35% and 55%
(Christensen et al., 2001; Gates et al., 1999; Raynor et al., 2009), and
it is exacerbated by environmental factors, particularly noise (Van
Eyken et al., 2007a). Histological studies in both humans (Nelson
and Hinojosa, 2006) and animals (Fetoni et al., 2011) show that
when the cochlea is examined, the predominant pathological
feature is loss of the sensory hair cells, with defects in the stria
vascularis and spiral ganglion neurons also evident. Relatively
few genetic associations with ARHL have been replicated in
ay’s Inn Road, London WC1X
79 8990.
n).

Y-NC-ND license.
independent populations. Associations that have been replicated
include GRHL2 (Van Laer et al., 2008), KCNQ4 (Van Eyken et al.,
2006), and NAT2*6A (Unal et al., 2005; Van Eyken et al., 2007b) in
candidate gene studies, and 2 different metabotropic glutamate
receptors, GRM7 (Friedman et al., 2009; Van Laer et al., 2010) and
GRM8 (Girotto et al., 2011a) have been identified in genome wide
association studies (GWAS). The GWAS so far reported for adult
hearing status exhibit the phenomenon of “missing heritability”
also observed in other common, complex diseases (Manolio et al.,
2009). Given that more than 100 genes are known to be involved
in congenital deafness then it is likely that a similar number are
involved in susceptibility to ARHL. The future challenge in delin-
eating the etiology of ARHL is to discriminate the valid associations
that fall below the genome-wide significance threshold, using
replication studies and functional genomics.

ARHL is more common (Cruickshanks et al., 1998; Helzner et al.,
2005) and more severe (Pearson et al., 1995), with earlier onset
(Davis et al., 1995), in men than in women. Historically, this has
been attributed to greater occupational noise exposure in men
compared to women, but it is clear that sex differences in hearing
loss exist in cohorts without a significant history of noise exposure
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(Girotto et al., 2011b; Pearson et al., 1995). It has therefore been
suggested that estrogen may act as an auditory protectant, and
there is now considerable evidence linking estrogen signaling, the
estrogen receptors (ER), and estrogen-related receptors (ESRR) with
auditory protection (Hultcrantz et al., 2006; McCullar and Oesterle,
2009). Hence, mice carrying a targeted deletion of Erb display an
age-related hearing loss at 12 months, concurrent with a basal to
apical degeneration of the organ of Corti in the cochlea (Simonoska
et al., 2009). Additional studies with mice deficient for both ERb
and CYP19A1, which encodes the aromatase enzyme responsible
for the aromatization of androgens into estrogens, show that these
mice exhibit an impaired response of the auditory system to
acoustic trauma (Meltser et al., 2008). Furthermore, mutations in
the estrogen-related receptor, ESRRB, underlie autosomal recessive,
non-syndromic hearing loss in humans (DFNB35) (Collin et al.,
2008), and Esrrb knockout (KO) mice are deaf by 3 months of age
(Chen and Nathans, 2007). A decline in hearing sensitivity has been
linked tomenopause in both humans (Hederstierna et al., 2010) and
mice (Guimaraes et al., 2004). In addition, women with Turner’s
syndrome who are estrogen deficient undergo an early sensori-
neural hearing loss characteristic of ARHL (Beckman et al., 2004).

Estrogen-related receptor g (ESRRG; NR3B3; ERR3) is an addi-
tional member of the ESRR family, which, together with ESRRB and
a third isoform ESRRA, form the NR3B subgroup of the well-
characterized, nuclear receptor superfamily. All 3 paralogues are
orphan nuclear receptors and share a high structural homology with
the classical ERs (Tremblay and Giguere, 2007). EsrrgmRNA has been
showntobepresent in themouse embryonic inner ear in the cochlear
and vestibular ganglion (Hermans-Borgmeyer et al., 2000), which
suggests a role in the inner ear. Here, we investigate the relationship
between ESRRG and adult hearing status in 3 independent cohorts,
2 population-based hearing cohorts and a case-control association
study in a London-based ARHL cohort. In addition, we report for the
first time that Esrrg knock-out mice are hearing impaired, and we
characterize the expression of ESRRG in the adult mouse inner ear.

2. Methods

2.1. Ethics considerations

In regard to human participants, all studies had appropriate
ethical consent, and consent forms for clinical and genetic studies
were signed by each participant in the study. Ethical approval
for the London ARHL cohort was granted from the Royal Free
Local Research Ethics Committee (ref 6202). For the Isolated
Populations Cohort, approval was granted by the relevant local
ethical committee. Details of the ethical permission and consent
for the 1958 British Birth Cohort (B58C) can be found at http://
www.b58cgene.sgul.ac.uk/consent.php. In regard to animal use
and care, Sprague-Dawley rats and C57BL/6J mice used in this study
were sacrificed according to the UK Scientific Procedures Act, 1986.
Generation and care of the animals and experimental procedures
were in accordance with institutional guidelines and national laws
for protection of experimental animals, and were approved by the
local animal ethics committee (Hamburg 69/01).

