
*For correspondence:

semih.gunel@epfl.ch (SG);

pavan.ramdya@epfl.ch (PR)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 20

Received: 18 May 2019

Accepted: 28 September 2019

Published: 04 October 2019

Reviewing editor: Timothy

O’Leary, University of

Cambridge, United Kingdom

Copyright Günel et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

DeepFly3D, a deep learning-based
approach for 3D limb and appendage
tracking in tethered, adult Drosophila
Semih Günel1,2*, Helge Rhodin1,3, Daniel Morales2, João Campagnolo2,
Pavan Ramdya2†*, Pascal Fua1†

1Computer Vision Laboratory, School of Computer and Communication Sciences,
EPFL, Lausanne, Switzerland; 2Neuroengineering Laboratory, Brain Mind Institute &
Interfaculty Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne,
Switzerland; 3Department of Computer Science, UBC, Vancouver, Canada

Abstract Studying how neural circuits orchestrate limbed behaviors requires the precise

measurement of the positions of each appendage in three-dimensional (3D) space. Deep neural

networks can estimate two-dimensional (2D) pose in freely behaving and tethered animals.

However, the unique challenges associated with transforming these 2D measurements into reliable

and precise 3D poses have not been addressed for small animals including the fly, Drosophila

melanogaster. Here, we present DeepFly3D, a software that infers the 3D pose of tethered, adult

Drosophila using multiple camera images. DeepFly3D does not require manual calibration, uses

pictorial structures to automatically detect and correct pose estimation errors, and uses active

learning to iteratively improve performance. We demonstrate more accurate unsupervised

behavioral embedding using 3D joint angles rather than commonly used 2D pose data. Thus,

DeepFly3D enables the automated acquisition of Drosophila behavioral measurements at an

unprecedented level of detail for a variety of biological applications.

DOI: https://doi.org/10.7554/eLife.48571.001

Introduction
The precise quantification of movements is critical for understanding how neurons, biomechanics,

and the environment influence and give rise to animal behaviors. For organisms with skeletons and

exoskeletons, these measurements are naturally made with reference to 3D joint and appendage

locations. Paired with modern approaches to simultaneously record the activity of neural populations

in tethered, behaving animals (Dombeck et al., 2007; Seelig et al., 2010; Chen et al., 2018), 3D

joint and appendage tracking promises to accelerate the discovery of neural control principles, par-

ticularly in the genetically tractable and numerically simple nervous system of the fly, Drosophila

melanogaster.

However, algorithms for reliably estimating 3D pose in such small Drosophila-sized animals have

not yet been developed. Instead, multiple alternative approaches have been taken. For example,

one can affix and use small markers—reflective, colored, or fluorescent particles—to identify and

reconstruct keypoints from video data (Bender et al., 2010; Kain et al., 1910; Todd et al., 2017).

Although this approach works well on humans (Moeslund and Granum, 2000), in smaller, Drosoph-

ila-sized animals markers likely hamper movements and are difficult to mount on sub-millimeter scale

limbs. Most importantly, measurements of one or even two markers for each leg (Todd et al., 2017)

cannot fully describe 3D limb kinematics. Another strategy has been to use computer vision techni-

ques that operate without markers. However, these measurements have been restricted to 2D pose

in freely behaving flies. Before the advent of deep learning, this was accomplished by matching the

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 1 of 23

TOOLS AND RESOURCES

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.48571.001
https://doi.org/10.7554/eLife.48571
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


contours of animals seen against uniform backgrounds (Isakov et al., 2016), measuring limb tip posi-

tions using complex TIRF-based imaging approaches (Mendes et al., 2013), or measuring limb seg-

ments using active contours (Uhlmann et al., 2017). In addition to being limited to 2D rather than

3D pose, these methods are complex, time-consuming, and error-prone in the face of long data

sequences, cluttered backgrounds, fast motion, and occlusions that naturally occur when animals are

observed from a single 2D perspective.

As a result, in recent years the computer vision community has largely forsaken these techniques

in favor of deep learning-based methods. Consequently, the efficacy of monocular 3D human pose

estimation algorithms has greatly improved. This is especially true when capturing human move-

ments for which there is enough annotated data to train deep networks effectively. Walking and

upright poses are prime examples of this, and state-of-the-art algorithms (Pavlakos et al., 2017a;

Tome et al., 2017; Popa et al., 2017; Moreno-noguer, 2017; Martinez et al., 2017; Mehta et al.,

2017; Rogez et al., 2017; Pavlakos et al., 2017b; Zhou et al., 2017; Tekin et al., 2017; Sun et al.,

2017) now deliver impressive real-time results in uncontrolled environments. Increased robustness

to occlusions can be obtained by using multi-camera setups (Elhayek et al., 2015; Rhodin et al.,

2016; Simon et al., 2017; Pavlakos et al., 2017b) and triangulating the 2D detections. This

improves accuracy while making it possible to eliminate false detections.

These advances in 2D pose estimation have also recently been used to measure behavior in labo-

ratory animals. For example, DeepLabCut provides a user-friendly interface to DeeperCut, a state-

of-the-art human pose estimation network (Mathis et al., 2018), and LEAP (Pereira et al., 2019) can

successfully track limb and appendage landmarks using a shallower network. Still, 2D pose provides

an incomplete representation of animal behavior: important information can be lost due to occlu-

sions, and movement quantification is heavily influenced by perspective.

Approaches used to translate human 2D to 3D pose have also been applied to larger animals,

like lab mice and cheetahs (Nath et al., 2019), but require the use of calibration boards. These tech-

niques cannot be easily transferred for the study of small animals like Drosophila: adult flies are

approximately 2.5 mm long and precisely registering multiple camera viewpoints using traditional

approaches would require the fabrication of a prohibitively small checkerboard pattern, along with

the tedious labor of using a small, external calibration pattern. Moreover, flies have many appen-

dages and joints, are translucent, and in most laboratory experiments are only illuminated using

infrared light (to avoid visual stimulation)—precluding the use of color information.

To overcome these challenges, we introduce DeepFly3D, a deep learning-based software pipe-

line that achieves comprehensive, rapid, and reliable 3D pose estimation in tethered, behaving adult

Drosophila (Figure 1, Figure 1—video 1). DeepFly3D is applied to synchronized videos acquired

from multiple cameras. It first uses a state-of-the-art deep network (Newell et al., 2016) and then

enforces consistency across views. This makes it possible to eliminate spurious detections, achieve

high 3D accuracy, and use 3D pose errors to further fine-tune the deep network to achieve even bet-

ter accuracy. To register the cameras, DeepFly3D uses a novel calibration mechanism in which the fly

itself is the calibration target. During the calibration process, we also employ sparse bundle adjust-

ment methods, as previously used for human pose estimation (Takahashi et al., 2018; Triggs et al.,

2000; Puwein et al., 2014). Thus, the user does not need to manufacture a prohibitively small cali-

bration pattern, or repeat cumbersome calibration protocols. We explain how users can modify the

codebase to extend DeepFly3D for 3D pose estimation in other animals (see

Materials and methods). Finally, we demonstrate that unsupervised behavioral embedding of 3D

joint angle data is robust against problematic artifacts present in embeddings of 2D pose data. In

short, DeepFly3D delivers 3D pose estimates reliably, accurately, and with minimal manual interven-

tion while also providing a critical tool for automated behavioral data analysis.

Results

DeepFly3D
The input to DeepFly3D is video data from seven cameras. These images are used to identify the 3D

positions of 38 landmarks per animal: (i) five on each limb – the thorax-coxa, coxa-femur, femur-tibia,

and tibia-tarsus joints as well as the pretarsus, (ii) six on the abdomen - three on each side, and (iii)

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 2 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571


one on each antenna - for measuring head rotations. Our software incorporates the following innova-

tions designed to ensure automated, high-fidelity, and reliable 3D pose estimation.

Calibration without an external calibration pattern
Estimating 3D pose from multiple images requires calibrating the cameras to achieve a level of accu-

racy commensurate with the target size—a difficult challenge when measuring leg movements for an

animal as small as Drosophila. Therefore, instead of using a typical external calibration grid, Deep-

Fly3D uses the fly itself as a calibration target. It detects arbitrary points on the fly’s body and relies

on bundle-adjustment (Chavdarova et al., 2018) to simultaneously assign 3D locations to these

points and to estimate the positions and orientations of each camera. To increase robustness, it

enforces geometric constraints that apply to tethered flies with respect to limb segment lengths and

ranges of motion.

Geometrically consistent reconstructions
Starting with a state-of-the-art deep network for 2D keypoint detection in individual images

(Newell et al., 2016), DeepFly3D enforces geometric consistency constraints across multiple syn-

chronized camera views. When triangulating 2D detections to produce 3D joint locations, it relies on

pictorial structures and belief propagation message passing (Felzenszwalb and Huttenlocher,

2005) to detect and further correct erroneous pose estimates.

Self-supervision and active learning
DeepFly3D also uses multiple view geometry as a basis for active learning. Thanks to the redundancy

inherent in obtaining multiple views of the same animal, we can detect erroneous 2D predictions for

correction that would most efficiently train the 2D pose deep network. This approach greatly

Figure 1. Deriving 3D pose from multiple camera views. (A) Raw image inputs to the Stacked Hourglass deep network. (B) Probability maps output

from the trained deep network. For visualization purposes, multiple probability maps have been overlaid for each camera view. (C) 2D pose estimates

from the Stacked Hourglass deep network after applying pictorial structures and multi-view algorithms. (D) 3D pose derived from combining multiple

camera views. For visualization purposes, 3D pose has been projected onto the original 2D camera perspectives. (E) 3D pose rendered in 3D

coordinates. Immobile thorax-coxa joints and antennal joints have been removed for clarity.

