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Abstract: Introduction: Roots of Asparagus cochinchinensis, which have pharmacologically active
ingredients, have received great attention because they show good therapeutic effects for various
inflammatory diseases without specific toxicity. This study investigated the anti-asthmatic effects of a
butanol extract of Asparagus cochinchinensis roots that had been fermented with Weissella cibaria (BAW)
and its possible underlying cholinergic regulation. Methods: Alterations of the anti-asthmatic markers
and the molecular response factors were measured in an ovalbumin (OVA)-induced asthma model
after treatment with BAW. Results: Treatment with BAW decreased the intracellular reactive oxygen
species (ROS) production in lipopolysaccharides (LPS) activated RAW264.7 cells. The results of the
animal experiments revealed lower infiltration of inflammatory cells and bronchial thickness, and a
significant reduction in the number of macrophages and eosinophils, concentration of OVA-specific
IgE, and expression of Th2 cytokines in the OVA + BAW treated group. In addition, a significant
recovery of goblet cell hyperplasia, MMP-9 expression, and the VEGF signaling pathway was
observed upon airway remodeling in the OVA + BAW treated group. Furthermore, these responses of
BAW were linked to recovery of acetylcholine esterase (AChE) activity and muscarinic acetylcholine
receptor (mAChR) M3 downstream signaling pathway in epithelial cells, smooth muscle cells,
and afferent sensory nerves of OVA + BAW-treated mice. Conclusion: Overall, these findings are the
first to provide evidence that the therapeutic effects of BAW can prevent airway inflammation and
remodeling through the recovery of cholinergic regulation in structural cells and inflammatory cells
of the chronic asthma model.

Keywords: asthma; Asparagus cochinchinensis; fermentation; airway inflammation; airway remodeling;
cholinergic regulation

1. Introduction

Asthma is a chronic and complex inflammatory disease of the lung airways that is characterized by
hyper-responsiveness, mucus hypersecretion, reversible obstruction, overexpression of Th2-mediated
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cytokines, and remodeling in the lung [1–4]. Immunodeficiency, delayed puberty, adrenal insufficiency,
and growth failure are some of the adverse side effects associated with the commonly administered
anti-asthmatic drugs, including glucocorticoids, antihistamines, and immunosuppressants [5–8].
Therefore, recent studies have focused on identifying natural products with pharmacologically active
ingredients to provide new remedies without unwanted side effects [9]. Several extracts of natural
herbs, including Samsoeum [10], Erythronium japonicum in East Asia [11], Trigonella foenum-graecum
in Central Asia and Eastern Europe [12], Echinodorus scaber Rataj in the western hemisphere [13],
and Urtica dioica in Asia, Europe, Africa, and Americas [14], attenuate airway inflammation of
allergic asthma in an ovalbumin (OVA)-induced model. However, fermented natural herbs have
exclusively been investigated for their therapeutic effect in an asthma model, despite enhancing the
levels of functional components, breakdown of substances, and chemical transformations of certain
constituents [15].

Although there is scientific evidence of the anti-inflammatory effects of A. cochinchinensis root
extracts, most studies have investigated unfermented products. An aqueous extract significantly
inhibited the expression of tumor necrosis factor (TNF)-α and pro-inflammatory cytokines in mouse
astrocytes stimulated with lipopolysaccharide (LPS)- and substance P [16]. Another study confirmed
that the ethanolic extract of A. cochinchinensis roots suppress the nitric oxide (NO) production
in LPS-treated BV-2 microglial cells and decrease the progression of cutaneous inflammation in animal
models treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) [17]. The saponin-enriched extracts
of unfermented A. cochinchinensis (SEAC) decreased skin inflammation of IL-4/Luc/CNS-1 transgenic
(Tg) mice treated with phthalic anhydride (PA) [18]. Moreover, administering a combination of
A. cochinchinensis roots and six medicinal herbs effectively reduced the number of immune cells
in the bronchoalveolar lavage fluid of mice treated with a cockroach allergen [19]. Unfermented
products of A. cochinchinensis also suppressed the number of immune cells in the bronchoalveolar
lavage fluid (BALF), the concentration of OVA-specific IgE, the infiltration of inflammatory cells,
the bronchial thickness, and the level of inflammatory mediators in an OVA-induced asthma model,
while they contained 57.2 mg/g of crude saponin, 88.5 µg/g of total phenols, and 102.1 µg/g of total
flavonoids [20]. After fermentation, the root extracts of A. cochinchinensis (BAW) contained an enhanced
concentration of a steroidal saponin compounds (126.6%), total phenols (9.3%), and protodioscine
compared with their unfermented products [21]. Evaluating the anti-inflammatory activities of
fermented products of A. cochinchinensis root in LPS-stimulated macrophage cells (RAW264.7 cells)
revealed that the inflammatory responses were significantly suppressed in response to BAW treatment
via regulation of the expression of inflammatory cytokines and the iNOS-mediated COX-2 induction
pathway [21]. These results provide the possibility that airway inflammation and remodeling in lung
tissues are effectively inhibited by BAW in the OVA-induced asthma model, although no studies have
shown a direct role of these products in anti-asthmatic effects or revealed their mechanism of action.

Therefore, we investigated the ability of BAW to prevent airway inflammation as well as its
mechanism of action and remodeling activity using an OVA-induced mouse asthma model. The present
study provides the first evidence of a correlation between anti-asthmatic effects of BAW and cholinergic
regulation in the airways of the OVA-induced asthma model. Our results show that BAW may be a
potential drug for treatment of patients with severe airway changes.