2.2. Subjects

2.2.1. B58C cohort
The B58C and the collection of hearing data have been described

previously (http://www.b58cgene.sgul.ac.uk/; Ecob et al., 2008;
Strachan et al., 2007). In brief, participants were drawn up from
17,638 individuals born in England, Scotland, and Wales in 1 week
of March 1958. Of the original cohort, 9377members were revisited
by a research nurse for a biomedical follow-up in 2002e2004.
Hearing measure consisted of pure tone audiometry at 1 kHz and
4 kHz at age 44e45 years and were adjusted for sex, nuisance
variables (noise at test, nurse performing test, audiometer used in
test), conductive loss, and hearing loss in childhood. DNA was
collected from 3900 of these individuals and genotyped for 555,164
single nucleotide polymorphisms (SNPs) on the Illumina Infinium
Human Hap550 array (data deposited by Dr Panos Deloukas,
Wellcome Trust, Sanger Institute, Cambridge, UK). These genetic
data have been used extensively as part of the Wellcome Trust Case
Control Consortium (WTCCC), (https://www.wtccc.org.uk/) (Barrett
et al., 2009; WTCCC, 2007). No associations from the analysis of
B58C genetic data and hearing thresholds at age 44-45 reached
genome-wide significance (a version of this analysis can be
accessed at: http://www.b58cgene.sgul.ac.uk/).

2.2.2. London ARHL cohort
A total of 260 patients with sensorineural hearing loss (SNHL)

consistentwith an age-related declinewere recruited from the adult
hearing aid clinic at the Royal National Throat Nose and EarHospital,
London; this formed our initial patient group (ARHL_1). All were
interviewed by an audiological physician and underwent an
audiometric examination. Air conduction and bone conduction
thresholds at 0.25, 0.5, 1, 2, 4, and 8 kHz and 0.5, 1, 2, and 4 kHz,
respectively were measured with masking according to BSA Rec-
ommended Procedures (http://www.thebsa.org.uk/docs/RecPro/
PTA.pdf). At interview, a questionnaire was completed that recor-
ded relevant medical history, family history of hearing loss, and
history of noise exposure. This questionnaire was then amended
based on answers to stage 1 questions to become self-directional,
and patient recruitment was extended to the Royal Free Hospital,
London. An additional 323 patients were recruited across both
hospitals, forming our replication group (ARHL_2) and bringing the
total number of patients to 583 (ARHL_COM). Patients were subse-
quently categorized for family history and for noise exposure. Noise
exposure was graded using the occupations listed by Lynch and Kil,
2005 and Tak and Calvert, 2008 as a guide: Grade 0 ¼ no noise
exposure documented; Grade 1 ¼ low to medium noise exposure;
andGrade 2¼medium-to-high noise exposure. (For questionnaires,
see Supplementary information S1). Patients were not excluded
fromthe study if therewas an asymmetric hearing loss as long as the
better hearing ear was consistent with the criteria for late-onset
SNHL. (Full details of the exclusion criteria are available upon
request). With regard to controls, the control sample group
comprised ECACC Human Random Control (HRC) DNA panels. In
association analysis, all samples were of white European origin.

2.2.3. Isolated populations cohort
Isolated populations were recruited from Italy and Silk Road

countries (for an overall number of 1651 subjects) belong to the
International Consortium G-EAR, described previously (Girotto et al.,
2011a). In brief, several quantitative measures of hearing function
were undertaken: air conduction thresholds were determined at 0.25
kHz, 0.5 kHz, 1 kHz, 2 kHz, 4 kHz, and 8 kHz and pure tone averages
(PTAs)of air conduction thresholdsweredetermined for: PTAlow (0.25,
0.5 and 1 kHz), PTAmedium (0.5,1 and 2 kHz) and PTAhigh (4 and 8 kHz).

2.3. Genotyping

2.3.1. London ARHL cohort
Genomic DNA was extracted from blood, using a standard

phenol-chloroform extraction procedure, or from saliva, using Ora-
gene DNA extraction kits (DNAgenoTek, Kanata, Ontario, Canada).
The ESRRG rs2818964 SNP genotyping was performed using ABI
TaqMan SNP genotyping assay (C_222941_10) on a SDS7500 Real
Time PCR System (Life Technologies, Paisley, UK). Each plate
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contained a control sample of each genotype. Genotyping rates for
rs2818964 were: 99.7%, and 99.4% in ARHL_COM and control pop-
ulations, respectively. Genotype frequencies for rs2818964 did not
deviate from HardyeWeinburg equilibrium (HWE) in ARHL_1 (p ¼
0.4000), ARHL_2 (p ¼ 0.7651), ARHL_COM (p ¼ 0.4310), or the
control population (p ¼ 0.7199). Genotyping for the B58C and
International Consortium, G-Ear has been described previously
(http://www.b58cgene.sgul.ac.uk/; Barrett et al., 2009; WTCCC,
2007; Girotto et al., 2011a).