DOI: https://doi.org/10.7554/eLife.48571.002

The following video is available for figure 1:

Figure 1—video 1. Deriving 3D pose from multiple camera views during backward walking in an optogenetically stimulated MDN>CsChrimson fly.

DOI: https://doi.org/10.7554/eLife.48571.003

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 3 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571.002
https://doi.org/10.7554/eLife.48571.003
https://doi.org/10.7554/eLife.48571


reduces the need for time-consuming manual labeling (Simon et al., 2017). We also use pictorial

structure corrections to fine-tune the 2D pose deep network. Self-supervision constitutes 85% of our

training data.

2D pose performance and improvement using pictorial structures
We validated our approach using a challenging dataset of 2,063 image frames manually annotated

using the DeepFly3D annotation tool and sampled uniformly from each camera. Images for testing

and training were 480 � 960 pixels. The test dataset included challenging frames and occasional

motion blur to increase the difficulty of pose estimation. For training, we used a final training dataset

of 37,000 frames, an overwhelming majority of which were first automatically corrected using picto-

rial structures. On test data, we achieved a Root Mean Square Error (RMSE) of 13.9 pixels. Com-

pared with a ground truth RMSE of 12.4 pixels – via manual annotation of 210 images by a new

human expert – our Network Annotation/Manual Annotation ratio of 1.12 (13.9 pixels / 12.4 pixels)

is similar to the ratio of another state-of-the-art network (Mathis et al., 2018): 1.07 (2.88 pixels /

2.69 pixels). Setting a 50 pixel threshold (approximately one third the length of the femur) for PCK

(percentage of correct keypoints) computation, we observed a 98.2% general accuracy before apply-

ing pictorial structures. Notably, if we reduced our threshold to 30 or 20 pixels, we still achieved

95% or 89% accuracy, respectively (Figure 2A).

To test the performance of our network in a low data regime, we trained a two-stacked network

using ground-truth annotations data from seven cameras (Figure 2B). We compared the results to

an asymptotic prediction error (i.e. the error observed when the network is trained using the full

Figure 2. Mean absolute error distribution. (A) PCK (percentage of keypoints) accuracy as a function of mean

absolute error (MAE) threshold. (B) Evaluating network prediction error in a low data regime. The Stacked

Hourglass network (blue circles) shows near asymptotic prediction error (red dashed line), even when trained with

only 400 annotated images. After 800 annotations, there are minimal improvements to the MAE. (C) MAE for

different limb landmarks. Violin plots are overlaid with raw data points (white circles).

DOI: https://doi.org/10.7554/eLife.48571.004

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 4 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571.004
https://doi.org/10.7554/eLife.48571


dataset of 40,000 annotated images) and to the variability observed in human annotations of 210

randomly selected images. We measured an asymptotic MAE (mean absolute error) of 10.5 pixels

and a human variability MAE of 9.2 pixels. With 800 annotations, our network achieved a similar

accuracy to manual annotation and was near the asymptotic prediction error. Further annotation

yielded diminishing returns.

Although our network achieves high accuracy, the error is not isotropic (Figure 2C). The tarsus

tips (i.e. pretarsus) exhibited larger error than the other joints, perhaps due to occlusions from the

spherical treadmill, and higher positional variance. Increased error observed for body-coxa joints

might be due to the difficulty of annotating these landmarks from certain camera views.

To correct the residual errors, we applied pictorial structures. This strategy fixed 59% of the

remaining erroneous predictions, increasing the final accuracy to 99.2%, from 98.2%. These improve-

ments are illustrated in Figure 3. Pictorial structure failures were often due to pose ambiguities

resulting from heavy motion blur. These remaining errors were automatically detected with multi-

view redundancy using Equation 6, and earmarked for manual correction using the DeepFly3D GUI.

3D pose permits robust unsupervised behavioral classification
Unsupervised behavioral classification approaches enable the unbiased quantification of animal

behavior by processing data features—image pixel intensities (Berman et al., 2014; Cande et al.,

2018), limb markers (Todd et al., 2017), or 2D pose (Pereira et al., 2019)—to cluster similar behav-

ioral epochs without user intervention and to automatically distinguish between otherwise similar

actions. However, with this sensitivity may come a susceptibility to features unrelated to behavior

including changes in image size or perspective resulting from differences in camera angle across

experimental systems, variable mounting of tethered animals, and inter-animal morphological vari-

ability. In theory, each of these issues can be overcome—providing scale and rotational invariance—

by using 3D joint angles rather than 2D pose for unsupervised embedding.

To test this possibility, we performed unsupervised behavioral

classification (Figure 4 and Figure 5) on video data taken during optogenetic stimulation experi-

ments that repeatedly and reliably drove certain behaviors. Specifically, we optically activated

CsChrimson (Klapoetke et al., 2014) to elicit backward walking in MDN>CsChrimson animals (Fig-

ure 5—video 1) (Bidaye et al., 2014), or antennal grooming in aDN>CsChrimson animals (Fig-

ure 5—video 2) (Hampel et al., 2015). We also stimulated control animals lacking the UAS-

CsChrimson transgene (Figure 5—video 3) (MDN-GAL4/+ and aDN-GAL4/+). First, we performed

unsupervised behavioral classification using 2D pose data from three adjacent cameras containing

keypoints for three limbs on one side of the body. Using these data, we generated a behavioral map

(Figure 4A). In this map each individual cluster would ideally represent a single behavior (e.g.

Figure 3. Pose estimation accuracy before and after using pictorial structures. Pixel-wise 2D pose errors/residuals

(top) and their respective distributions (bottom) (A) before, or (B) after applying pictorial structures. Residuals

larger than 35 pixels (red circles) represent incorrect keypoint detections. Those below this threshold (blue circles)

represent correct keypoint detections.

DOI: https://doi.org/10.7554/eLife.48571.005

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 5 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571.005
https://doi.org/10.7554/eLife.48571


backward walking, or grooming) and be populated by nearly equal amounts of data from each of

the three cameras. This was not the case: data from each camera covered non-overlapping regions

and clusters (Figure 4B–D). This effect was most pronounced when comparing regions populated by

cameras 1 and 2 versus camera 3. Therefore, because the underlying behaviors were otherwise iden-

tical (data across cameras were from the same animals and experimental time points), we

can conclude that unsupervised behavioral classification of 2D pose data is sensitive to

being corrupted by viewing angle differences.

By contrast, performing unsupervised behavioral classification using DeepFly3D-derived 3D joint

angles resulted in a map (Figure 5) with a clear segregation and enrichment of clusters for different

GAL4 driver lines and their associated behaviors, i.e. backward walking (Figure 5—video 4), groom-

ing (Figure 5—video 5), and forward walking (Figure 5—video 6). Thus, 3D pose overcomes serious

issues arising from unsupervised embedding of 2D pose data, enabling more reliable and robust

behavioral data analysis.

Discussion
We have developed DeepFly3D, a deep learning-based 3D pose estimation system that is optimized

for quantifying limb and appendage movements in tethered, behaving Drosophila. By using multiple

synchronized cameras and exploiting multiview redundancy, our software delivers robust and accu-

rate pose estimation at the sub-millimeter scale. Ultimately, we may work solely with monocular

images by lifting the 2D detections (Pavlakos et al., 2017b) to 3D or by directly regressing to 3D

(Tekin et al., 2017) as has been achieved in human pose estimation studies. Our approach relies on

supervised deep learning to train a neural network that detects 2D joint locations in individual cam-

era images. Importantly, our network becomes increasingly competent as it runs: By leveraging the

redundancy inherent to a multiple-camera setup, we iteratively reproject 3D pose to automatically

detect and correct 2D errors, and then use these corrections to further train the network without

user intervention.

None of the techniques we have put together—an approach for multiple-camera calibration that

uses the animal itself rather than an external apparatus, an iterative approach to inferring 3D pose

using graphical models as well as optimization based on dynamic programming and belief propaga-

tion, and a graphical user interface and active learning policy for interacting with, annotating, and

correcting 3D pose data—are fly-specific. They could easily be adapted to other limbed animals,

from mice to primates and humans. The only thing that would have to change significantly are the

Figure 4. Unsupervised behavioral classification of 2D pose data is sensitive to viewing angle. (A) Behavioral map derived using 2D pose data from

three adjacent cameras (Cameras 1, 2, and 3) but the same animals and experimental time points. Shown are clusters (black outlines) that are enriched

(yellow), or sparsely populated (blue) with data. Different clusters are enriched for data from either (B) camera 1, (C) camera 2, or (D) camera 3.

Behavioral embeddings were derived using 1 million frames during 4 s of optogenetic stimulation of MDN>CsChrimson (n = 6 flies, n = 29 trials),

aDN>CsChrimson (n = 6 flies, n = 30 trials), and wild-type control animals (MDN-GAL4/+: n = 4 flies, n = 20 trials. aDN-GAL4/+: n = 4 flies, n = 23

trials).

DOI: https://doi.org/10.7554/eLife.48571.006

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 6 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571.006
https://doi.org/10.7554/eLife.48571


dimensions of the experimental setup. This would remove the need to deal with the very small scales

Drosophila requires and would, in practice, make pose estimation easier. In the

Materials and methods section, we explain in detail how organism-specific features of DeepFly3D—

bone segment length, number of legs, and camera focal distance—can be modified to study, for

example, humans, primates, rodents, or other insects.

