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Abstract: Aims: Class A2 gestational diabetes mellitus (GDMA2) has short- and long-term effects on
the mother and child. These may include abnormalities of placentation, damage to endothelial cells
and cardiovascular disease. This research investigated the function and composition of high-density
lipoproteins (HDL) among women with GDMA2 and their fetuses. Methods: Thirty pregnant women
were recruited during admission for delivery. The function and expression of HDL, paraoxonase1
(PON1) and apolipoprotein A1 (APOA1) in the blood samples and the placental tissue were evaluated.
The effect of HDL on migration of endothelial cells was measured in vitro. Results: Compared to
normal pregnancy (NP), APOA1 in the maternal plasma of women with GDMA2 was decreased.
More APOA1 and PON1 were released from HDL of women with GDMA2, compared to NP. Placental
APOA1 and PON1 were decreased in GDMA2. For endothelial cells stimulated with TNFα, HDL cell
migration was decreased when cells were evaluated with NP-HDL, as compared to GDMA2-HDL.
Conclusions: GDMA2 affects the composition and function of HDL in plasma. Changes in HDL
commonly seen in GDMA2 were observed in maternal and placental samples, but not in cord samples.
These results might indicate a placental role in protecting the fetus by preserving the components and
functions of HDL and require further investigation.
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1. Introduction

Gestational Diabetes Mellitus (GDM) is a classification of diabetes unique to pregnancy and
is subclassified to diabetes, which requires medication to be controlled (GDMA2). It is reported to
occur in as many as 5% of pregnancies in the USA and 2% to 6% in Europe [1]. GDM is associated
with increased risk of adverse outcomes for both mother and fetus, during and after the pregnancy,
including development of cardiovascular disease and metabolic syndrome [1,2].

High-density lipoproteins (HDL) exert a protective effect on the cardiovascular system by reverse
cholesterol transport, atherosclerotic plaque stabilization and anti-inflammatory and anti-oxidant
effects [3]. HDL subfractions are heterogeneous in size, density and protein and lipid components:
apolipoprotein A1 (APOA1) accounts for approximately 70% of the total protein mass of HDL and
contributes to enzyme activity, stability and paraoxonase1 (PON1) function [4,5]. Shen et al. noted that
APOA1 dysfunction, decreased HDL-associated PON1 activity and their interactions are associated
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with the presence and severity of coronary artery disease in patients with diabetes mellitus type 2 [6].
Endothelial damage is critical in the development of cardiovascular complications and endothelial cell
migration is a rate-limiting process in the repair of endothelium [7].

To our knowledge, information regarding the quantitative effects and the composition and function
of HDL in women with GDMA2 and in their offspring is lacking. The characterization of changes
in lipoprotein particle levels in GDMA2 may help identify lipid changes and potentially improve
prediction of the risks of adverse pregnancy outcomes and postpartum metabolic diseases.

This original study evaluated changes in maternal blood, neonatal cord blood and placentas
of women with GDMA2 compared to normal pregnancy (NP). The aims of this study were: (A) to
determine the quantitative and qualitative composition, as well as function of HDL among women
with GDMA2; (B) to examine these aspects of HDL in the placenta and in neonatal umbilical cord
blood to better understand some of the mechanisms that might put the offspring at higher risk for
acquiring metabolic syndrome in the future; and (C) to evaluate whether dysfunctional HDL stimulates
endothelial cell migration.

2. Results

2.1. Characteristics of the Study Population

The study included 20 women with GDMA2 and 10 with NP. Nine were balanced with insulin,
11 with oral hypoglycemic agents (10 with glyburide and 1 with metformin), each according to her
healthcare provider’s preferences and consideration. Baseline clinical characteristics are shown in
Table 1. None of the participants had a history of hypertension, diabetes or dyslipidemia and no
GDM-related complications (retinopathy or nephropathy) were observed. HbA1c at term was averaged
5.47 ± 0.42%. None of the GDMA2 group and one of the control group had history of polycystic ovary
syndrome (0% vs. 10% p = 0.15). Gestation was shorter in women with GDMA2 (37.9 ± 1.6 weeks vs.
39.7 ± 0.10 weeks; p = 0.001). There was no significant difference between the groups regarding BMI
before and at the end of pregnancy, as well as in gestational weight gain. No significant differences
were observed in maternal lipid profiles. There were no significant differences between insulin and oral
medication use among the GDMA2 group (data not shown). Serum APOA1 levels were significantly
decreased in GDMA2 (203 ± 40 mg/dL vs. 242 ± 33 mg/dL; p = 0.04). HDL had the strongest correlation
with maternal serum APOA1 in both groups (GDMA2: r= 0.945, p = 0.0001, NP: r = 0.843, p = 0.017).
No significant changes were observed in cord blood lipid profile and APOA1 between GDMA2 and NP
(Table 2) and when the GDMA2 group was divided according to treatment with insulin or oral agents.

