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The use of iterative algorithms in tomographic reconstruction always leads to a frequency adapted rate of convergence in that low
frequencies are accurately reconstructed after a few iterations, while high frequencies sometimes require many more computations.
In this paper, we propose to build frequency adapted (FA) algorithms based on a condition of incomplete backprojection and
propose an FA simultaneous algebraic reconstruction technique (FA-SART) algorithm as an example. The results obtained with the
FA-SART algorithm demonstrate a very fast convergence on a highly detailed phantom when compared to the original SART
algorithm. Though the use of such an FA algorithm may seem difficult, we specify in which case it is relevant and propose several
ways to improve the reconstruction process with FA algorithms.
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1. INTRODUCTION

Iterative methods are increasingly used in computed to-
mography (image reconstruction from projections) where
in most cases they advantageously replace analytical meth-
ods. The latter methods, whose success is based upon a great
robustness and speed, unfortunately cannot take into ac-
count a certain number of physical and geometrical parame-
ters which should appear in the point spread function (PSF).
These parameters (intrinsic resolution of the detector, spatial
variation of sensitivity, and others, related to specific appli-
cations) can be easily incorporated in the projection opera-
tor that models the process of imaging in iterative methods.
This however does not change the nature of the problem to
be solved, formulated as a large system of linear equations:

Ax = b, (1)

where A is the projection operator, x is typically a set of (un-
known) values taken by the voxels in the 3D space (attenu-
ation coefficients, activity . . . ), and b is the set of measure-
ments, often organized as a set of projection images.

In addition, besides the exponential growth in computer
processing power that obviously plays an important role in
the feasibility of large computations, solving methods for (1)
profit from a broad effort realized in general inverse prob-

lems methods and from a continuous exchange between the-
ory and applications.

One important ongoing study on the speed of conver-
gence is contingent on the consideration of different algo-
rithms (algebraic reconstruction technique (ART) [1], simul-
taneous algebraic reconstruction technique (SART) [2], expec-
tation maximization (EM) [3], or conjugated gradient for the
most famous), different types of implementation (sequential
(Seq), simultaneous (Sim), or block-iterative (BI)), regular-
izations, or relaxation parameters (see [4] for details). A solid
mathematical framework was formed, which in most cases
tendered proof of convergence, including at times for the in-
consistent case—generally that of computed tomography.

The idea of the work presented here has risen from the
fact that the high frequencies (the details) are always recon-
structed after the low frequencies in iterative methods for
computed tomography. In the case of highly detailed objects
(in a sense that we will later specify), an important number of
iterations might be required to obtain the precision expected
on the reconstructed image. This very general fact has been
experienced by all who worked with iterative algorithms, and
keys for the understanding of this phenomena can be found
in [5], but in a framework of integral geometry resulting
in a Dirac projection PSF and thus quite different from our
context.
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In this article, we propose a way to accelerate the conver-
gence of iterative methods in the specific case of highly de-
tailed objects, based on the use of an incomplete backprojec-
tion operator. This can be roughly formulated as a weighting
of each correction dki, j of voxel j by equation i during the kth

iteration with weights wk
i, j such as

∑
i w

k
i, j = 1 for all j and k

and the incomplete backprojection condition (IBC):

wk
i, j = 0 for some i, even if Ai, j �= 0. (2)

To our knowledge, this condition has not been thus far
reported in the use of reconstruction algorithms for com-
puted tomography. Besides the formulation of a frequency
adapted (FA) algorithm that realizes the reconstruction with
IBC starting from the well-known SART algorithm, a major
concern of this paper is to explain how the IBC permits to
accelerate the convergence by updating the value of the vox-
els from the most relevant measurements and to give exper-
imental results to support both the convergence of the algo-
rithm and the gain obtained when compared to SART.