As in the past, we anticipate that the development of new technologies for quantifying behavior

will open new avenues and enhance existing lines of investigation. For example, deriving 3D pose

using DeepFly3D can improve the resolution of studies examining how neuronal stimulation influen-

ces animal behavior (Cande et al., 2018; McKellar et al., 2019), the precision and predictive power

of efforts to define natural action sequences (Seeds et al., 2014; McKellar et al., 2019), the assess-

ment of interventions that target models of human disease (Feany and Bender, 2000; Hewitt and

Whitworth, 2017), and links between neural activity and animal behavior—when coupled with

recording technologies like 2-photon microscopy (Seelig et al., 2010; Chen et al., 2018). Impor-

tantly, 3D pose improves the robustness of unsupervised behavioral classification approaches. There-

fore, DeepFly3D is a critical step toward the ultimate goal of achieving fully-automated, high-fidelity

behavioral data analysis.

Figure 5. Unsupervised behavioral classification of 3D joint angle data. Behavioral embeddings were calculated using 3D joint angles from the same 1

million frames used in Figure 4A. (A) Behavioral map combining all data during 4 s of optogenetic stimulation of MDN>CsChrimson (n = 6 flies, n = 29

trials), aDN>CsChrimson (n = 6 flies, n = 30 trials), and wild-type control animals (For MDN-Gal4/+, n = 4 flies, n = 20 trials. For aDN-Gal4/+ n = 4 flies,

n = 23 trials). The same behavioral map is shown with only the data from (B) MDN>CsChrimson stimulation, (C) aDN>CsChrimson stimulation, or (D)

control animal stimulation. Associated videos reveal that these distinct map regions are enriched for backward walking, antennal grooming, and

forward walking, respectively.

DOI: https://doi.org/10.7554/eLife.48571.007

The following videos are available for figure 5:

Figure 5—video 1. Representative MDN>CsChrimson optogenetically activated backward walking. Orange circle indicates LED illumination and

CsChrimson activation.

DOI: https://doi.org/10.7554/eLife.48571.008

Figure 5—video 2. Representative aDN>CsChrimson optogenetically activated antennal grooming. Orange circle indicates LED illumination and

CsChrimson activation.

DOI: https://doi.org/10.7554/eLife.48571.009

Figure 5—video 3. Representative control animal behavior during illumination. Orange circle indicates LED illumination and CsChrimson activation.

DOI: https://doi.org/10.7554/eLife.48571.010

Figure 5—video 4. Sample behaviors from 3D pose cluster enriched in backward walking.

DOI: https://doi.org/10.7554/eLife.48571.011

Figure 5—video 5. Sample behaviors from 3D pose cluster enriched in antennal grooming.

DOI: https://doi.org/10.7554/eLife.48571.012

Figure 5—video 6. Sample behaviors from 3D pose cluster enriched in forward walking.

DOI: https://doi.org/10.7554/eLife.48571.013

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 7 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571.007
https://doi.org/10.7554/eLife.48571.008
https://doi.org/10.7554/eLife.48571.009
https://doi.org/10.7554/eLife.48571.010
https://doi.org/10.7554/eLife.48571.011
https://doi.org/10.7554/eLife.48571.012
https://doi.org/10.7554/eLife.48571.013
https://doi.org/10.7554/eLife.48571


Materials and methods
With synchronized Drosophila video sequences from seven cameras in hand, the first task for Deep-

Fly3D is to detect the 2D location of 38 landmarks. These 2D locations of the same landmarks seen

across multiple views are then triangulated to generate 3D pose estimates. This pipeline is depicted

in Figure 6. First, we will describe our deep learning-based approach to detect landmarks in images.

Then, we will explain the triangulation process that yields full 3D trajectories. Finally, we will describe

how we identify and correct erroneous 2D detections automatically.

2D pose estimation
Deep network architecture
We aim to detect five joints on each limb, six on the abdomen, and one on each antenna, giving a

total of 38 keypoints per time instance. To achieve this, we adapted a state-of-the-art Stacked Hour-

glass human pose estimation network (Newell et al., 2016) by changing the input and output layers

to accommodate a new input image resolution and a different number of tracked points. A single

hourglass stack consists of residual bottleneck modules with max pooling, followed by up-sampling

layers and skip connections. The first hourglass network begins with a convolutional layer and a pool-

ing layer to reduce the input image size from 256 � 512 to 64 � 128 pixels. The remaining hourglass

input and output tensors are 64 � 128. We used 8 stacks of hourglasses in our final implementation.

The output of the network is a stack of probability maps, also known as heatmaps or confidence

maps. Each probability map encodes the location of one keypoint, as the belief of the network that

a given pixel contains that particular tracked point. However, probability maps do not formally

define a probability distribution; their sum over all pixels does not equal 1.

Figure 6. The DeepFly3D pose estimation pipeline. (A) Data acquisition from the multi-camera system. (B)

Training and retraining of 2D pose. (C) 3D pose estimation.

DOI: https://doi.org/10.7554/eLife.48571.014

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 8 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571.014
https://doi.org/10.7554/eLife.48571


2D pose training dataset
We trained our network for 19 keypoints, resulting in the tracking of 38 points when both sides of

the fly are taken into account. Determining which images to use for training purposes is critical. The

intuitively simple approach—training with randomly selected images—may lead to only marginal

improvements in overall network performance. This is because images for which network predictions

can already be correctly made give rise to only small gradients during training. On the other hand,

manually identifying images that may lead to incorrect network predictions is highly laborious.

Therefore, to identify such challenging images, we exploited the redundancy of having multiple cam-

era views (see section 3D pose correction). Outliers in individual camera images were corrected

automatically using images from other cameras, and frames that still exhibited large reprojection

errors on multiple camera views were selected for manual annotation and network retraining. This

combination of self supervision and active learning permits faster training using a smaller manually

annotated dataset (Simon et al., 2017). The full annotation and iterative training pipeline is illus-

trated in Figure 6. In total, 40,063 images were annotated: 5,063 were labeled manually in the first

iteration, 29,000 by automatic correction, and 6,000 by manually correcting those proposed by the

active learning strategy.

Deep network training procedure
We trained our Stacked Hourglass network to regress from 256 � 512 pixel grayscale video images

to multiple 64 � 128 probability maps. Specifically, during training and testing, networks output a

19 � 64 � 128 tensor; one 64 � 128 probability map per tracked point. During training, we created

probability maps by embedding a 2D Gaussian with mean at the ground-truth point and 1px sym-

metrical extent (i.e. s ¼ 1px) on the diagonal of the covariance matrix. We calculated the loss as the

L2 distance between the ground-truth and predicted probability maps. During testing, the final net-

work prediction for a given point was the probability map pixel with maximum probability. We

started with a learning rate of 0.0001 and then multiplied the learning rate by a factor of 0.1 once

the loss function plateaued for more than five epochs. We used an RMSPROP optimizer for gradient

descent, following the original Stacked Hourglass implementation, with a batch-size of eight images.

Using 37,000 training images, the Stacked Hourglass network usually converges to a local minimum

after 100 epochs (20 h on a single GPU).

Network training details
Variations in each fly’s position across experiments are handled by the translational invariance of the

convolution operation. In addition, we artificially augment training images to improve network gen-

eralization for further image variables. These variables include (i) illumination conditions – we ran-

domly changed the brightness of images using a gamma transformation, (ii) scale – we randomly

rescaled images between 0.80x - 1.20x, and (iii) rotation – we randomly rotated images and corre-

sponding probability maps ±15˚. This augmentation was enough to compensate for real differences

in the size and orientation of tethered flies across experiments. Furthermore, as per general practice,

the mean channel intensity was subtracted from each input image to distribute annotations symmet-

rically around zero. We began network training using pretrained weights from the MPII human pose

dataset (Andriluka et al., 2014). This dataset consists of more than 25,000 images with 40,000 anno-

tations, possibly with multiple ground-truth human pose labels per image. Starting with a pretrained

network results in faster convergence. However, in our experience, this does not affect final network

accuracy in cases with a large amount of training data. We split the dataset into 37,000 training

images, 2,063 testing images, and 1,000 validation images. None of these subsets shared common

images or common animals, to ensure that the network could generalize across animals, and experi-

mental setups. 5,063 of our training images were manually annotated, and the remaining data were

automatically collected using belief propagation, graphical models, and active learning, (see section

3D pose correction). Deep neural network parameters need to be trained on a dataset with manually

annotated ground-truth key point positions. To initialize the network, we collected annotations using

a custom multicamera annotation tool that we implemented in JavaScript using Google Firebase

(Figure 7). The DeepFly3D annotation tool operates on a simple web-server, easing the distribution

of annotations across users and making these annotations much easier to inspect and control.

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 9 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571


Computing hardware and software
We trained our model on a desktop computing workstation running on an Intel Core i9-7900X CPU,

32 GB of DDR4 RAM, and a GeForce GTX 1080. With 37,000 manually and automatically labeled

images, training takes nearly 20 h on a single GeForce GTX 1080 GPU. Our code is implemented

with Python 3.6, Pytorch 0.4 and CUDA 9.2. Using this desktop configuration, our network can run

at 100 Frames-Per-Second (FPS) using the 8-stack variant of the Hourglass network, and can run at

420 FPS using the smaller 2-stack version. Thanks to an effective initialization step, calibration takes

3–4 s. Error checking and error correction can be performed at 100 FPS and 10 FPS, respectively.

Error correction is only performed in response to large reprojection errors and does not create a

bottleneck in the overall speed of the pipeline.

Accuracy analysis
Consistent with the human pose estimation literature, we report accuracy as Percentage of Correct

Keypoints (PCK) and Root Mean Squared Error (RMSE). PCK refers to the percentage of detected

points lying within a specific radius from the ground-truth label. We set this threshold as 50 pixels,

Figure 7. The DeepFly3D annotation tool. This GUI allows the user to manually annotate joint positions on images from each of seven cameras.