Table 1. Demographic and clinical characteristics of pregnant women with gestational diabetes
mellitus type 2 (GDMA2) and of healthy women during an uncomplicated pregnancy. HDL:
high-density lipoproteins.

Characteristic GDMA2
(N = 20)

Normal
Pregnancy
(N = 10)

p-Value

Age (years) 33.2 ± 5.2 28.4 ± 6.0 0.38
Gestational age (weeks) 37.9 ± 1.6 39.7 ± 1.0 0.001
Body mass index (kg/m2) 29.8 ± 11.2 30.6 ± 4.4 0.79
Systolic blood pressure (mmHg) 116.6 ± 7.2 116.4 ± 8.2 0.94
Diastolic blood pressure (mmHg) 74.6 ± 9.7 73.0 ± 10.9 0.70
Total serum cholesterol (mg/dL) 226.7 ± 51.8 249 ± 54.5 0.29
Serum triglycerides (mg/dL) 238 ± 105.6 239 ± 91 0.99
Serum HDL cholesterol (mg/dL) 61.0 ± 15.6 66.9 ± 12.1 0.28
Serum LDL cholesterol (mg/dL) 125.8 ± 52.0 136.4 ± 45.4 0.61
Fasting glucose (mg/dL) 94.7 ± 16.12 84.1 ± 9.9 0.06
APOA1 (mg/dL) 203 ± 40 242 ± 33 0.04

Data are expressed as mean ± SD.
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Table 2. Lipid profile of umbilical cord blood from offspring of women with gestational diabetes
mellitus type 2 (GDMA2) and from normal pregnancies.

Characteristic GDMA2
(N = 20)

Normal
Pregnancy
(N = 10)

p-Value

Total serum cholesterol (mg/dL) 58.3 ± 13.1 54.3 ± 17.0 0.54

Serum triglycerides (mg/dL) 40.9 ± 15.2 41.1 ± 10.14 0.96

Serum HDL cholesterol (mg/dL) 27.0 ± 10.1 24.3 ± 11.3 0.55

Serum LDL cholesterol (mg/dL) 22.4 ± 6.2 21.9 ± 8.6 0.86

APOA1 (mg/dL) 84.0 ± 12.0 76 ± 12 0.16

Data are expressed as mean ± SD.

2.2. Changes Observed in GDMA2 HDL Composition, APOA1 and PON1 Expression in Maternal Blood

HDL was isolated from 20 women with GDMA2 and from 10 with NP. As described in the
Methods Section 4.5 HDL Assays and Electrophoresis, 4–12% gradient PAGE was used to separate
20 µg of isolated HDL. HDL diameter was analyzed using multi gauge analysis software (Fujifilm) [8].
Briefly, the HDL band was divided into 2 sections (a and b in Figure 1A) by a horizontal line exactly
in the middle of the control HDL. Thus, the density ratio between the 2 sections is approximately
1. When the HDL diameter increases, the ratio is anticipated to be >1, which happens when more
particles appear above the line in the graph. The HDL concentration was denser among women with
GDMA2, as compared to NP (2.11 ± 1.09 vs. 1.36 ± 0.43, p = 0.02; Figure 1B). Then, the HDL isolated
from maternal blood was loaded onto nondenaturing 15% PAGE to evaluate the expression of released
APOA1 and PON1. Higher amounts of APOA1 and PON1 were released in women with GDMA2,
as compared to NP (1.97 ± 1.1 vs. 1 ± 0.18, p = 0.027 and 2.71 ± 1.0 vs. 1 ± 0.31, p = 0.0001, respectively;
Figure 1C,D). The HDL had larger diameters and increased APOA1 and PON1 release. These changes
might affect HDL anti-atherogenic activity.