In Section 2, we describe the type of problems for which
we believe the adaptation involved by the IBC can be useful
and formulate the IBC in terms of projections onto convex
sets. We explain the IBC for it to realize the expected accel-
eration and give an adaptation of the simultaneous algebraic
reconstruction technique (SART) algorithm of Andersen and
Kak [2] modified by the IBC. In Section 3, we show results on
simulations, phantom, and small animal with a comparison
between SART and FA-SART. Section 4 is a discussion on the
proposed method which also suggests a number of different
use for FA algorithms and Section 5 concludes the paper.

2. BUILDING AN ALGORITHM ADAPTED TO
THE SPATIAL FREQUENCY

In computed tomography like in other applications leading
to inverse problems, a set of discrete measurements is physi-
cally obtained, presumably by the application of some linear
operator A to a studied object, discretized into a set of un-
knowns. For each unknown xj (a voxel in tomography), the
point spread function (PSF) (we should actually talk about
the voxel spread function) appears in the column A•, j of the
matrix A whose coefficients are assumed to be nonnegative
here, to simplify the notations.

For some imaging techniques, the paradigmatic case
of which is single photon emission computed tomography
(SPECT), this PSF is always different from a Dirac func-
tion since it notably includes the detector components (col-
limator, scintillator, photo-multiplicators, electronic boards,
etc.). Indeed, the photons emitted from a voxel j reach far
more than one single pixel on the detector and one has to
take this into account in the matrix A when modeling this
problem. PSF in SPECT is generally modelled by discretized
Gaussian functions but some authors proposed more elabo-
rate models, especially for pinhole SPECT (see Metzler et al.
[6]).

But whatever the chosen model is, the actual situation
is that two close voxels have many measurements in com-
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Figure 1: Overlapping between two close voxels’ PSF. The darkest
zone will be used to reconstruct voxel xj as well as xj+4 (and all those
in between), thus leading to a smoothed reconstruction after only a
few iterations.

mon in their PSF (see Figure 1). This may result in a slow rate
of convergence: the backprojection of these shared measure-
ments leads to a smoothing for the voxels’ values, that only
tends to vanish as the number of iterations increases. This is
not necessarily inadequate since when a large and homoge-
neous structure is to be imaged, this smoothing will mainly
reduce the noise if one stops the iterations before the noise
is reconstructed (Figure 2(a)). But when considering an im-
age of projection with high frequencies, using these shared
measurements in the backprojection, or at least the furthest
away from the center of the PSF, will hold the voxels’ values
distant from the solution x∗ for a certain number of itera-
tions (Figure 2(b)). Throughout this paper, we will charac-
terize higly detailed objects in an informal manner by ref-
erence to this figure, that is, when significant details of the
image are of the same size or smaller than the PSF’s width.

Our idea is to only use the most central measurements of
the PSF to accelerate the convergence in the case of imaging
with high spatial frequencies. To do so, we considered the
SART algorithm whose iteration is

xk+1
j = xkj +

λ
∑M

i=1 Ai, j

M∑

i=1

bi −
(
Axk

)
i

∑N
j=1 Ai, j

Ai, j , (3)

where j = 1, . . . ,N indexes the voxels and i = 1, . . . ,M in-
dexes the pixels so that xk ∈ RN for all k, b ∈ RM , A is
an MxN matrix modelling the problem and λ is the relax-
ation parameter. This can also be written in a matrix form
discussed by Jiang and Wang [7] (T denotes the transpose of
a matrix or a vector):

x(k+1) = x(k) + λVATW
(
b− Ax(k)), (4)

with V = diag(1/
∑M

i=1 Ai, j) an NxN diagonal matrix and

W = diag(1/
∑N

j=1 Ai, j) an MxM diagonal matrix. We also as-

sume the conditions
∑M

i=1 Ai, j �= 0 for all j and
∑N

j=1 Ai, j �= 0
for all i.
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Figure 2: Comparison of the two main cases, when a profile corre-
sponding to a large and homogeneous structure is measured with
noise (a), and when the measured profile corresponds to a higly
detailed object (b). On (a), using all the discrete measurements
of voxel’s PSF will smooth the reconstruction which will reduce
the noise. On (b), “important” high frequencies are smoothed and
more iterations will be needed to achieve an accurate reconstruc-
tion.