Because this tool can be accessed from a web browser, annotations can be performed in a distributed manner across multiple users more easily. A full

description of the annotation tool can be found in the online documentation: https://github.com/NeLy-EPFL/DeepFly3D. Scale bar is 50 pixels.

DOI: https://doi.org/10.7554/eLife.48571.015

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 10 of 23

Tools and resources Neuroscience

https://github.com/NeLy-EPFL/DeepFly3D
https://doi.org/10.7554/eLife.48571.015
https://doi.org/10.7554/eLife.48571


which is roughly one third of the 3D length of the femur. The final estimated position of each key-

point was obtained by selecting the pixel with the largest probability value on the relevant probabil-

ity map. We compared DeepFly3D’s annotations with manually annotated ground-truth labels to

test our model’s accuracy. For RMSE, we report the square root of average pixel distance between

the prediction and the ground-truth location of the tracked point. We remove trivial points such as

the body-coxa and coxa-femur—which remain relatively stationary—to fairly evaluate our algorithms

and to prevent these points from dominating our accuracy measurements.

From 2D landmarks to 3D trajectories
In the previous section, we described our approach to detect 38 2D landmarks. Let xc;j 2 R

2 denote

the 2D position of landmark j in the image acquired by camera c. For each landmark, our task is now

to estimate the corresponding 3D position, Xj 2 R
3. To accomplish this, we used triangulation and

bundle-adjustment (Hartley and Zisserman, 2000) to compute 3D locations, and we used pictorial

structures (Felzenszwalb and Huttenlocher, 2005) to enforce geometric consistency and to elimi-

nate potential errors caused by misdetections. We present these steps below.

Pinhole camera model
The first step is to model the projection operation that relates a specific Xj to its seven projections

in each camera view xc;j. To make this easier, we follow standard practice and convert all Cartesian

coordinates xc; yc; zc½ � to homogeneous ones xh; yh; zh; s½ � such that xc ¼ xh=s, yc ¼ yh=s, zc ¼ zh=s.

From now on, we will assume that all points are expressed in homogeneous coordinates and omit

the h subscript. Assuming that these coordinates are expressed in a coordinate system whose origin

is in the optical center of the camera and whose z-axis is its optical axis, the 2D image projection

u; v½ � of a 3D homogeneous point x; y; z; 1½ � can be written as

u¼U=W ;

v¼ V=W ;

U

V

W

2

6

4

3

7

5
¼K

x

y

z

1

2

6

6

6

4

3

7

7

7

5

; withK¼

fx 0 cx 0

0 fy cy 0

0 0 1 0

2

6

4

3

7

5
;

(1)

where the 3 � 4 matrix K is known as the intrinsic parameters matrix—scaling in the x and y direc-

tion and image coordinates of the principal point cx and cy—that characterizes the camera settings.

In practice, the 3D points are not expressed in a camera fixed coordinate system, especially in

our application where we use seven different cameras. Therefore, we use a world coordinate system

that is common to all cameras. For each camera, we must therefore convert 3D coordinates

expressed in this world coordinate system to camera coordinates. This requires rotating and translat-

ing the coordinates to account for the position of the camera’s optical center and its orientation.

When using homogeneous coordinates, this is accomplished by multiplying the coordinate vector by

a 4 � 4 extrinsic parameters matrix

M¼
R T

0 1

� �

; (2)

where R is a 3 � 3 rotation matrix and T a 3 � 1 translation vector. Combining Equation 1 and

Equation 2 yields

u¼U=W ;

v¼ V=W ;

U

V

W

2

6

4

3

7

5
¼P

x

y

z

1

2

6

6

6

4

3

7

7

7

5

;

(3)

where P¼MK is a 3 � 4 matrix.

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 11 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571


Camera distortion
The pinhole camera model described above is an idealized one. The projections of real cameras

deviate from it. These deviations are referred to as distortions and must be accounted for. The most

Figure 8. Camera calibration. (A) Correcting erroneous 2D pose estimations by using epipolar relationships. Only

2D pose estimates without large epipolar errors are used for calibration. x2 represents a 2D pose estimate from

the middle camera. Epipolar lines are indicated as blue and red lines on the image plane. (B) The triangulated

point, XT , uses the initial camera parameters. However, due to the coarse initialization of each camera’s extrinsic

properties, observations from each camera do not agree with one another and do not yield a reasonable 3D

position estimate. (C) The camera locations are corrected, generating an accurate 3D position estimate by

optimizing Equation 7 using only the pruned 2D points.

DOI: https://doi.org/10.7554/eLife.48571.016

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 12 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571.016
https://doi.org/10.7554/eLife.48571


significant distortion is known as radial distortion because the error grows with the distance from the

image center. For the cameras we use, radial distortion can be expressed as

upinhole ¼ u 1þkx
1
r2 þkx

2
r4

� �

;

vpinhole ¼ v 1þk
y
1
r2 þk

y
2
r4

� �

;
(4)

where u;v½ � is the actual projection of a 3D point and upinhole;vpinhole½ � is the one the pinhole model

predicts. In other words, the four parameters fkx
1
;kx

2
;ky

1
;ky

2
g characterize the distortion. From now on,

we will therefore write the full projection as

X¼ pðxÞ ¼ fdðfpðxÞÞ ;

X¼ ½x;y; z�;

X¼ ½u;v�;

(5)

where fp denotes the ideal pinhole projection of Equation 3 and fd the correction of Equation 4.

Triangulation
We can associate to each of the seven cameras a projection function pc like the one in Equation 5,

where c is the camera number. Given a 3D point and its projections xc in the images, its 3D coordi-

nates can be estimated by minimizing the reprojection error

X2R4

argmin
X

7

c¼1

eckpcðXÞ�xck
2 ; (6)

where ec is one if the point was visible in image c and zero otherwise. In the absence of camera dis-

tortion, that is, when the projection p is a purely linear operation in homogeneous coordinates, this

can be done for any number of cameras by solving a Singular Value Decomposition (SVD) problem

(Hartley and Zisserman, 2000). In the presence of distortions, we replace the observed u and v

coordinates of the projections by the corresponding upinhole and upinhole values of Equation 5 before

performing the SVD.

Figure 9. 3D pose correction for one leg using the MAP solution and pictorial structures. (A) Candidate 3D pose estimates for each keypoint are

created by triangulating local maxima from probability maps generated by the Stacked Hourglass deep network. (B) For a selection of these candidate

estimates, we can assign a probability using Equation 8. However, calculating this probability for each pair of points is computationally intractable. (C)

By exploiting the chain structure of Equation 8, we can instead pass a probability distribution across layers using a belief propagation algorithm.

Messages are passed between layers as a function of parent nodes, describing the belief of the child nodes on each parent node. Grayscale colors

represent the calculated belief of each node where darker colors indicate higher belief. (D) Corrected pose estimates are obtained during the second

backward iteration, by selecting the nodes with largest belief. We discard nodes (x’s) that have non-maximal belief during backwards message passing.

Note that beliefs have been adjusted after forward message passing.

DOI: https://doi.org/10.7554/eLife.48571.017

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 13 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571.017
https://doi.org/10.7554/eLife.48571


Camera calibration
Triangulating as described above requires knowing the projection matrices Pc of Equation 3 for

each camera c, corresponding distortion parameters fkx
1
; kx

2
; ky

1
; ky

2
g of Equation 4, together with the

intrinsic parameters of focal length and principal point offset. In practice, we use the focal length

and principal point offset provided by the manufacturer and estimate the remaining parameters

automatically: the three translations and three rotations for each camera that define the correspond-

ing matrix M of extrinsic parameters along with the distortion parameters.

To avoid having to design the exceedingly small calibration pattern that more traditional methods

use to estimate these parameters, we use the fly itself as calibration pattern and minimize the repro-

jection error of Equation 6 for all joints simultaneously while allowing the camera parameters to also

change. In other words we look for

argmin
P

7

c¼1

Pm
j¼1

ec;j�ðpcðXjÞ�xc;jÞ;

pc1�c�7

Xj1�j�m

(7)

where Xj and xc;j are the 3D locations and 2D projections of the landmarks introduced above and �

denotes the Huber loss. Equation 7 is known as bundle-adjustment (Hartley and Zisserman, 2000).

Huber loss is defined as

�dðaÞ ¼
1

2
a2 forjaj � d

d jaj � 1

2
d

� �

otherwise

�

:

Replacing the squared loss by the Huber loss makes our approach more robust to erroneous

detections xc;j. We empirically set d to 20 pixels. Note that we perform this minimization with

respect to ten degrees-of-freedom per camera: three translations, three rotations, and four

distortions.

For this optimization to work properly, we need to initialize these 10 parameters and we need to

reduce the number of outliers. To achieve this, the initial distortion parameters are set to zero. We

also produce initial estimates for the three rotation and three translation parameters by measuring

the distances between adjacent cameras and their relative orientations. To initialize the rotation and

translation vectors, we measure the distance and the angle between adjacent cameras, from which

we infer rough initial estimates. Finally, we rely on epipolar geometry (Hartley and Zisserman,

2000) to automate outlier rejection. Because the cameras form a rough circle and look inward, the

epipolar lines are close to being horizontal Figure 8A. Thus, corresponding 2D projections must

belong to the same image rows, or at most a few pixels higher or lower. In practice, this means

checking if all 2D predictions lie in nearly the same rows and discarding a priori those that do not.