2.4. Reverse transcriptionepolymerase chain reaction

Cochlea, kidney, and spleen tissues were dissected from P2-P30
female rats and transferred to RNAlater (Qiagen, Manchester, UK),
and total RNA was extracted using a RNeasy kit (Qiagen, Man-
chester, UK). Samples were treated with RQ1 RNase-Free DNase
(Promega, Southampton, UK), and 1 mg RNAwas reverse transcribed
in a 20-mL reaction with Omniscript reverse transcriptase (Qiagen,
Manchester, UK) and random primers (Promega, Southampton,
UK). Esrrg forward (50-agagttggtggttatcattggatg-30) and reverse (50-
agaaggctcatctgatccgc-30) primers and Gapdh forward (50-aacgg-
gaagcccatcacc-30) and reverse (50-cagccttggcagcaccag-30) primers
were used to amplify an 81 bp Esrrg and 442 bp Gapdh cDNA
fragment, respectively using 2 mL cDNA and 0.5 U GoTaq DNA
polymerase (Promega, Southampton, UK) in a total volume of 20 mL.
Cycling conditions were as follows. Esrrg: an initial denaturation
step at 95 �C for 2 minutes, followed by 40 cycles at 95 �C for 15
seconds; 60 �C for 60 seconds; and 72 �C for 30 seconds. Gapdh: an
initial denaturation step at 95 �C for 2 minutes followed by 25
cycles at 94 �C for 30 seconds; 60 �C for 30 seconds; and 72 �C for 30
seconds. Polymerase chain reaction (PCR) products were separated
by standard agarose gel electrophoresis.

2.5. Antibodies

The rabbit polyclonal anti-ESRRG antibody has been described
previously and was a gift from Dr Ronald Evans, Salk Institute for
Biological Studies, SanDiego, CA,USA (Dufour et al., 2007) andused at
1:200, whereas goat anti-rabbit AlexaFluor488 secondary antibody
was used at 1:1000 dilution (Life Technologies, Paisley, UK).

2.6. Vibratome sectioning and immunofluorescence

Auditory bullae were dissected from female mice, fixed in
4% paraformaldehyde for 1 hour at room temperature, washed in
phosphate-buffered saline solution (PBS) and decalcified in 4.13%
ethylenediaminetetraacetic acid (EDTA), pH7.4, in PBS for 72 hours at
4 �C. Bullae were mounted in 4% low melting point agarose (Sigma-
Aldrich, Gillingham, UK) and sectioned at 300 mm using a 1000 Plus
Vibratome (Intracel, Royston, UK). Vibratome slices were per-
meabilizedandblocked in0.5%Triton-X100with10%goat serum for2
hours at room temperature and incubatedwith primary antibodies at
4 �C overnight. After PBS washes, slices were incubated with
secondaryantibodies for2hours at roomtemperature in thedark.Hair
cell stereocilia were stained with Phalloidin-Atto 647N to f-actin
(Sigma-Aldrich, Gillingham, UK), which was added to the secondary
antibody incubations at 1:200; nuclei were visualized with 1 mmol/L
DAPI. Imaging was performed with a laser scanning confocal micro-
scope (LSM Meta 510; Zeiss, Oberkochen, Germany) using �10
(0.3 NA), �20 (0.75 NA), and �63 (1.2 NA) objectives.

2.7. Generation of Esrrg KO mice

A bacterial artificial chromosome (BAC) clone containing the
Esrrg gene was identified from mouse strain 129/SvJ BAC library
pools (Genome Systems, St. Louis, MO, USA) by PCR-based
screening. A 1665-bp PCR fragment ending with a synthetic NruI
site in the second coding exon was amplified from the BAC clone
and used as the 50 homology region. It was placed in front of a lacZ
marker gene of pTLZN such that the start methionines of Esrrg and
that of the b-galactosidase (b-gal) reporter coincide. In addition, the
parental vector harbors a PGK-neomycin-bpA (neo) cassette
oriented in the opposite direction. A 4356-bp BamHI fragment
starting further downstream at a BamHI site in the same exon and
ending in the neighboring intron was used as 30 homology region.
Both the combination of 50 homology region with the lacZ
neomycin cassette and the 30 homology region were inserted in
pKO with a flanking diphtheria toxin subunit cassette (dta) as
a negative selection marker. The construct was linearized with NotI
and purified by a standard phenol-chloroform extraction. The NotI-
linearized Esrrg targeting construct was introduced by electro-
poration into R1 ES cells (129 X1�129 S1) (Nagy et al., 1993), a kind
gift from Prof. A. Nagy (Samuel Lunenfeld Research Institute, Tor-
onto, ON, Canada), which were then selected with 200 mg G418 per
milliliter of medium. Southern blot analysis was performed to
identify ES clones that had undergone homologous recombination.
EcoRI-digested genomic DNA prepared from resistant ES cell clones
was probed with a 509-bp fragment derived from genomic
sequences located 30 of the targeting vector. The radiolabeled probe
recognized a 20-kb fragment of the wild-type allele and an 11-kb
fragment of the targeted allele. Appropriate integration at the 50

end of the targeting construct was verified by rehybridization of the
blot with a 912-bp fragment located 50 of the targeting vector. This
probe hybridized to a 14.5-kb fragment in the targeted allele, as
opposed to the 20-kb fragment in the wild-type allele. Cells from 3
correctly targeted lines were injected into C57BL/6J blastocysts to
generate chimeras, and chimeric males mated to C57BL6/J females
transmitted the targeted allele to their offspring. Homozygous
mutant mice were generated by heterozygote intercrosses. Geno-
typing was routinely performed by Southern blot analysis. DNAwas
isolated with a genomic DNA kit (Applichem, Darmstadt, Germany)
from tail tips. No mRNA transcripts or protein for the Esrrg gene
were detected in the Esrrg KO mice (data not shown). Studies were
performed with littermates of the F2 and F3 generation of Esrrg
KO mice.