Although this might sound antinomic with the simulta-
neous of SART, we can write a component Seq form of SART

xk+1
j = xkj + λ

bi −
〈
ai, xk

〉

∥
∥ai
∥
∥

1

1aij>0 (5)

that can be derived from the analysis presented in [8] by Cen-
sor and Elfving. Then, applying this algorithm in the matrix
form of (4), it is well known that the new estimate xk+1 is the
projection of xk onto the hyperplane Hi = {x ∈ RN/〈ai, x〉 =
bi} if λ = 1.

This is our starting point for a frequency adapted algo-
rithm based on SART. For the purpose of the incomplete
backprojection condition, given 0 ≤ ρ ≤ 1, let Aρ denote
the matrix

Aρ :=
⎧
⎪⎨

⎪⎩

Ai, j if Ai, j ≥ ρ · ∥∥A•, j
∥
∥∞,

0 otherwise,
(6)

so that Aρ only keeps in each column the coefficients of A
higher than ρ times the top of the PSF. We also define the ma-
trix Vρ := diag(1/

∑M
i=1 A

ρ
i, j) and Wρ := diag(1/

∑N
j=1 A

ρ
i, j).

Then, following (4) we define the next iterate corresponding
to the treatement of a single projection i as

x(k+1) = x(k) + λVρAρTWρ
(
b− Ax(k)) = P

ρ
i

(
xk
)
. (7)

It can been showen in the exact same manner as for (4)
(in the sequential case) that P

ρ
i (x) projects x onto the hyper-

plane Hi. But (7) is also designed to have P
ρ
i (x) in the affine
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Object space

Figure 3: The original backprojection cone corresponding to a pixel
bi and composed of voxels vj , such asAi, j > 0 (light grey), is replaced
by a set of voxels, such as Ai, j > ρ · ‖A•, j‖∞ (dark grey).

subspace of RN :

Ωk
i =

{
x ∈ RN/P

ρ
i (x) j = xj ∀ j/Ai, j < ρ · ∥∥A•, j

∥
∥∞
}

(8)

thus projecting the current estimate onto Ck
i := Hi ∩ Ωk

i ,
which is a closed convex set of RN .

Now, we want to consider the scheme (7) in its natural
case, that is, simultaneous. Thus we change the iteration (3)
for the following.

Algorithm 2.1 (FA-SART).

xk+1
j = xkj +

λ
∑M

i=1 A
ρ
i, j

M∑

i=1

bi −
(
Axk

)
i

∑N
j=1 A

ρ
i, j

A
ρ
i, j . (9)

The BI version requires some sophistication in the nota-
tions and for this purpose, we adopt pretty much the same
ones as Censor and Elfving in [8]. Let then T be the num-
ber of blocks and, for t = 1, 2, . . . ,T , let the blocks of in-
dices Bt ⊆ {1, 2, . . . ,M} be an ordered subset of the form
Bt = {lt1, lt2, . . . , ltM(t)}, where M(t) is the number of elements
in Bt. In our case, we define T = M and for each t,Bt = {t}.
For t = 1, 2, . . . ,T , let At denote the matrix formed by taking
all the rows {ai} of A whose indices belong to the block of in-
dices Bt , that is, At := at . The same applies to Aρ with A

ρ
t the

matrix formed by taking all the rows {ãi} of Aρ whose indices

belong to the block of indices Bt and ã
j,t(k)
c the jth column of

A
ρ
t .

The vector b is partitioned similarly with bt denoting the
elements of b whose indices belong to the block of indices Bt,

that is, bt := bt. Let us also denote a
j,t(k)
c the jth column of

At , then the BI FA-SART writes as follows.