3D pose correction
The triangulation procedure described above can produce erroneous results when the 2D estimates

of landmarks are wrong. Additionally, it may result in implausible 3D poses for the entire animal

because it treats each joint independently. To enforce more global geometric constraints, we rely on

pictorial structures (Felzenszwalb and Huttenlocher, 2005) as described in Figure 9. Pictorial struc-

tures encode the relationship between a set of variables (in this case the 3D location of separate

tracked points) in a probabilistic setting using a graphical model. This makes it possible to consider

multiple 2D locations xc;j for each landmark Xc instead of only one. This increases the likelihood of

finding the true 3D pose.

Generating multiple candidates
Instead of selecting landmarks as the locations with the maximum probability in maps output by our

Stacked Hourglass network, we generate multiple candidate 2D landmark locations xc;j. From each

probability map, we select 10 local probability maxima that are at least one pixel apart from one

another. Then, we generate 3D candidates by triangulating 2D candidates in every tuple of cameras.

Because a single point is visible from at most four cameras, this results in at most
4

2

� �

� 10
2 candi-

dates for each tracked point.

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 14 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571


Choosing the best candidates
To identify the best subset of resulting 3D locations, we introduce the probability distribution

PðLjI; �Þ that assigns a probability to each solution L, consisting of 38 sets of 2D points observed

from each camera. Our goal is then to find the most likely one. More formally, P represents the likeli-

hood of a set of tracked points L, given the images, model parameters, camera calibration, and geo-

metric constraints. In our formulation, I denotes the seven camera images I ¼ fIcg1�c�7
and �

represents the set of projection functions pc for camera c along with a set of length distributions Si;j

between each pair of points i and j that are connected by a limb. L consists of a set of tracked points

fLig1�i�n, where each Li describes a set of 2D observations li;c from multiple camera views. These are

used to triangulate the corresponding 3D point locations li. If the set of 2D observations is incom-

plete, as some points are totally occluded in some camera views, we triangulate the 3D point li using

the available ones and replace the missing observations by projecting the recovered 3D positions

into the images, pcðliÞ in Equation 3. In the end, we aim to find the solution L̂ ¼ argmaxLPðLjI; �Þ:

This is known as Maximum a Posteriori (MAP) estimation. Using Bayes rule, we write

PðLjI; �Þ / PðIjL; �ÞPðLj�Þ ; (8)

where the two terms can be computed separately. We compute PðIjJ; �Þ using the probability maps

Hj;c generated by the Stacked Hourglass network for the tracked point j for camera c. For a single

joint j seen by camera c, we model the likelihood of observing that particular point using PðHj;cjlj;cÞ,

which can be directly read from the probability maps as the pixel intensity. Ignoring the dependency

between the cameras, we write the overall likelihood as the product of the individual likelihood

terms

PðIjL; �Þ ¼ PðHjLÞ /
Y

n

i¼1

Y

7

c¼1

PðHj;cjli;cÞ ; (9)

which can be read directly from the probability maps as pixel intensities and represent the network’s

confidence that a particular keypoint is located at a particular pixel. When a point is not visible from

a particular camera, we assume the probability map only contains a constant non-zero probability,

which does not affect the final solution. We express PðLj�Þ as

PðLj�Þ ¼ PðLjp;SÞ ¼
Y

i;jð Þ2E

P li; ljjSi;j
� �

Y

n

j¼1

Y

7

c¼1

ec;jkpcðljÞ� lc;jk
�1

2
; (10)

where pairwise dependencies P li; ljjSi;j
� �

between two variables respect the segment length con-

straint when the variables are connected by a limb. The length of segments defined by pairs of con-

nected 3D points follows a normal distribution. Specifically, we model P li; ljjSi;j
� �

as

Si;jðli; ljÞ ¼N ðkli� ljk��i;j;si;jÞ. We model the reprojection error for a particular point j as
Q

7

c¼1
ec;jkpcðljÞ� lc;jk

�1

2
which is set to zero using the variable ec;j denoting the visibility of the point j

from camera c. If a 2D observation for a particular camera is manually set by a user with the Deep-

Fly3D GUI, we take it to be the only possible candidate for that particular image and we set PðLjjHÞ

to 1, where j denotes the manually assigned pixel location.

Solving the MAP problem using the Max-Sum algorithm
For general graphs, MAP estimation with pairwise dependencies is NP-hard and therefore intracta-

ble. However, in the specific case of non-cyclical graphs, it is possible to solve the inference problem

using belief propagation (Bishop, 2006). Since the fly’s skeleton has a root and contains no loops,

we can use a message passing approach (Felzenszwalb and Huttenlocher, 2005). It is closely

related to Viterbi recurrence and propagates the unary probabilities PðLjjLiÞ between the edges of

the graph starting from the root and ending at the leaf nodes. This first propagation ends with the

computation of the marginal distribution for the leaf node variables. During the subsequent back-

ward iteration, as PðLjÞ for leaf node is computed, the point Lj with maximum posterior probability is

selected in OðkÞ time, where k is the upper bound on the number of proposals for a single tracked

point. Next, the distribution PðLijLjÞ is calculated, adjacent nodes for the leaf node. Continuing this

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 15 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571


process on all the remaining points results in a MAP solution for the overall distribution PðLÞ, as

shown in Figure 9, with overall Oðk2Þ computational complexity.

Learning the parameters
We learn the parameters for the set of pairwise distributions Si;j using a maximum likelihood process

and assuming the distributions to be Gaussian. We model the segment length Si;j as the euclidean

distance between the points lj and lj. We then solve for argmaxSPðSjL; �Þ, assuming segments have a

Gaussian distribution resulting from the Gaussian noise in point observations L. This gives us the

mean and variance, defining each distribution Si:j. We exclude the same points that we removed

from the calibration procedure, that exhibit high reprojection error.

In practice, we observe a large variance for pretarsus values (Figure 10). This is because occlu-

sions occasionally shorten visible tarsal segments. To eliminate the resulting bias, we treat these

limbs differently from the others and model the distribution of tibia-tarsus and tarsus-tip points as a

Beta distribution, with parameters found using a similar Maximum Likelihood Estimator (MLE) formu-

lation. Assuming the observation errors to be Gaussian and zero-centered, the bundle adjustment

procedure can also be understood as an MLE of the calibration parameters (Triggs et al., 2000).

Therefore, the entire set of parameters for the formulation can be learned using MLE. Thus, prior

information about potentially occluded targets can be used to guide inference. For example, in a

head-fixed rodent, the left eye may not always be visible from the right-side of the animal. This infor-

mation can be incorporated into DeepFly3D’s inference system in the file, skeleton.py, by editing

the function camera_see_joint. Afterwards, predictions from occluded cameras will not be used to

Figure 10. Pose correction using pictorial structures. (A) Raw input data from four cameras, focusing on the pretarsus of the middle left leg. (B)

Probability maps for the pretarsus output from the Stacked Hourglass deep network. Two maxima (white arrowheads) are present on the probability

maps for camera 5. The false-positive has a larger unary probability. (C) Raw predictions of 2D pose estimation without using pictorial structures. The

pretarsus label is incorrectly applied (white arrowhead) in camera 5. By contrast, cameras 4, 6, and 7 are correctly labeled. (D) Corrected pose

estimation using pictorial structures. The false-positive is removed due to the high error measured in Equation 8. The newly corrected pretarsus label

for camera five is shown (white arrowhead).

DOI: https://doi.org/10.7554/eLife.48571.019

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 16 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571.019
https://doi.org/10.7554/eLife.48571


triangulate a given 3D point. If no such information is provided, every prediction will be used to tri-

angulate a given 3D point.

The pictorial structure formulation can be further expanded using temporal information, penaliz-

ing large movements of a single tracked point between two consecutive frames. However, we

abstained from using temporal information more extensively for several reasons. First, temporal

dependencies would introduce loops in our pictorial structures, thus making exact inference NP-

hard as discussed above. This can be handled using loopy belief propagation algorithms

(Murphy et al., 1999) but requires multiple message passing rounds, which prevents real-time infer-

ence without any theoretical guarantee of optimal inference. Second, the rapidity of Drosophila limb

movements makes it hard to assign temporal constraints, even with fast video recording. Finally, we

empirically observed that the current formulation, enforcing structured poses in a single temporal

frame, already eliminates an overwhelming majority of false-positives inferred during the pose esti-

mation stage of the algorithm.

Modifying DeepFly3D to study other animals
DeepFly3D does not assume a circular camera arrangement or that there is one degree of freedom

in the camera network. Therefore, it could easily be adapted for 3D pose estimation in other ani-

mals, ranging from rodents to primates and humans. We illustrate this flexibility by using DeepFly3D

to capture human 3D pose in the Human 3.6M Dataset (http://vision.imar.ro/human3.6m/descrip-

tion.php) very popular, publicly available computer vision benchmarking dataset generated using

four synchronized cameras (Ionescu et al., 2014; Ionescu et al., 2011) (Figure 11).

Generally, for any new dataset, the user first needs to provide an initial set of manual annotations.

The user would describe the number of tracked points and their relationships to one another in a

python setup file. Then, in a configuration file, the user specifies the number of cameras along with

the resolutions of input images and output probability maps. DeepFly3D will then use these initial

manual annotations to (i) train the 2D Stacked Hourglass network, (ii) perform camera calibration

without an external calibration pattern, (iii) learn the epipolar geometry to perform outlier detection,

and (iv) learn the segment length distributions Si;j. After this initial bootstrapping, DeepFly3D can be

then used with pictorial structures and active learning to iteratively improve pose estimation

accuracy.