1 
 

 
Figure 1. HDL composition: APOA1 and PON1 expression. (A) HDL from normal pregnancy (NP)
(control) and GDMA2 were separated from plasma and run on native 4–12% PAGE. Band intensities
above (a) and below (b) the horizontal lines drawn in the middle of each control HDL band were
analyzed. (B) The ratio a/b was calculated for GDMA2 HDL as compared to the NP HDL (box plot of
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data). (C) HDL from GDMA2 and NP run on nondenaturing 15% PAGE followed by western blot
analysis using anti-APOA1 and anti-PON1 antibodies (optical densities were normalized to Ponceau
general protein stain. (D) APOA1 and PON1 protein expression (densitometric analysis). Data are
expressed as mean± SD of HDL isolated from 10 women with NP and 20 with GDMA2. PAGE represents
two independent experiments of NP and GDMA2 each. * p < 0.05 compared to NP. Box plots show the
five-number summary of a set of data, including the minimum score, first (lower) quartile, median,
third (upper) quartile and maximum score, “+” indicates the average.

2.3. APOA1 and PON1 Protein Expression in Placental Tissue

Placental APOA1 and PON1 protein expression were significantly decreased in GDMA2 as
compared to NP (0.53 ± 0.26 vs. 0.76 ± 0.13, p = 0.02 and 0.42 ± 0.14 vs. 0.81 ± 0.14, respectively;
p = 0.007; Figure 2).
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presence of TNF-α) stimulated synthesis and activation of MMP-2. MMP-2 derived from HDL-NP 
had reduced gelatinolytic activity compared to TNF-α and HDL-GDMA2 (Figure 3C). Moreover, 
MMP-2 mRNA fold expression ratio vs. control was significantly elevated in HUVEC exposed to 
TNF-α (1.37 ± 0.32, p = 0.03) and HDL-GDMA2 (1.52 ± 0.59, p = 0.02) (in the presence of TNF-α), as 
compared to negative control cells (no treatment) (Figure 3D). No significant changes were observed 

Figure 2. APOA1 and PON1 protein expression in placental tissue. (A) Protein extracted from placenta
tissue run on 10% PAGE-SDS followed by western blot analysis using anti-APOA1, anti-PON1 antibodies
and Tubulin (B) APOA1 and PON1 protein expression (densitometric analysis). Optical densities were
normalized to Tubulin. Data are expressed as mean ± SD of 10 NP placenta and 20 GDMA2 placenta
tissues. * p < 0.05 compared to NP. PAGE-SDS represents two independent experiments of NP and
GDMA2, each. Box plots show the five-number summary of a set of data, including the minimum score,
first (lower) quartile, median, third (upper) quartile, and maximum score, “+” indicates the average.

2.4. HDL Cell Migration in HUVEC

We investigated the effect of HDL in the presence of tumor necrosis factor-α (TNF-α) (as an
inflammatory mediator) on human umbilical vein endothelial cells (HUVEC) migration. We assumed
that the protective anti-inflammatory function of the HDL might be impaired, which could be
expressed by the HUVEC migration test. Using TNF-α as a positive control showed significantly higher
cell migration closure compared to negative control cells (no treatment; Figure 3A). HDL-GDMA2
achieved cell migration closure and HDL-NP reduced cell migration closure in the presence of TNF-a,
as compared to negative control cells (no treatment) (Figure 3A,B). We assessed the production
of matrix metalloproteinase (MMP)-2 and MMP-9, which play a critical role in the cell migration
progress. The gelatin-zymography analysis showed that TNF-α and HDL-GDMA2 (in the presence of
TNF-α) stimulated synthesis and activation of MMP-2. MMP-2 derived from HDL-NP had reduced
gelatinolytic activity compared to TNF-α and HDL-GDMA2 (Figure 3C). Moreover, MMP-2 mRNA
fold expression ratio vs. control was significantly elevated in HUVEC exposed to TNF-α (1.37 ± 0.32,
p = 0.03) and HDL-GDMA2 (1.52 ± 0.59, p = 0.02) (in the presence of TNF-α), as compared to negative
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control cells (no treatment) (Figure 3D). No significant changes were observed in MMP-9 mRNA fold
expression ratio and MMP-9 gelatin-zymography activity in all treatments (data not shown).
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Figure 3. HDL and endothelial cell migration: (A,B) HDL-GDM (100 µg/mL) and HDL-NP (100 µg/mL)
were added to cells for 1 h and stimulated with TNF-α (1 ng/mL) for an additional 4 h, marked in
figure as NT (nontreatment), NP + TNF-α and GDM + TNF-α. Results were normalized to time 0.
* p < 0.05 compared to NT, $ p < 0.05 compared to TNF-α treatment. (C) After 5 h, supernatants were
collected and MMPs activity was measured by gelatin zymography, relative analysis of MMP-2 results
were normalized to NT. (D) MMP-2 mRNA fold expression ratio vs. NT. * p < 0.05 compared to NT,
$ p < 0.05 compared to TNF-α treatment, # p < 0.05 compared to NP + TNF-α treatment. Representative
figures of 4 independent experiments (HUVEC from 4 different donors) including 3 technical repeats
for each experiment. HDLs from different donors were used for the migration assay.