Algorithm 2.2 (BI FA-SART).

xk+1
j = xkj +

λ
∥
∥ã

j,t(k)
c

∥
∥

1

M(t(k))∑

i=1

bt(k)
i − 〈alt(k)

i , xk
〉

∥
∥ãl

t(k)
i

∥
∥

1

ã
lt(k)
i
j . (10)

These algorithms realize a backprojection characterized
by a contracted cone compared to the original SART (see
Figure 3).
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Figure 4: Simulation with a computed phantom composed of three small spots and a bigger structure. (a)–(d) show results obtained with
the FA-SART algorithm, ρ = 1, and (e)–(h) show results with the SART algorithm (which is FA-SART with ρ = 0). The pinhole aperture was
2.5 mm for (a) and (e), 1.5 mm for (b) and (f), 0.025 mm for (c) and (g), and 1.5 mm with noise added onto the projections for (d) and (h).
These results show improvements with FA-SART when the PSF is large (2.5 mm and 1.5 mm) and better images with SART when the data
are noisy (Gaussian noise, 20% of the maximum of the data), especially for big structures. No significant difference is visible when the PSF
is small, because the stage of deconvolution is of less importance during the reconstruction process.

3. RESULTS

3.1. Material and method

The applications shown here are simulations and pinhole
SPECT acquisitions made on a small animal single head
dedicated SPECT gamma camera (Gaede Medizinsysteme
GMBH, Freiburg, Germany) with a 6.5 mm NaI(Tl) crystal
25 photomultipliers and a small field of view of 17 cm ×
17 cm. The camera was equipped with a tungsten pinhole
collimator of 120 mm in focal length and 1.5 mm in diam-
eter for the phantom, 2 mm in diameter for the mouse study.
A more complete description of the device, as well as results
on small animal imaging can be found in [9]. Prior to re-
construction, we used a correction of the center of rotation
applied on the projections after measurement of the defect
on a single-line-source phantom as described in [10]. Both
the FA-SART and SART algorithms were block iterative with
each block corresponding to a different image of projection.

3.2. Simulation

The simulation performed here on a computed phantom
illustrates the typical behavior of the FA-SART algorithm,
which accelerates the convergence when the PSF is large (see
Figures 4(a), 4(b) and 4(e), 4(f)). For a thin PSF, no visible
difference appears since FA-SART acts on the deconvolution.
Bigger structures should not be reconstructed with ρ close
to 1 from noisy data to avoid having the high frequencies of
the noise emphasized. Three iterations were computed for all
reconstructions.

3.3. Phantom

A phantom, seen in Figure 5, with three types of cylindrical
cavities (diameters 1 mm, 1.5 mm and 2 mm separated with
the same distance), was filled with 99mTc, 20 MBq activity.

The parameters for the acquisition were 30 mm radius of ro-
tation, 60 projections of 64× 64 pixels on 180◦ and 1 minute
per projection. For the comparison in Figures 5(b)–5(d), we
used the FA-SART algorithm with ρ = 1 and the SART al-
gorithm (which is FA-SART with ρ = 0). For this highly de-
tailed object, the FA-SART reconstruction (5(b)) does better
than 3 iterations of SART (5(c)) or even 10 iterations (5(d)),
due to an important smoothing effect during the first itera-
tions. Figure 5(e) provides a promising way to use FA-SART
in a preconditioning of system (1). It shows a reconstruction
obtained after 3 iterations of FA-SART (ρ = 1) followed by 2
iterations of SART.

3.4. Cardiac mouse imaging

For mouse heart perfusion, a normal adult female CD1
mouse (Mouse Clinical Institute, Ilkirch, France) weight-
ing 30 g was injected with 400 MBq of 99mTc-Tetrofosmin
(Amersham, General Electric Healthcare, USA). The radius
of rotation of the camera was 2.5 cm corresponding to a
zoom factor of 5 and 48 projections of 64×64 pixels were ac-
quired over 180◦ (see [9] for details). Figure 6 demonstrates
a satisfying result with FA-SART and ρ = 0.8 that makes both
the left and right ventricles visible.