2.8. Auditory brainstem responses

To evaluate hearing thresholds ABR to clicks were recorded in
anesthetized animals (xylazin hydrochloride 16 mg/kg body
weight, and S-ketamin hydrochloride 60 mg/kg body weight) in
a sound-proof chamber. Alternating acoustic stimuli were delivered
monaurally at a rate of 21/s using a Beyer DT-48 earphone and
monitored with a probe microphone (MK301, Microtech Gefell,
Gefell, Germany) integrated into the earpiece. Bioelectric potentials
were recorded by subcutaneous silver electrodes at both mastoids
and responses averaged (400-2000). Stimulus intensities were
varied starting at 117 peak equivalent dB SPL [pe dB SPL] in incre-
ments of 20 dB except near threshold where 5 dB steps were used.
The hearing threshold was defined as the lowest intensity to
generate a reproducible ABR waveform.

2.9. Statistical analysis

For B58C, hearing thresholds at 1 kHz and 4 kHz were log
transformed and adjusted for sex, nuisance variables, and conduc-
tive hearing loss in childhood; they were analyzed by performing
a 1-df “per allele” significance test for association between mean
hearing threshold and number of minor alleles (0,1, or 2), and a 2-df
significance test for association between mean hearing threshold

http://www.b58cgene.sgul.ac.uk/


Table 1
Evidence of association for ESRRG rs2818964 with hearing status in the 1958 British
Birth Cohort

Pure tone
frequency

Trend
directiona

(n) Allele
(p value)b

Genotype
(p value)c

4 kHz A 3614 0.0008 0.0008
4 kHz (male) A 1776 0.0157 0.0092
4 kHz (female) A 1838 0.0212 0.0624
4 kHz �N A 3230 0.0004 0.0010
4 kHz þN A 384 0.8232 0.2127
1 kHz A 3632 0.5372 0.2713
1 kHz �N A 3246 0.6959 0.4243
1 kHz þN A 386 0.4600 0.4528

a Allele associated with poorer hearing thresholds.
b A 1-df significance test for association between mean hearing threshold and

number of minor alleles (0, 1, or 2); “per allele model”.
c A 2-df significance test for association between mean hearing threshold and

genotype; “genotype model”; p values less than 0.05 are shown in bold. �N: less
than 5 years of noise exposure, þN: more than 5 years of noise exposure.

L.S. Nolan et al. / Neurobiology of Aging 34 (2013) 2077.e1e2077.e92077.e4
and genotype. This analysis has been described previously (http://
www.b58cgene.sgul.ac.uk/; Ecob et al., 2008; Strachan et al.,
2007). Results were ranked according to p value and the 500
SNPs with lowest p value analyzed as a candidate gene set (see
Supplementary information S2, available online). For the London
ARHL cohort, deviation from HWE and differences in genotype and
allele frequencies were evaluated by c2 test with a significance
threshold of p < 0.05. Unless otherwise stated, MedCalc (version
11.2) was used to calculate the odds ratios (OR) and 95% confidence
intervals (CI). Backward stepwise logistic regressionwas performed
using the likelihood ratio procedure. Patient diagnosis was declared
the dependent variable (1 ¼ affected, 0 ¼ unaffected), and sex and
SNP genotype the independent variables. Sex was set as a categor-
ical variable (1 ¼ female, 0 ¼male). For the recessive and dominant
genetic models, genotypes were set as a categorical variable:
recessive (GG¼ 1, GAþAA¼ 0); dominant (GAþGG¼ 1, AA¼ 0). For
the additive genetic model, genotypes were treated as a continuous
covariate (0 ¼ AA, 1 ¼ GA and 2 ¼ GG). For the co-dominant model,
genotypes were coded as for the additive model, but treated as
independent categorical variables and the AA genotype set as the
reference. All statistical tests were conducted using SPSS :Statistics
(version 17.0) unless otherwise stated. For the candidate gene
association analysis in the London ARHL cohort, we used a p value
of 0.05 as a test of significance, based on the primary analysis being
that of a single SNP in a single candidate gene. Subsequent strati-
fication analysis for effects of sex, family history, and noise exposure
is a secondary analysis of the effect of the same SNP and a Bonfer-
roni correction for multiple testing was therefore considered overly
conservative. Isolated Populations Cohort: association analysis was
adjusted for age by regressing it out and the residuals were then
normalized using rank normal transformation. Association analysis
was conducted using a mixed model linear regression, where the
kinship matrix was the random effect and the SNP the fixed effect
as implemented in GenABEL (Aulchenko et al., 2007).