3. Discussion

This study assessed differences in HDL fractions and function among women with GDMA2,
as compared to women with uncomplicated pregnancies. We found significantly decreased APOA1
levels in the maternal blood of women with GDMA2, as well as increased amounts of released APOA1
and PON1 from the HDL we isolated from their blood samples.

HDL particles have potent anti-inflammatory, anti-oxidative and antithrombotic properties due
to components such as enzymes and apolipoproteins, among others. HDL lose their potential
anti-atherosclerotic properties in several chronic, inflammatory conditions, including systemic oxidative
stress and inflammation, diabetes and metabolic syndrome, which substantially reduce the capabilities
of HDL particles and can transform them into performing pro-oxidant and pro-inflammatory
activities [9,10].

The major apolipoprotein of HDL is APOA1, which comprises 70% of its proteome [11]. Decreased
APOA1 is caused by release from HDL particles and was previously described among patients with
acute coronary syndrome and noted to involve increased risk of cardiovascular disease [9]. PON1 is
associated with a specific HDL subspecies and has a major role in the antioxidative activity of HDL [12].
In a recent study [8], we demonstrated that HDL from women with pre-eclampsia have decreased
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PON1 activity and increased APOA1 release. In the present study, we found similar patterns in APOA1
released from GDMA2-HDL. The similar results may suggest that both pregnancy complications affect
the composition and function of HDL. These processes were associated with larger HDL particle
diameters, which suggest impaired HDL antioxidant activity. Viktorinova et al. [13] focused on
possible relationships among basic lipid parameters and lipid risk indices for cardiovascular disease,
with lipid-related oxidative stress markers that reflect the actual status of lipid metabolism in patients
with DM2. They found decreased PON1 and APOA1 activity in DM patients and abnormalities in the
relationship of PON1 with HDL and with APOA1, potentially leading to HDL dysfunction [13]. Studies
revealed that PON1 activity was decreased in women with GDM and that this may be due to increased
plasma protein oxidative damage, which might create a predisposition for clinical complications in
GDM [14–16]. Sreckovic et al. [17] found that GDM causes changes in HDL composition and is closely
associated with impaired cholesterol efflux capability, as well as diminished anti-oxidative particle
properties [18]. In the current study, we found larger HDL diameters among women with GDMA2.
In addition, release of APOA1 and PON1 from GDMA2-HDL indicates loss of the vasoprotective
properties of HDL. Decreased APOA1 levels in GDM-plasma were compatible with the findings of
Timur et al. [19] who reported that women with pre-eclampsia had lower APOA1 levels than healthy
controls did.