4. DISCUSSION

From the obtained results, it seems that the FA-SART algo-
rithm is able to reconstruct high details in less iterations than
SART. While the reconstructions performed from physical
structures (phantom and animal) show a faster convergence
to what seems to be the true distribution, those performed
from simulated data demonstrate that this acceleration in-
crease with the PSF’s width of the system, that is, when the
intrinsic resolution decreases. These simulations also prove
that the improvement obtained with the FA-SART algorithm
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(a) (b) (c) (d) (e)

Figure 5: Photo of the phantom with 3 types of cavities (diameters 1 mm, 1.5 mm, and 2 mm separated by the same distance) which can be
filled with a radioactive tracer (a). Transaxial slices of the reconstructed phantom with 3 iterations of FA-SART and ρ = 1 (b), 3 iterations
of SART (c), and 10 iterations of SART (d). Figure (a) shows significant improvements even when compared with 10 iterations of SART.
Figure (e) shows the result obtained from an interesting combination of the two algorithms: 3 iterations of FA-SART (ρ = 1) followed by 2
iterations of SART.

(a) (b)

(c) (d)

Figure 6: Normal mouse heart perfusion. Reconstruction with 3
iterations of FA-SART, ρ = 1 (a), 3 iterations of FA-SART, ρ = 0.8
(b), 3 iterations of SART (c), and 10 iterations of SART (d).

is not due to an inadequacy of the matrix A that models the
system. Thus, the method only applies to a class of problems
with large PSF, that is, involving an important step of decon-
volution like SPECT or optical tomography. It would make
no sense, for those applications where the PSF is close to a
Dirac function like in computed tomography scanning, to
contract the backprojection cone since this cone is already al-
most a line. It should also be recalled that the gain obtained
on highly detailed structures is balanced by a loss in large and
homogeneous structures, for which the smoothing proper-
ties of the SART algorithm reduce the noise. On the contrary,
using the FA-SART algorithm with a high threshold ρ would
increase the noise by emphasizing the high frequencies in the
reconstruction.

This leads to the major difficulty of such an algorithm:
how it should be used. We have shown results with a same
value for ρ for all the voxels and all the iterations. This is
a first way to accomodate to the FA-SART: the context of
SPECT is that of functional imaging, in which in general only
one structure is considered interesting. Thus, even if several
structures appear in the same image, the parameter ρ can be

set to a value corresponding to a given organ or a type of ex-
amination (myocardial perfusion produces a sharper image
of the heart than blood-pool imaging so these two explo-
rations of the same organ would require different values of
ρ). This has been for the most part our way to proceed thus
far, although other uses can be considered.

A use in preconditioning of the system (1) with two or
three iterations of FA-SART followed by a solving with the
SART algorithm seems to combine the best of these two al-
gorithms by providing both a fast reconstruction of the high
frequencies and an adequate rendering of the bigger struc-
tures. Also a value of ρ adapted to the local frequencies of the
projection images might successfully change the local prop-
erties of the reconstruction, with a high value of ρ only when
high-frequencies are detected. We started to investigate this
way by creating local frequencies maps of the projection im-
ages composed of wavelets coefficients and this will consti-
tute the base of our further works.

A noticeable positive point of the FA-SART algorithm is
that it requires very few adaptations when SART has already
been implemented. On a programming point of view, certain
loops are just partially executed, which also means that one
iteration of FA-SART is slightly faster than one of SART.

Since the backprojection operation significantly differs
from other studied algorithms, it is by no means obvious to
deduce that the FA-SART algorithm converges from an anal-
ysis of SART or of the general Landweber scheme. Results
concerning the convergence have nevertheless been greatly
improved by the suggestion of an anonymous referee and a
paper dedicated to a mathematical analysis will be presented
elsewhere for publication. This theoretical work will support
the experimental evidences shown here, with a study of the
convergence of the algorithm but also of its behavior in func-
tion of the main frequency.

5. CONCLUSION

The FA-SART algorithm has been designed to be able to
change the usual rate of convergence of iterative algorithms.
While low frequencies are generally the first reconstructed,
we permitted to invert this phenomenon in order to have the
details appear in the image after very few iterations. We ev-
idenced this behavior of the FA-SART algorithm by show-
ing applications and proposed several possible ways to use
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it. Theoretical questions will be discussed in a forthcoming
paper.
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