3. Results

3.1. B58C

Hearing thresholds at age 44 to 45 years collected as part of the
B58C (Ecob et al., 2008) were compared to genetic data obtained on
the same individuals as part of the Wellcome Trust Case Control
Consortium (Barrett et al., 2009; WTCCC, 2007) (these data are
available at http://www.b58cgene.sgul.ac.uk/phenosearch.php?
pheno¼6). To investigate the role of estrogen in adult hearing, the
500 SNPs most strongly associated with hearing thresholds in the
B58C GWAS data were screened for presence of estrogen signaling
genes. The rs2818964 SNP located in the last intron of the long
isoform of the ESRRG gene (transcript ENST00000361525) was the
only SNP within an estrogen candidate gene locus identified in the
top 500 SNPs. Rs2818964 was associated with hearing status at 4
kHz, allelic effect p¼ 0.0008 (Table 1). Because of the different roles
of estrogen in males and females, the data were also dichotomized
according to sex; evidence of association was found to be stronger
in males than in females for both allelic (p ¼ 0.0157 males; p ¼
0.0212 females) and genotype (p ¼ 0.0092 males; p ¼ 0.0624
females) effects. Detection of stronger associations with hearing
loss in males can be a surrogate for the effect of greater noise
exposure. However, stratification of data according to number of
years of noise exposure (>5 years or <5 years) identified an asso-
ciation only in subjects reporting less than 5 years of noise exposure
(allelic effect p ¼ 0.0004). In each of these associations, the trend
direction was consistent with the major allele, A, being associated
with poorer hearing. No associationwas identified between hearing
thresholds at 1 kHz and SNP rs2818964.
3.1.1. London ARHL cohort
To determine whether the ESRRG rs2818964 SNP may be asso-

ciated with risk of ARHL, we performed a case-control association
study in a London ARHL cohort (Table 2). The minor allele, G, of SNP
rs2818964 was more common in our initial patient group, ARHL_1,
compared to controls, but only in women (p ¼ 0.0385) (Table 2).
This sex-specific association was consistent in our replication
group, ARHL_2, and in the combined cohort, ARHL_COM, for both
allele (p ¼ 0.0139 and p ¼ 0.0058, respectively) and genotype
effects (p ¼ 0.0384 and p ¼ 0.0238, respectively). Backward logistic
regression analysis with rs2818964 genotypes re-coded based on
dominant, co-dominant, recessive, and additive inheritance models
showed that the additive model alone was significant and iden-
tified a sexegenotype interaction (p ¼ 0.0073, OR ¼ 1.40, 95%
CI ¼ 1.10e1.80). In contrast to the trend direction observed in the
B58C, these data suggested at least 1 copy of the minor allele, G, of
SNP rs2818964 is associated with risk of ARHL in women.
Secondary analysis to examine the effect of noise exposure and
family history of ARHL on this association identified the strongest
evidence of association in nonenoise-exposed women who report
a family history of ARHL (allelic effect p ¼ 0.0023, ORG/A ¼ 1.61, 95%
CI ¼ 1.84e2.20; see Supplementary information S3, available
online). In contrast, no evidence of an association was identified in
males for any of the subgroups examined.

3.1.2. Isolated populations cohort
The ESRRG SNP rs2818964 was genotyped in cohorts collected as

part of the G-EAR International Consortium (Girotto et al., 2011a)
incorporating cohorts from several distinct European isolated pop-
ulations including Carlantino, Friuli Venezia Giulia Genetic Park, and
different countries located along the Silk Road (Georgia, Azerbaijan,
Uzbekistan, Kazakhstan, and Tajikistan). The relationship between
the ESRRG rs2818964 SNP and quantitative measures of hearing
were analyzed for each population and for the combined cohort.
Given the evidence of a sex-specific association in the London ARHL
cohort and the role of estrogen, males and females were examined
separately (Table 3). Analysis of each population showed evidence of
a significant association only in women from the Carlantino pop-
ulation for thresholds averaged across Pure Tone Average (PTA) at
low and medium frequencies and at each of the individual low and
medium pure tone thresholds (0.125, 0.25, and 0.5 kHz, 1 kHz, and
2 kHz), with the strongest association occurring at 2 kHz (p ¼
0.0065). No evidence for association with hearing thresholds was
found for women in the Friuli Venezia Giulia Genetic Park and Silk
Road populations or for males in any of the 3 populations. When
data from the 3 cohorts were combined, evidence of an association
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Table 2
Genotype and allele frequency distribution of ESRRG rs2818964 in the London Age Related Hearing Loss cohort

Control ARHL_1 p value ARHL_2 p value ARHL_COM p value ORG/A (95% CI)

All
N 477 260 323 583

Genotype frequency (n)
AA 0.38 (180) 0.35 (91) 0.4783 0.33 (105) 0.1237 0.34 (196) 0.2079
AG 0.47 (223) 0.46 (120) 0.48 (156) 0.47 (276)
GG 0.15 (74) 0.19 (49) 0.19 (62) 0.19 (111)