The initial manual annotations can be performed using the DeepFly3D Annotation GUI. After-

wards, these annotations can be downloaded from the Annotation GUI as a CSV file using the Save

Figure 11. DeepFly3D graphical user interface (GUI) applied to with the Human3.6M dataset (Ionescu et al., 2014). To use the DeepFly3D GUI on any

new dataset (Drosophila or otherwise), users can provide an initial small set of manual annotations. Using these annotations, the software calculates the

epipolar geometry, performs camera calibration, and trains the 2D pose estimation deep network. A description of how to adopt DeepFly3D for new

datasets can be found in the Materials and methods section and, in greater detail, online: https://github.com/NeLy-EPFL/DeepFly3D. This figure is

licensed for academic use only and thus is not available under CC-BY and is exempt from the CC-BY 4.0 license.

DOI: https://doi.org/10.7554/eLife.48571.020

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 17 of 23

Tools and resources Neuroscience

http://vision.imar.ro/human3.6m/description.php
http://vision.imar.ro/human3.6m/description.php
https://github.com/NeLy-EPFL/DeepFly3D
https://doi.org/10.7554/eLife.48571.020
https://doi.org/10.7554/eLife.48571


button (Figure 7). Once the CSV file is placed in the images folder, DeepFly3D will automatically

read and display the annotations. To train the Stacked Hourglass network, use the csv-path flag

while running pose2d.py (found in deepfly/pose2d/). DeepFly3D will then train the Stacked Hour-

glass network by performing transfer learning using the large MPII dataset and the smaller set of

user manual annotations.

To perform camera calibration, the user should select the Calibration button on the GUI Fig-

ure 12. DeepFly3D will then perform bundle adjustment (Equation 7) and save the camera parame-

ters in calibration.pickle (found in the images folder). The path of this file should then be added to

Config.py to initialize calibration. These initial calibration parameters will then be used in further

experiments for fast and accurate convergence. If the number of annotations is insufficient for accu-

rate calibration, or if bundle adjustment is converging too slowly, an initial rough estimate of the

camera locations can be set in Config.py. As long as a calibration is set in Config.py, DeepFly3D will

use it as a projection matrix to calculate the epipolar geometry between cameras. This step is neces-

sary to perform outlier detection on further calibration operations.

DeepFly3D will also learn the distribution Si;j, whose non-zero entries are found in skeleton.py.

One can easily calculate these segment length distribution parameters using the functions provided

Figure 12. DeepFly3D graphical user interface (GUI). The top-left buttons enable operations like 2D pose estimation, camera calibration, and saving

the final results. The top-right buttons can be used to visualize the data in different ways: as raw images, probability maps, 2D pose, or the corrected

pose following pictorial structures. The bottom-left buttons permit frame-by-frame navigation. A full description of the GUI can be found in the online

documentation: https://github.com/NeLy-EPFL/DeepFly3D.

DOI: https://doi.org/10.7554/eLife.48571.018

Figure 13. A schematic of the seven camera spherical treadmill and optogenetic stimulation system that was used

in this study.

DOI: https://doi.org/10.7554/eLife.48571.021

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 18 of 23

Tools and resources Neuroscience

https://github.com/NeLy-EPFL/DeepFly3D
https://doi.org/10.7554/eLife.48571.018
https://doi.org/10.7554/eLife.48571.021
https://doi.org/10.7554/eLife.48571


with DeepFly3D. CameraNetwork class (found under deepfly/GUI/), will then automatically load the

points and calibration parameters from the images folder. The function CameraNetwork.triangulate

will convert 2D annotation points into 3D points using the calibration parameters. The Si;j parameters

can then be saved using the pickle library (the save path can be set in Config.py). The calcBonePar-

ams method will then output the segment lengths’ mean and variance. These values will then be

used with pictorial structures (Equation 8).

We provide further technical details for how to adapt DeepFly3D to other multi-view datasets

online (https://github.com/NeLy-EPFL/DeepFly3D [Günel et al., 2019] copy archived at https://

github.com/elifesciences-publications/DeepFly3D).

Experimental setup
We positioned seven Basler acA1920-155um cameras (FUJIFILM AG, Niederhaslistrasse, Switzerland)

94 mm away from the tethered fly, resulting in a circular camera network with the animal in the cen-

ter (Figure 13). We acquired 960 � 480 pixel video data at 100 FPS under 850 nm infrared ring light

illumination (Stemmer Imaging, Pfäffikon Switzerland). Cameras were mounted with 94 mm W.D./

1.00 x InfiniStix lenses (Infinity Photo-Optical GmbH, Göttingen). Optogenetic stimulation LED light

was filtered out using 700 nm longpass optical filters (Edmund Optics, York UK). Each camera’s

depth of field was increased using 5.8 mm aperture retainers (Infinity Photo-Optical GmbH). To auto-

mate the timing of optogenetic LED stimulation and camera acquisition triggering, we use an Ardu-

ino (Arduino, Sommerville, MA) and custom software written using the Basler camera API.

We assessed the optimal number of cameras for DeepFly3D and concluded that increasing the

number of cameras increases accuracy by stabilizing triangulation. Specifically, we observed the fol-

lowing. (i) Calibration is not a significant source of error: calibrating with fewer than seven cameras

does not dramatically increase estimation error. (ii) Having more cameras improves triangulation.

Reducing the number of cameras down to four, even having calibrated with seven cameras, results

in an increase of 0.05 mm triangulation error. This may be because the camera views are sufficiently

different, having largely non-overlapping 2D-detection failure cases. Thus, the redundancy provided

by having more cameras mitigates detection errors by finding a 3D pose that is consistent across at

least two camera views.

Drosophila transgenic lines
UAS-CsChrimson (Klapoetke et al., 2014) animals were obtained from the Bloomington Stock Cen-

ter (Stock #55135). MDN-1-Gal4 (Bidaye et al., 2014) (VT44845-DBD; VT50660-AD) was provided

by B. Dickson (Janelia Research Campus, Ashburn). aDN-Gal4 (Hampel et al., 2015)(R76F12-AD;

R18C11-DBD), was provided by J. Simpson (University of California, Santa Barbara). Wild-type, PR

animals were provided by M. Dickinson (California Institute of Technology, Pasadena).

Optogenetic stimulation experiments
Experiments were performed in the late morning or early afternoon Zeitgeber time (Z.T.), inside a

dark imaging chamber. An adult female animal 2–3 days-post-eclosion (dpe), was mounted onto a

custom stage (Chen et al., 2018) and allowed to acclimate for 5 min on an air-supported spherical

treadmill (Chen et al., 2018). Optogenetic stimulation was performed using a 617 nm LED (Thorlabs,

Newton, NJ) pointed at the dorsal thorax through a hole in the stage, and focused with a lens

(LA1951, 01" f = 25.4 mm, Thorlabs, Newton, NJ). Tethered flies were otherwise allowed to behave

spontaneously. Data were acquired in 9 s epochs: 2 s baseline, 5 s with optogenetic illumination,

and 2 s without stimulation. Individual flies were recorded for five trials each, with one-minute inter-

vals. Data were excluded from analysis if flies pushed their abdomens onto the spherical treadmill—

interfering with limb movements—or if flies struggled during optogenetic stimulation, pushing their

forelimbs onto the stage for prolonged periods of time.

Unsupervised behavioral classification
To create unsupervised embeddings of behavioral data, we mostly followed the approach taken by

Todd et al. (2017) and Berman et al. (2014). We smoothed 3D pose traces using a 1e filter. Then

we converted them into angles to achieve scale and translational invariance (Casiez et al., 2012).

Angles were calculated by taking the dot product from sets of three connected 3D positions. For

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 19 of 23

Tools and resources Neuroscience

https://github.com/NeLy-EPFL/DeepFly3D
https://github.com/elifesciences-publications/DeepFly3D
https://github.com/elifesciences-publications/DeepFly3D
https://doi.org/10.7554/eLife.48571


the antennae, we calculated the angle of the line defined by two antennal points with respect to the

ground-plane. This way, we generated four angles per leg (two body-coxa, one coxa-femur, and one

femur-tibia), two angles for the abdomen (top and bottom abdominal stripes), and a single angle for

the antennae (head tilt with respect to the axis of gravity). In total, we obtained a set of 20 angles,

extracted from 38 3D points.

We transformed angular time series using a Continous Wavelet Transform (CWT) to create a pos-

ture-dynamics space. We used the Morlet Wavelet as the mother wavelet, given its suitability to iso-

late periodic chirps of motion. We chose 25 wavelet scales to match dyadically spaced center

frequencies between 5 Hz and 50 Hz. Then, we calculatd spectrograms for each postural time-series

by taking the magnitudes of the wavelet coefficients. This yields a 20 � 25 = 500-dimensional time-

series, which was then normalized over all frequency channels to unit length, at each time instance.

Then, we could treat each feature vector from each time instance as a distribution over all frequency

channels.

Later, from the posture-dynamics space, we computed a two-dimensional representation of

behavior by using the non-linear embedding algorithm, t-SNE (Maaten, 2008). t-SNE embedded

our high-dimensional posture-dynamics space onto a 2D plane, while preserving the high-dimen-

sional local structure, while sacrificing larger scale accuracy. We used the Kullback–Leibler (KL) diver-

gence as the distance function in our t-SNE algorithm. KL assesses the difference between the

shapes of two distributions, justifying the normalization step in the preceding step. By analyzing a

multitude of plots generated with different perplexity values, we empirically found a perplexity

value of 35 to best suit the features of our posture-dynamics space.

From this generated discrete space, we created a continuous 2D distribution, that we could then

segment into behavioral clusters. We started by normalizing the 2D t-SNE projected space into a

1000 � 1000 matrix. Then, we applied a 2D Gaussian convolution with a kernel of size s = 10 px.