In order to understand the mechanisms of HDL and the role of the placenta in protecting the
fetus, we analyzed APOA1 and PON1 expression in placental tissue. Melhem et al. demonstrated that
the placenta is an important organ, capable of producing high levels of APOs, especially APOA1 and
APOE [20]. We found lower APOA1 and PON1 expression in GDM placentas compared to NP. It has
been suggested that the placenta functions as a site of APOA1 synthesis, although it is not clear whether
this is de novo synthesis or an accumulation from the blood stream [17]. When the maternal-fetal
environment is altered, the placenta undergoes adaptive changes to ensure optimal fetal growth and
development within the constraints of the prevailing intrauterine conditions. This placental plasticity
creates an additional layer of protection for fetal well-being, as well as a system that potentially signals
environmental conditions [17]. Eslamian et al. showed that total cholesterol, HDL cholesterol and
triglyceride levels were not significantly higher in cord blood samples from neonates of mothers with
GDM, as compared to controls [21]. The only difference noted in their lipid profile was higher LDL
and LDL/HDL ratio, which might indicate that neonates of mothers with GDM might be predisposed
to LDL hypercholesterolemia later in life [21]. Similarly, we found no significant differences in lipid
profiles or APOA1 levels between cord blood samples of the GDMA2 women and controls. The
changes in APOA1 and PON1 in placentas of mothers with GDMA2 vs. controls and the levels of
maternal APOA1 did not appear to affect the values of fetal APOA1. These observations strengthen
our knowledge regarding the vital role of the placenta in protecting the fetus.

We investigated the effect of HDL in the presence of TNF-α (as an inflammatory mediator) on
HUVEC migration. We assumed that anti-inflammatory protection of the HDL might be impaired,
which could be expressed by the HUVEC test. HDL in healthy subjects promotes endothelial repair by
upregulating endothelial nitric oxide synthase and endothelium-dependent vasodilation. Dysfunctional
HDL stimulates endothelial cell proliferation and migration [7,22]. Endothelial cell migration plays
an important role in many physiological processes and in the development of diseases [23,24]. In the
current study, we demonstrated the ability of HDL from NP to cause a pronounced decrease in
endothelial cell migration in vitro. We found that GDMA2-HDL promoted migration of HUVEC
and might promote endothelial cell dysfunction and lead to the development of cardiovascular
complications in the future.

Epithelial-mesenchymal transition (EMT) is characterized by loss of cell-cell adhesion and
increased cell motility [25]. MMPs, a family of zinc- and calcium-dependent peptidases capable of
degrading a wide variety of extracellular matrices, are key modulators of various biological processes,
including EMT, cancer, angiogenesis, skeletal formation, inflammation and cell migration [26]. Notably,
both MMP-2 and MMP-9, the two MMPs predominately expressed in endothelial cells, are crucial
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gelatinases that are involved in endothelial cell migration and regulate angiogenesis in endothelial
cells [23,25]. We demonstrated that GDMA2-HDL achieved cell migration and stimulated activation of
MMP-2 in the presence of TNF-α, while NP-HDL suppressed TNF-α-induced migration, probably
through down-regulation of MMP-2. This suggests that MMPs are involved in the endothelial cell
migration observed in GDMA2.

There were some limitations to this study. The first was that the cohort was small (total of
30 participants); despite this the results were statistically significant. In addition the GDMA2 group
was not managed uniformly. Although there were no differences in the demographic and clinical
characteristics or in the lipid profiles of maternal and fetal blood, the subgroups were too small to have
sufficient power to determine that there were no other significant differences between them.

The main strength of this study was the evaluation of HDL composition and function in all
components of the maternal-fetal unit, which included maternal blood, placenta and cord blood.
We suggest that the differences in HDL particles observed in GDMA2 pregnant women and in placentas
but not in the umbilical cord, may protect the fetus from these harmful changes. The variations in
HDL observed in our study could contribute to an increased risk of developing cardiovascular disease
later in life, among women with GDMA2. These observations require additional investigation.

Further investigation is also needed to determine whether there is a correlation between changes in
HDL among women with GDMA2 and the risk of developing metabolic syndrome and cardiovascular
disease. We also suggest future research to investigate the mechanisms by which the placenta prevents
the fetus from acquiring the changes in HDL observed in maternal plasma and in the placentas of
mothers with GDMA2.

4. Materials and Methods

4.1. Study Population

This prospective study included 20 women with GDMA2 and 10 with uncomplicated normal
pregnancies (NP) who were offered enrollment in the study when they arrived at the delivery
room. Inclusion criteria were normal, singleton, term delivery, with no known fetal complications.
The Helsinki Committee of Meir Medical Center approved the study (no. 0132-16-MMC). All women
gave written informed consent before they were enrolled in the study.

Women were diagnosed with GDM if they had two abnormal serum glucose values [27], as reported
in the American Diabetes Association guidelines [28]. Women whose glucose levels remained elevated
despite changes in diet and physical activity, and were prescribed oral medication or insulin were
defined as having GDMA2. Glucose levels of all women were defined by their health care providers
as well-controlled, according to fasting and postprandial glucose values documented by the patient
several times a day.