Allele frequency (n)
A 0.61 (583) 0.58 (302) 0.2559 0.57 (366) 0.0751 0.57 (668) 0.0751
G 0.39 (371) 0.42 (218) 0.43 (280) 0.43 (498)

Females
N 243 111 162 273

Genotype frequency (n)
AA 0.41 (99) 0.31 (34) 0.1209 0.33 (53) 0.0384 0.32 (87) 0.0238
AG 0.46 (111) 0.49 (55) 0.44 (72) 0.46 (127)
GG 0.13 (33) 0.20 (22) 0.23 (37) 0.22 (59)

Allele frequency (n)
A 0.64 (309) 0.55 (123) 0.0385 0.55 (178) 0.0139 0.55 (301) 0.0058 1.42 (1.11e1.82)
G 0.36 (177) 0.45 (99) 0.45 (146) 0.45 (245)

Males
N 233 148 161 309

Genotype frequency (n)
AA 0.35 (81) 0.38 (56) 0.7671 0.32 (52) 0.6669 0.35 (108) 0.9723
AG 0.48 (111) 0.44 (65) 0.52 (84) 0.48 (149)
GG 0.17 (41) 0.18 (27) 0.16 (25) 0.17 (52)

Allele frequency (n)
A 0.59 (273) 0.60 (177) 0.7401 0.58 (188) 0.9563 0.59 (365) 0.8743
G 0.41 (193) 0.40 (119) 0.42 (134) 0.41 (253)

Differences in genotype and allele frequencies between patients and controls were assessed by c2-test; p values that are significant at the 5% level are shown in bold. ORs and
95% CIs were calculated only for significant p values relative to the major allele as reference (G/A).
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was found with PTA at medium frequencies (allelic effect p ¼
0.0385) and at 1 kHz (p ¼ 0.0157) in women only. For each of these
associations, theminor allele, G, was associatedwith poorer hearing,
which is consistent with the trend direction observed in the London
ARHL cohort but in contrast to the B58C cohort.

3.2. Esrrg KO mice are hearing impaired

To explore the role of ESRRG in the cochlea, we generated a novel
Esrrg KO mouse model by targeting the second exon of the mouse
Esrrg gene with a lacZ-neomycin fusion cassette by homologous
recombination in mouse embryonic stem cells. Consistent with the
Table 3
Evidence of association for ESRRG rs2818964 with hearing status in Isolated Populations

Quantitative trait Combined populations Carlantino project

(n) p value Trend directiona (n) p value Trend direct

Female 0.125 kHz 804 0.0638 G 171 0.0795 G
Female 0.25 kHz 977 0.4509 G 172 0.0172 G
Female 0.50 kHz 977 0.2563 G 172 0.0262 G
Female 1 kHz 977 0.0157 G 172 0.0286 G
Female 2 kHz 976 0.0640 G 172 0.0065 G
Female 4 kHz 962 0.4220 G 172 0.2290 G
Female 8 kHz 947 0.3370 G 172 0.6325 G
Female PTAlow 977 0.1454 G 172 0.0156 G
Female PTAmedium 977 0.0385 G 172 0.0101 G
Female PTAhigh 962 0.3582 G 172 0.4407 G
Male 0.125 kHz 547 0.5105 G 120 0.6431 G
Male 0.25 kHz 674 0.4498 G 121 0.2777 A
Male 0.50 kHz 674 0.0847 G 121 0.6631 G
Male 1 kHz 674 0.1362 G 121 0.4953 G
Male 2 kHz 674 0.8231 A 121 0.8827 A
Male 4 kHz 667 0.5413 G 121 0.5997 A
Male 8 kHz 659 0.7290 A 121 0.4821 A
Male PTAlow 674 0.1692 G 121 0.9900 A
Male PTAmedium 674 0.4879 G 121 0.7997 G
Male PTAhigh 667 0.7590 G 121 0.4522 A

a Allele associated with poorer hearing thresholds. Association analysis was conducted
shown in bold.
published data for the 2 previously reported Esrrg KO mouse
models (S strain, Salk Institute, Alaynick et al., 2007; G strain,
GlaxoSmithKline/Deltagen, Alaynick et al., 2010) only a fraction of
our mice homozygous for the Esrrg deletion survived into adult-
hood; most died in the early postnatal period before the onset of
hearing. This limited the number of homozygous Esrrg KO mice that
could be analyzed. Auditory evoked brain stem responses (ABRs)
hearing thresholds in Esrrg heterozygotes were not statistically
different from those inwild-type animals, and therefore both groups
were pooled for controls. Hearing thresholds in Esrrg KO mice were
significantly elevated at 5 weeks and 12weeks of age (Fig. 1B). In the
oldest group, at 18 weeks, this difference was still present, but only
Cohort