Finally, we segmented this space by inverting it and applying a Watershed algorithm that separated

adjacent basins, yielding a behavioral map.

Acknowledgements
We thank Celine Magrini and Fanny Magaud for image annotation assistance, Raphael Laporte and

Victor Lobato Rı́os for helping to develop camera acquisition software.

Additional information

Funding

Funder Grant reference number Author

Schweizerischer Nationalfonds
zur Förderung der Wis-
senschaftlichen Forschung

175667 Daniel Morales
Pavan Ramdya

Schweizerischer Nationalfonds
zur Förderung der Wis-
senschaftlichen Forschung

181239 Daniel Morales
Pavan Ramdya

EPFL iPhD Semih Günel

Microsoft Research JRC Project Helge Rhodin

Swiss Government Excellence
Postdoctoral Scholarship

2018.0483 Daniel Morales

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Semih Günel, Conceptualization, Data curation, Software, Formal analysis, Validation, Investigation,

Visualization, Methodology, Writing—original draft, Writing—review and editing; Helge Rhodin,

Conceptualization, Software, Formal analysis, Supervision, Methodology, Writing—original draft,

Project administration, Writing—review and editing; Daniel Morales, Data curation, Investigation,

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 20 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48571


Writing—review and editing; João Campagnolo, Data curation, Software, Writing—review and

editing; Pavan Ramdya, Conceptualization, Resources, Supervision, Funding acquisition,

Methodology, Writing—original draft, Project administration, Writing—review and editing; Pascal

Fua, Conceptualization, Resources, Supervision, Funding acquisition, Methodology, Project

administration, Writing—review and editing

Author ORCIDs

Helge Rhodin http://orcid.org/0000-0003-2692-0801

Daniel Morales http://orcid.org/0000-0002-7469-0898

Pavan Ramdya https://orcid.org/0000-0001-5425-4610

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.48571.032

Author response https://doi.org/10.7554/eLife.48571.033

Additional files
Supplementary files
. Transparent reporting form DOI: https://doi.org/10.7554/eLife.48571.022

Data availability

All data generated and analyzed during this study are included in the DeepFly3D GitHub site:

https://github.com/NeLy-EPFL/DeepFly3D (copy archived at https://github.com/elifesciences-publi-

cations/DeepFly3D) and in the Harvard Dataverse.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Gunel S, Rhodin H,
Morales D, Cam-
pagnolo J, Ramdya
P, Fua P

2019 aDN-GAL4 Control https://doi.org/10.7910/
DVN/PKKXOE

Harvard Dataverse,
10.7910/DVN/
PKKXOE

Gunel S, Rhodin H,
Morales D, Cam-
pagnolo J, Ramdya
P, Fua P

2019 MDN-GAL4 Control https://doi.org/10.7910/
DVN/HOLXOR

Harvard Dataverse,
10.7910/DVN/
HOLXOR

Gunel S, Rhodin H,
Morales D, Cam-
pagnolo J, Ramdya
P, Fua P

2019 aDN-GAL4 UAS-CsChrimson https://doi.org/10.7910/
DVN/S4L4KX

Harvard Dataverse,
10.7910/DVN/
S4L4KX

Gunel S, Rhodin H,
Morales D, Cam-
pagnolo J, Ramdya
P, Fua P

2019 MDN-GAL4 UAS-CsChrimson https://doi.org/10.7910/
DVN/8SUC9U

Harvard Dataverse,
10.7910/DVN/
8SUC9U

References
Andriluka M, Pishchulin L, Gehler P, Schiele B. 2014. 2d human pose estimation: new benchmark and state of the
art analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition p. 3686–3693.
DOI: https://doi.org/10.1109/CVPR.2014.471

Bender JA, Simpson EM, Ritzmann RE. 2010. Computer-assisted 3D kinematic analysis of all leg joints in walking
insects. PLOS ONE 5:e13617. DOI: https://doi.org/10.1371/journal.pone.0013617, PMID: 21049024

Berman GJ, Choi DM, Bialek W, Shaevitz JW. 2014. Mapping the stereotyped behaviour of freely moving fruit
flies. Journal of the Royal Society Interface 11:20140672. DOI: https://doi.org/10.1098/rsif.2014.0672

Bidaye SS, Machacek C, Wu Y, Dickson BJ. 2014. Neuronal control of Drosophila walking direction. Science 344:
97–101. DOI: https://doi.org/10.1126/science.1249964, PMID: 24700860

Bishop CM. 2006. Pattern Recognition and Machine Learning. Springer.
Cande J, Namiki S, Qiu J, Korff W, Card GM, Shaevitz JW, Stern DL, Berman GJ. 2018. Optogenetic dissection
of descending behavioral control in Drosophila. eLife 7:e34275. DOI: https://doi.org/10.7554/eLife.34275,
PMID: 29943729

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 21 of 23

Tools and resources Neuroscience

http://orcid.org/0000-0003-2692-0801
http://orcid.org/0000-0002-7469-0898
https://orcid.org/0000-0001-5425-4610
https://doi.org/10.7554/eLife.48571.032
https://doi.org/10.7554/eLife.48571.033
https://doi.org/10.7554/eLife.48571.022
https://github.com/NeLy-EPFL/DeepFly3D
https://github.com/elifesciences-publications/DeepFly3D
https://github.com/elifesciences-publications/DeepFly3D
https://doi.org/10.7910/DVN/PKKXOE
https://doi.org/10.7910/DVN/PKKXOE
https://doi.org/10.7910/DVN/HOLXOR
https://doi.org/10.7910/DVN/HOLXOR
https://doi.org/10.7910/DVN/S4L4KX
https://doi.org/10.7910/DVN/S4L4KX
https://doi.org/10.7910/DVN/8SUC9U
https://doi.org/10.7910/DVN/8SUC9U
https://doi.org/10.1109/CVPR.2014.471
https://doi.org/10.1371/journal.pone.0013617
http://www.ncbi.nlm.nih.gov/pubmed/21049024
https://doi.org/10.1098/rsif.2014.0672
https://doi.org/10.1126/science.1249964
http://www.ncbi.nlm.nih.gov/pubmed/24700860
https://doi.org/10.7554/eLife.34275
http://www.ncbi.nlm.nih.gov/pubmed/29943729
https://doi.org/10.7554/eLife.48571


Casiez G, Roussel N, Vogel D. 2012. 1e filter: a simple speed-based low-pass filter for noisy input in interactive
systems. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems ACM 2527–2530.

Chavdarova T, Baqué P, Bouquet S, Maksai A, Jose C, Lettry L, Fua P, Gool LV, Fleuret F. 2018. WILDTRACK: A
Multi-Camera HD Dataset for Dense Unscripted Pedestrian Detection. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 5030–5039.

Chen CL, Hermans L, Viswanathan MC, Fortun D, Aymanns F, Unser M, Cammarato A, Dickinson MH, Ramdya P.
2018. Imaging neural activity in the ventral nerve cord of behaving adult Drosophila. Nature Communications 9:
4390. DOI: https://doi.org/10.1038/s41467-018-06857-z, PMID: 30348941

Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW. 2007. Imaging large-scale neural activity with
cellular resolution in awake, mobile mice. Neuron 56:43–57. DOI: https://doi.org/10.1016/j.neuron.2007.08.
003, PMID: 17920014

Elhayek A, Aguiar E, Jain A, Tompson J, Pishchulin L, Andriluka M, Bregler C, Schiele B, Theobalt C. 2015.
Efficient Convnet-Based Marker-Less motion capture in general scenes with a low number of cameras. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). DOI: https://doi.org/10.1109/CVPR.2015.
7299005

Feany MB, Bender WW. 2000. A Drosophila model of Parkinson’s disease. Nature 404:394–398. DOI: https://
doi.org/10.1038/35006074, PMID: 10746727

Felzenszwalb PF, Huttenlocher DP. 2005. Pictorial structures for object recognition. International Journal of
Computer Vision 61:55–79. DOI: https://doi.org/10.1023/B:VISI.0000042934.15159.49

Günel S, Harbulot J, Ramdya P. 2019. DeepFly3D. GitHub. f185c48. https://github.com/NeLy-EPFL/DeepFly3D
Hampel S, Franconville R, Simpson JH, Seeds AM. 2015. A neural command circuit for grooming movement
control. eLife 4:e08758. DOI: https://doi.org/10.7554/eLife.08758, PMID: 26344548

Hartley R, Zisserman A. 2000. Multiple View Geometry in Computer Vision. Cambridge University Press.
Hewitt VL, Whitworth AJ. 2017. Mechanisms of Parkinson’s Disease: Lessons from Drosophila. Current Topics in
Developmental Biology 121:173–200. DOI: https://doi.org/10.1016/bs.ctdb.2016.07.005, PMID: 28057299

Ionescu C, Li F, Sminchisescu C. 2011. Latent structured models for human pose estimation. 2011 International
Conference on Computer Vision IEEE 2220–2227. DOI: https://doi.org/10.1109/ICCV.2011.6126500

Ionescu C, Papava D, Olaru V, Sminchisescu C. 2014. Human3.6M: Large Scale Datasets and Predictive Methods
for 3D Human Sensing in Natural Environments. IEEE Transactions on Pattern Analysis and Machine Intelligence
36:1325–1339. DOI: https://doi.org/10.1109/TPAMI.2013.248, PMID: 26353306

Isakov A, Buchanan SM, Sullivan B, Ramachandran A, Chapman JK, Lu ES, Mahadevan L, de Bivort B. 2016.
Recovery of locomotion after injury in Drosophila Melanogaster depends on proprioception. The Journal of
Experimental Biology 219:1760–1771. DOI: https://doi.org/10.1242/jeb.133652, PMID: 26994176

Kain J, Stokes C, Gaudry Q, Song X, Foley J, Wilson R, De Bivort B. 1910. Leg-tracking and automated
behavioural classification in Drosophila. Nature Communications 2013:4. DOI: https://doi.org/10.1038/
ncomms2908

Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter
EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton
M, Wong GK-S, et al. 2014. Independent optical excitation of distinct neural populations. Nature Methods 11:
338–346. DOI: https://doi.org/10.1038/nmeth.2836

Maaten LJP. 2008. Visualizing High Dimensional Data Using t-SNE. Journal of Machine Learning Research:2579–
2605.