Ten healthy women with uncomplicated pregnancies who were matched by age, served as
the control group. Women with comorbidities such as chronic hypertension or pregnancy-related
hypertension, and those with other types of diabetes (pregestational diabetes and GDMA1 managed
by diet only) were excluded from the study.

4.2. Blood Samples

Three tubes of maternal blood and three tubes of neonatal cord blood were taken by venipuncture
for total HDL extraction and APOA1 analysis. Plasma was harvested using low speed centrifugation
(3000× g for 10 min at 4 ◦C). Plasma samples were stored at −80 ◦C before analysis. Serum was
harvested after low speed centrifugation (3000× g for 3 min at 4 ◦C) and stored at −80 ◦C before analysis.
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4.3. Placental Biopsies

Placenta samples were taken under sterile conditions, 1 cm2 from the area midway between cord
insertion and the edge of the placenta. Each specimen was cut into five mm3 pieces and kept on ice to
prevent RNA degradation. They were frozen at −80 ◦C within 20 min of delivery.

4.4. APOA1 Concentration

The APOA1 concentration in maternal and cord blood from GDMA2 and NP were determined
using the Tina-quant Apolipoprotein A-1 kit, (Cobas Integra Analyzers, Roche Diagnostics, Indianapolis,
IN, USA).

4.5. HDL Assays and Electrophoresis

Discontinuous density gradient ultracentrifugation (d = 1.006–1.25 g/mL) was used to isolate
HDL from the plasma samples, as described previously [12]. The modified Lowry protein
assay kit (Thermo Scientific, Rockford, USA) was used to determine HDL protein concentration.
Twenty micrograms of isolated total HDL were separated according to hydrodynamic diameter by
nondenaturing, 4–12% gradient polyacrylamide gel electrophoresis (PAGE) (4–12% Tris-glycine gel;
Bio-Rad Laboratories, Carlsbad, CA, USA), as described previously [12]. The globular proteins, 17 nm
thyroglobulin, 12.2 nm ferritin, 10.4 nm lactate, 8.2 nm dehydrogenase and 7.1 nm albumin, were used
as references (high molecular weight calibration kit, Amersham Pharmacia Biotech, Buckinghamshire,
The UK). In addition, 20 µg of isolated total HDL were separated on nondenaturing 15% PAGE
and electrophoretically transferred to a nitrocellulose membrane in order to analyze APOA1 and
PON1 expression.

4.6. Placenta Protein Extraction

A mixture of 400 µL lysis buffer (25 mM tris (pH 7.5), 1% Triton X-100, 0.5 mM EDTA, 150 mM
NaCl, 10 nM NaF, 10 µg/mL leupeptin, 10 µg/mL pepstatin, 200 µg/mL PMSF and 1:100 phosphatase
inhibitor) was used to homogenize 40 mg of frozen placental tissue. The centrifuge tube was agitated
at 4 ◦C for 2 h. The BCATM protein assay kit (Thermo Scientific, Rockford, IL, USA) was used to
determine protein concentration (following the manufacturer’s instructions). Total protein (50 µg)
from all 30 placentas was separated on 10% SDS-PAGE and transferred to a nitrocellulose membrane
using electrophoresis.

4.7. Western Blot

A standard western blot technique using 1:500 anti-APOA1 polyclonal antibody (Millipore,
Temecula, CA, USA), 1:500 anti-PON1 monoclonal antibody (Abcam, Cambridge, MA, USA) and
1:8000 anti-Tubulin (Sigma-Aldrich, Detroit, MI, USA) was used to evaluate APOA1, PON1 and
Tubulin protein expressions in HDL fractions and placental tissue. The enhanced chemiluminescent
reporter system (Biological Industries, Bet Ha’emek, Israel) was used to visualize the bound antibody.
Protein expressions were quantified using LAS-3500 (Fujifilm, Tokyo, Japan). The optical densities
were normalized to Ponceau stains or to antiTubulin.