Silk Road Friuli Venezia Giulia project

iona (n) p value Trend directiona (n) p value Trend directiona

No data No data No data 633 0.2390 G
171 0.5018 G 634 0.9847 A
171 0.1020 G 634 0.3235 A
171 0.7825 G 634 0.0577 A
170 0.2899 G 634 0.1875 A
171 0.5997 G 619 0.5483 A
171 0.7240 G 604 0.2844 A
171 0.2886 G 634 0.3157 A
171 0.2401 G 634 0.0889 A
171 0.6116 G 619 0.3471 A
No data No data No data 427 0.6330 G
126 0.7735 G 427 0.1943 G
126 0.3915 G 427 0.1558 A
126 0.9596 G 427 0.1556 G
126 0.2542 G 427 0.7008 A
126 0.0850 G 420 0.0568 A
126 0.4501 G 412 0.7326 A
126 0.6938 G 427 0.1460 G
126 0.6869 G 427 0.3584 A
126 0.3115 G 420 0.1991 A

using mixed model linear regression; p values that are significant at the 5% level are



Fig. 1. ABR hearing thresholds in Esrrg KO mice. (A) Genotyping by Southern blotting of offspring from Esrrg heterozygote hybrid crosses produces predicted fragments of 20 kb for
the WT allele and 11 kb for the null allele. (B) ABR thresholds on click stimuli were recorded at 5 (n ¼ 6 Esrrg KO vs. 11 controls), 12 (n ¼ 9 Esrrg KO vs. 8 controls), and 18 (n ¼ 3 Esrrg
KO vs. 8 controls) weeks of age. Esrrg KO mice exhibit significant hearing loss compared to controls (MV � SE, **p ¼ 0.001; *p < 0.05, ManneWhitney rank sum test). (C) Sex-specific
difference in hearing thresholds for 5 (n ¼ 2 female vs. 4 male) and 12 (n ¼ 3 female vs. 6 male) weeks of age. Esrrg KO female mice exhibit greater hearing loss compared to males at
12 weeks (MV � SE, *p < 0.05, ManneWhitney rank sum test). (D) Sample recordings for Esrrg WT, Esrrg Het and Esrrg KO mice; hearing thresholds in the Esrrg KO (voltage scale
doubled) are approximately 40 dB worse compared to the WT and Het controls.
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very few KO animals survived to 18 weeks of age (n ¼ 3) and this
finding remained below statistical significance. When age groups
were examined for sex effects, a statistically significant higher
threshold in female compared tomale EsrrgKOmicewas found at 12
weeks of age (p < 0.05, ManneWhitney rank sum test, Fig. 1C).
Recorded potentials in wild-type and heterozygous mice displayed
no obvious differences, whereas potentials in Esrrg KO mice were of
lower amplitude and altered in waveform (Fig. 1D).

3.3. ESRRG expression in the inner ear

In the adult mouse cochlea, strong ESRRG immunoreactivity was
localized to Reissner’s membrane (Fig. 2A and B) and a distinct
cluster of supporting cells adjacent to the third row of outer hair
cells (Fig. 2A, B, and D) which is consistent with the location of
Hensen’s cells. Intense ESRRG immunoreactivity was also detected
in the elongated cell bodies of the inner and outer pillar cells
(Fig. 2AeC) that were identified by Phalloidin staining of f-actin in
the apical and basal region. Some ESRRG expression was also
detected in inner hair cells (Fig. 2AeC). ESRRG staining was not
detected in outer hair cells, but appeared to localize in the sup-
porting cell bodies of Deiters’ cells and their phalangeal processes
intervening the outer hair cells (Fig. 2B and C). Less intense
immunoreactivity was detected in the spiral ganglion neurons
(Fig. 2A). Abundant Esrrg mRNA was detected in P2 rat cochlea as
well as positive control tissue P30 rat kidney and spleen (Fig. 2E).

4. Discussion

Despite some recent progress in the genetic analysis of adult
hearing, very little is known about the genetic risk factors for ARHL,
and virtually nothing about their role in the pathogenesis of this