Martinez J, Hossain R, Romero J, Little JJ. 2017. A simple yet effective baseline for 3D human pose estimation.
ICCV.

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M. 2018. DeepLabCut: markerless
pose estimation of user-defined body parts with deep learning. Nature Neuroscience 21:1281–1289.
DOI: https://doi.org/10.1038/s41593-018-0209-y, PMID: 30127430

McKellar CE, Lillvis JL, Bath DE, Fitzgerald JE, Cannon JG, Simpson JH, Dickson BJ. 2019. Threshold-Based
ordering of sequential actions during Drosophila courtship. Current Biology 29:426–434. DOI: https://doi.org/
10.1016/j.cub.2018.12.019, PMID: 30661796

Mehta D, Sridhar S, Sotnychenko O, Rhodin H, Shafiei M, Seidel H, Xu W, Casas D, Theobalt C. 2017. Vnect:
Real-Time3D Human Pose Estimation with a Single RGB Camera. SIGGRAPH.

Mendes CS, Bartos I, Akay T, Márka S, Mann RS. 2013. Quantification of gait parameters in freely walking wild
type and sensory deprived Drosophila Melanogaster. eLife 2:e00231. DOI: https://doi.org/10.7554/eLife.00231,
PMID: 23326642

Moeslund TB, Granum E. 2000. Multiple cues used in model-based human motion capture.. Proceedings Fourth
IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580) 362–367.
DOI: https://doi.org/10.1109/AFGR.2000.840660

Moreno-noguer F. 2017. 3d human pose estimation from a single image via distance matrix regression. CVPR.
Murphy KP, Weiss Y, Jordan MI. 1999. Loopy belief propagation for approximate inference: an empirical study.
Onference on Uncertainty in Artificial Intelligence p. 467–475.

Nath T, Mathis A, Chen AC, Patel A, Bethge M, Mathis MW. 2019. Using DeepLabCut for 3D markerless pose
estimation across species and behaviors. Nature Protocols 14:2152–2176. DOI: https://doi.org/10.1038/
s41596-019-0176-0, PMID: 31227823

Newell A, Yang K, Deng J. 2016. European Conference on Computer Vision. In: Stacked Hourglass Networks for
Human Pose Estimation. Springer. p. 483–499.

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 22 of 23

Tools and resources Neuroscience

https://doi.org/10.1038/s41467-018-06857-z
http://www.ncbi.nlm.nih.gov/pubmed/30348941
https://doi.org/10.1016/j.neuron.2007.08.003
https://doi.org/10.1016/j.neuron.2007.08.003
http://www.ncbi.nlm.nih.gov/pubmed/17920014
https://doi.org/10.1109/CVPR.2015.7299005
https://doi.org/10.1109/CVPR.2015.7299005
https://doi.org/10.1038/35006074
https://doi.org/10.1038/35006074
http://www.ncbi.nlm.nih.gov/pubmed/10746727
https://doi.org/10.1023/B:VISI.0000042934.15159.49
https://github.com/NeLy-EPFL/DeepFly3D
https://doi.org/10.7554/eLife.08758
http://www.ncbi.nlm.nih.gov/pubmed/26344548
https://doi.org/10.1016/bs.ctdb.2016.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28057299
https://doi.org/10.1109/ICCV.2011.6126500
https://doi.org/10.1109/TPAMI.2013.248
http://www.ncbi.nlm.nih.gov/pubmed/26353306
https://doi.org/10.1242/jeb.133652
http://www.ncbi.nlm.nih.gov/pubmed/26994176
https://doi.org/10.1038/ncomms2908
https://doi.org/10.1038/ncomms2908
https://doi.org/10.1038/nmeth.2836
https://doi.org/10.1038/s41593-018-0209-y
http://www.ncbi.nlm.nih.gov/pubmed/30127430
https://doi.org/10.1016/j.cub.2018.12.019
https://doi.org/10.1016/j.cub.2018.12.019
http://www.ncbi.nlm.nih.gov/pubmed/30661796
https://doi.org/10.7554/eLife.00231
http://www.ncbi.nlm.nih.gov/pubmed/23326642
https://doi.org/10.1109/AFGR.2000.840660
https://doi.org/10.1038/s41596-019-0176-0
https://doi.org/10.1038/s41596-019-0176-0
http://www.ncbi.nlm.nih.gov/pubmed/31227823
https://doi.org/10.7554/eLife.48571


Pavlakos G, Zhou X, Derpanis K, Konstantinos G, Daniilidis K. 2017a. Coarse-To-Fine volumetric prediction for
Single-Image 3D human pose. CVPR.

Pavlakos G, Zhou X, Konstantinos KDG, Kostas D. 2017b. Harvesting multiple views for Marker-Less 3D human
pose annotations. In: CVPR.

Pereira TD, Aldarondo DE, Willmore L, Kislin M, Wang SS, Murthy M, Shaevitz JW. 2019. Fast animal pose
estimation using deep neural networks. Nature Methods 16:117–125. DOI: https://doi.org/10.1038/s41592-
018-0234-5, PMID: 30573820

Popa AI, Zanfir M, Sminchisescu C. 2017. Deep multitask architecture for integrated 2D and 3D human sensing.
In: CVPR.

Puwein J, Ballan L, Ziegler R, Pollefeys M. 2014. Accelerated Kmeans Clustering Using Binary Random
Projection. In: Joint Camera Pose Estimation and 3D Human Pose Estimation in a Multi-Camera Setup.
springer. p. 473–487.

Rhodin H, Robertini N, Casas D, Richardt C, Seidel HP, Theobalt C. 2016. General automatic human shape and
motion capture using volumetric contour cues. ECCV.

Rogez G, Weinzaepfel P, Schmid C. 2017. Lcr-Net: localization-classification-regression for human pose. In:
CVPR.

Seeds AM, Ravbar P, Chung P, Hampel S, Midgley FM, Mensh BD, Simpson JH. 2014. A suppression hierarchy
among competing motor programs drives sequential grooming in Drosophila. eLife 3:e02951. DOI: https://doi.
org/10.7554/eLife.02951, PMID: 25139955

Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V. 2010. Two-photon calcium
imaging from head-fixed Drosophila during optomotor walking behavior. Nature Methods 7:535–540.
DOI: https://doi.org/10.1038/nmeth.1468, PMID: 20526346

Simon T, Joo H, Matthews I, Sheikh Y. 2017. Hand keypoint detection in single images using multiview
bootstrapping. In: CVPR.

Sun X, Shang J, Liang S, Wei Y. 2017. Compositional human pose regression. ICCV.
Takahashi K, Mikami D, Isogawa M, Kimata H. 2018. Human pose as calibration pattern; 3D human pose
estimation with multiple unsynchronized and uncalibrated cameras. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops.

Tekin B, Marquez-neila P, Salzmann M, Fua P. 2017. Learning to fuse 2D and 3D image cues for monocular body
pose estimation. ICCV.

Todd JG, Kain JS, de Bivort BL. 2017. Systematic exploration of unsupervised methods for mapping behavior.
Physical Biology 14:015002. DOI: https://doi.org/10.1088/1478-3975/14/1/015002, PMID: 28166059

Tome D, Russell C, Agapito L. 2017. Lifting from the deep: convolutional 3D pose estimation from a single
image. arXiv. https://arxiv.org/abs/1701.00295.

Triggs B, Mclauchlan P, Hartley R, Fitzgibbon A. 2000. Vision Algorithms: Theory and Practice. Springer.
Uhlmann V, Ramdya P, Delgado-Gonzalo R, Benton R, Unser M. 2017. FlyLimbTracker: an active contour based
approach for leg segment tracking in unmarked, freely behaving Drosophila. PLOS ONE 12:e0173433.
DOI: https://doi.org/10.1371/journal.pone.0173433, PMID: 28453566

Zhou X, Huang Q, Sun X, Xue X, Wei Y. 2017. Weakly-supervised transfer for 3d human pose estimation in the
wild. IEEE International Conference on Computer Vision.

Günel et al. eLife 2019;8:e48571. DOI: https://doi.org/10.7554/eLife.48571 23 of 23

Tools and resources Neuroscience

https://doi.org/10.1038/s41592-018-0234-5
https://doi.org/10.1038/s41592-018-0234-5
http://www.ncbi.nlm.nih.gov/pubmed/30573820
https://doi.org/10.7554/eLife.02951
https://doi.org/10.7554/eLife.02951
http://www.ncbi.nlm.nih.gov/pubmed/25139955
https://doi.org/10.1038/nmeth.1468
http://www.ncbi.nlm.nih.gov/pubmed/20526346
https://doi.org/10.1088/1478-3975/14/1/015002
http://www.ncbi.nlm.nih.gov/pubmed/28166059
https://arxiv.org/abs/1701.00295
https://doi.org/10.1371/journal.pone.0173433
http://www.ncbi.nlm.nih.gov/pubmed/28453566
https://doi.org/10.7554/eLife.48571