4.8. Cell Culture and Incubation

Mothers provided informed consent for use of umbilical cords, which were obtained from the labor
and delivery department of Meir Medical Center in Kfar Saba, Israel [29]. The Helsinki Committee of
Meir Medical Center approved the study (no. 0074-11-MMC). Fresh human umbilical vein endothelial
cells (HUVEC) were isolated and grown in M-199 medium that had been supplemented with 5 U/mL
heparin, 25 µ/mL endothelial mitogen (Biomedical Technologies, Inc., Stoughton, MA, USA) and 20%
FCS, 100 U/mL penicillin and 100 µ/mL streptomycin (Biological Industries, Beit Ha’emek, Israel).
HUVEC were used at passage 3–4 for experiments and were pre-incubated with HDL (100 µg/mL,
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1 h) and stimulated with tumor necrosis factor-α (TNF-α) (1 ng/mL, 4 h), as previously described
(with modifications).

4.9. Cell Migration (Scratch Test)

Endothelial cells (5 × 103) were placed in 96-well plates and allowed to reach an approximately
70% confluent monolayer. HDL-GDM (100 µg/mL) and HDL-NP (100 µg/mL) were added to cells for
1 h and stimulated with TNF-α (1 ng/mL) for an additional 4 h to induce an inflammation condition.
Plates were scratched and wound closure was monitored immediately afterward (time 0) and 5 h
later. Areas were measured using ImageJ software (National Institutes of Health, Bethesda, MD, USA).
Four independent experiments (HUVEC from 4 different donors) including 3 technical repeats for each
experiment. HDL from different donors were used for the migration assay.

4.10. Gelatin Zymography

Media (40µL) from HUVEC scratch tests (as described above) were electrophoresed at nonreducing
conditions in 10% polyacrylamide gel containing 0.2% gelatin as an MMP substrate. The gels were
washed in 2.5% Triton X-100 and incubated overnight in 50 mM Tris-HCl (pH 7.5) and 5 mM CaCl2.
First Coomassie blue staining and then antistaining with 20% methanol, and 7% acetic acid in double
distilled water, allowed results in clear lysis zones to be seen against a blue background. mMatrix
metalloproteinase (MMP)-2 and MMP-9 were determined from intermediate and active MMP-2
and MMP-9 by zymography, depending on the molecular weight. Optical densities of the clear
zones revealed by the enzyme activities were measured as arbitrary units using the LAS3000 Image
reader (Fujifilm). The results were normalized to background values using the Multi-gauge V3.0
program (Fujifilm).

4.11. Real Time Polymerase Chain Reaction (PCR)

MasterPure RNA purification kit (EPICENTRE, Madison, WI, USA) was used to extract total RNA
from HUVEC obtained from the scratch test, in accordance with the directions provided in the kit.
The high capacity cDNA reverse transcription kit (Applied Biosystems, Inc., Foster City, CA, USA) was
used to reverse transcribe 1 µg RNA into single-stranded DNA.

Real-time PCR was performed to validate the expression pattern of matrix metalloproteinase
(MMP)-2 forward: 5′CAAGGACCGGTTTATTTGGC3′, reverse: 5′ATTCCCTGCGAAGAACACAGC3′),
MMP-9 (forward: 5′CCTGGGCAGATTCCAAACCT3′, reverse: 5′CAAAGGCGTCGTCAATCACC3′)
and glucuronidase beta (GUSB) as reference gene (forward: 5′CAATACCTGACTGACACCTCCAGTA3′,
reverse: 5′TGGTGGGTGTCGTGTACAGAAGT3′).

4.12. Statistical Analyses

The sample size was calculated based on an assumption of a 2-fold change in the composition
of HDL, alpha of 5% and power of 80%. All data are expressed as mean ± standard deviation
(SD) or median (range). The Shapiro-Wilk test was used to test for normality. Paired t-test or
Wilcoxon signed-rank test for nonparametric data, were used to evaluate changes in the protein
expression of PON1 and APOA1 and for cell migration experiments (as appropriate). Pearson or
Spearman correlations were used to analyze the relation between APOA1 and HDL using Fisher r-to-z
transformation. p-values < 0.05 were considered significant. Data and Box Plots were analyzed using
SPSS-25 (IBM Corporation, Armonk, NY, USA). Graphs were done using GraphPad Prism version 7.00
for Windows (GraphPad Software, La Jolla California USA, www.graphpad.com).

www.graphpad.com
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