Fig. 2. Expression of ESRRG in mouse inner ear. (AeD) Results of immunofluoresence with anti-ESRRG in mouse inner ear at P36: anti-ESRRG (green), DAPI (blue), and Phalloidin
staining to f-actin (red). (A) Low magnification of mid-apical coil. Strong ESRRG immunoreactivity is localized to Reissner’s membrane (rm), Hensen’s cells (hc) can be seen in the
inner (ihc) and outer (ohc) hair cell region (solid arrows). Weaker immunoreactivity is shown in the spiral ganglion neurons (sgn). (B) Mid magnification of the opposite
mid-cochlear coil showing ESRRG immunoreactivity in the organ of Corti localizes to the inner (ipc) and outer (opc) pillar cells and supporting cell bodies and their processes
intervening the outer hair cells. (C) High magnification of the organ of Corti. (D) Mid magnification of the opposite apical coil showing strong immunoreactivity in Hensen’s cells.
Scale bar is 20 mm. (E) Detection of Esrrg mRNAs in P2-P30 rat kidney, spleen, and cochlea tissue using reverse transcriptionepolymerase chain reaction. (RT-PCR). Samples were
tested with (þ) or without (�) reverse transcriptase (RT) enzyme. No bands were detected in RT (�), in the absence of RNA template or negative control for PCR (water only). Gapdh
served as a positive control for mRNA quality.
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common sensory loss. In this study, based on the hypothesis that
estrogen plays a role in protecting pre-menopausal women from
ARHL, we investigated whether variants in estrogen signaling genes
may be risk factors for adult-onset hearing loss. The rs2818964 SNP
in the ESRRG gene was associated with hearing status in a London
ARHL cohort, the minor allele being associated with poorer hearing
but only inwomen. This associationwas replicated in the Carlantino
and the combined cohort of Isolated Populations from Italy and Silk
Road countries, both in the direction of the allelic effect and in the
female-specific association. Although this association had also been
detected in the discovery cohort B58C, the effect was in the opposite
direction with the major allele associated with poorer hearing and
here the evidence of association was stronger in males than in
females. Interpretation of such so-called “flip-flop” replications
should be cautious, as they may be spurious; alternatively they
can be indicators of real effects due to genetic architecture or
differences in cohort characteristics (Lin et al., 2007). Audiometric
data are not trivial to collect, and therefore large, well-characterized
cohorts are limited. Here, we have sought to replicate an association
in 3 of the largest cohorts, in a total of 6134 individuals. However,
the cohorts have different characteristics that are not ideal for
genetic replication. The B58C is a cross-sectional study of the UK
population conducted at age 44e45 years, younger than the
subjects recruited for the London ARHL case-control study. The
average age in the London cohort is 71 years, and 96% of the women
are more than 50 years of age and predominantly post-menopausal.
The Isolated Populations Cohort is population-based,18e92 years of
age, and incorporating womenmore than 50 years of age, especially
in Carlantino. Data from the London ARHL and Carlantino cohorts
indicate a sex-specific predisposition to a low-to-mid frequency
hearing loss in women is conferred by variation in the ESRRG gene
inherited as an additive trait. It is possible that themenopausal state
of the women is a key determinant of the association with hearing
status and ESRRG genotype; with the minor allele of the rs2818964
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SNP being a risk factor for ARHL after estrogen declines in women
after menopause and therefore not detected in the younger women
in the B58C. This SNP has previously been linked to risk of osteo-
porosis in women, an effect that also shows an interaction with the
menopause status of women (Elfassihi et al., 2010).

Evidence of replication in our genetic cohorts are suggestive of
a role for ESRRG in maintenance of hearing; but, given the differ-
ence in trend direction observed in the B58C, we sought functional
evidence to establish the role of ESRRG in hearing. To explore the
function of ESRRG in the auditory system, we generated a novel
Esrrg KO mouse model, and ABRs to click stimuli were measured.
Our data showed that absence of the Esrrg gene in mice leads to
a mild hearing impairment at 5 weeks of age; this hearing loss,
although present, had not progressed by 12 and 18 weeks of age.
Strikingly, auditory thresholds were significantly worse in female
mice compared to males at 12 weeks of age, resembling the sex
difference observed with the rs2818964 SNP in the London ARHL
and Carlantino cohorts. Relatively little is known regarding the
function of ESRRG in the inner ear. Previous studies with Esrrg null
mice show that these mice die in the first few weeks after birth
because of abnormal heart function (Alaynick et al., 2007). Gene
expression profiling and chromatin immunoprecipitation (ChIP)-
on-chip analysis shows that Esrrg regulates a network of genes that
control oxidative metabolic function in embryonic and adult heart
(Alaynick et al., 2007; Dufour et al., 2007), as well as genes involved
in cellular ion homeostasis in tissues subject to high metabolic
demand (Alaynick et al., 2010). A number of these genes are
involved in potassium transport, some of which are implicated in
inner ear homeostasis (Wangemann, 2002).

In this study, we have shown for the first time that ESRRG is
expressed in the adult mouse inner ear. Similar to the expression
pattern of ESRRB in the inner ear (Meltser et al., 2008), we find that
expression of ESRRG is widespread but predominantly confined to
discrete supporting cell populations of the organ of Corti, Reissner’s
membrane, and the inner hair cells. Further work is required to
establish the role of ESRRG in the inner ear; however, the known
role of ESRRGs in regulation of genes involved in ion homeostasis in
other tissues with high metabolic demand is one that is also critical
for cochlear function. One such gene involved in potassium ion
transport that is reported to be down-regulated in a Essrg KOmouse
model is Kcne1 (Alaynick et al., 2010). Interestingly, mice with
targeted deletion of the Kcne1 gene exhibit a profound hearing
loss (Warth and Barhanin, 2002). In humans, mutations in KCNE1
account for approximatelly 10% of cases of Jervell and Lange-
Nielsen syndrome, a syndromic form of deafness that presents
with cardiac defects (Bitner-Glindzicz and Tranebjaerg, 2000).
Therefore, 1 putative mechanism by which ESRRG might underlie
ARHL is through down-regulation of the KCNE1 gene, leading to
impaired potassium ion homeostasis.

In summary, our genetic association study, characterization of
the expression of ESRRG in the inner ear, and impaired hearing in
our Esrrg KO mouse model support an important role for ESRRG in
hearing, particularly for maintenance of hearing in women after
menopause. It also provides further evidence of GWAS as a discovery
tool in complex disease to provide a candidate gene set for further
investigation by the use of replication and functional genomics.
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