2. Materials and Methods

2.1. Preparation of BAW

BAW was prepared as previously described [21]. Briefly, the fresh roots of A. cochinchinensis
were obtained from Gochang National Agriculture Cooperation in Gochang-gun, Korea and dried at
60 ◦C for 5–6 h. The dried roots of A. cochinchinensis roots (WPC-14-003) were then placed as voucher
specimens in the functional materials bank of the PNU-Wellbeing RIS Center. Additionally, these roots
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were identified and confirmed by Dr. Shin Woo Cha at the National Institute of Horticultural & Herbal
Science, Eumseong-gun, Korea.

The aqueous fractions of unfermented A. cochinchinensis (UnF) were prepared by powdering 20 g
of the dried roots of A. cochinchinensis, after which they were subjected to 2.5 h of hot water extraction
in 1.2 L of dH2O. On completion of the aqueous extraction, these solutions were filtered through
Whatman No.2 filter paper (Whatman, Brentford, UK), after which they were subjected to evaporation
using a vacuum evaporator (EYELA, N-1100 series, Tokyo, Japan). This process of hot water extraction
yielded 60.7% UnF, which was freeze-dried and used for fermentation at a later stage.

To prepare the fermented samples, UnF powder was completely dissolved in dH2O (pH 5.3) to 1%
(w/v), after which the mixture solution was sterilized at 121 ◦C for 15 min using an autoclave (Hashin
medical Co., Seoul, Korea). W. cibaria pre-cultivated in lactobacilli MRS broth (Difco Laboratories,
Detroit, MI, USA) with a cell density of 107 CFU/mL (OD600 = 0.1) were inoculated (5% (v/v)) into the
UnF mixture. Following incubation at 37 ◦C and 200 rpm for 4.3 days, the fermented A. cochinchinensis
products of W. cibaria (FPW) was harvested by centrifugation at 12,000× g for 10 min.

To collect n-butanol fractions of FPW (BAW), FPW were suspended in an equal volume of butanol,
after which the butanol phase was collected from each mixture by centrifuging at 12,000× g for 10 min.
The resulting phases were then concentrated under a rotary vacuum evaporator to obtain the final
extracts (Figure 1). The aqueous extract of unfermented Platycodon grandiflorus (PG), a positive control,
was successively extracted with hot water at 120 ◦C for 45 min at a fixed liquor ratio (solid powder of
PG: dH2O ratio at 75 g:500 mL). Dexamethasone (Dex) was procured from Sigma-Aldrich Co. (St. Louis,
MO, USA).
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Figure 1. Preparation of BAW sample. BAW was obtained from the root of A. cochinchinensis after
fermentation with W. cibaria, extraction with butanol, and lyophilization as described in the materials
and methods.

2.2. Measurement of Bioactive Compounds in BAW

The concentration of the two bioactive compounds, total phenols, and crude saponins in BAW
were measured as described in previous studies [20]. First, the amount of total phenols was
analyzed by the Folin–Ciocalteu method. Briefly, BAW (20 µL) and 0.2 N Folin–Ciocalteu reagent
(100 µL) were mixed with 20% sodium carbonate (300 µL), then incubated at room temperature for
2 h. The absorbance of this mixture was subsequently measured at 765 nm in an enzyme-linked
immunosorbent assay (ELISA) Plate Reader (Molecular Devices, San Jose, CA, USA). A standard
calibration curve generated with gallic acid was used to determine the total phenolic content, which was
reported as mg gallic acid per gram of BAW.

The amount of crude saponins was measured according to our previous studies [21]. Briefly,
BAW were suspended in 30 mL water, then extracted with n-butanol (30 mL) three times. The resulting
layer was subsequently concentrated and lyophilized using circulation extraction equipment
(IKA Labortechnik, Seoul, Korea).
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2.3. High Performance Liquid Chromatography (HPLC) Analysis

The saponin protodioscin in BAW was analyzed using an ILC 3000 HPLC system (Interface
Engineering Co. Ltd., Seoul, Korea) equipped with a Corona CAD detector (ESA Biosciences, Inc.,
Chelmsford, MA, USA). Chromatographic separation for the quantification was performed on a
CapCell PAK C18 ACR column (4.6 × 250 mm, particle size 5 µm; Shiseido Co., Ltd., Tokyo, Japan)
using a mobile phase that consisted of solvent A (dH2O) and solvent B (acetonitrile). Sample analysis
was conducted at an applied flow rate of 1.0 mL/min using compressed nitrogen as the nebulizer gas.
During analysis, the gas flow rate and gas pressure were maintained at 1.53 L/min and 35 ± 2 psi,
respectively. The output signal of the detector was recorded with the Clarity™ chromatography
software (DataApex, Prague, Czech Republic).

2.4. Scavenging Activity of Free Radical

The scavenging capability of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical was measured
at eight different concentrations (7.8 to 600 µg/mL) of BAW according to the method described
in a previous study [22]. Briefly, each sample of BAW (100 µL) was mixed with 100 µL of 0.1 mM
DPPH (Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) prepared in 95% EtOH solution. After
30 min of incubation at room temperature, the absorbance of the reaction mixture was recorded
using a Versa-max plate reader (Molecular Devices, Sunnyvale, CA, USA) at a wavelength of 517 nm.
The percent drop in the absorbance, relative to that in the control was used to determine the DPPH
radical scavenging activity of the BAW. The concentration of BAW resulting in a 50% loss in DPPH
activity was determined to be the IC50.

2.5. Analysis of Intracellular Reactive Oxigen Species (ROS) Level

The intracellular ROS levels in RAW264.7 cells were evaluated using a 2′,7′-dichlorofluorescein
diacetate (DCFH-DA; Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) fluorescent probe.
The cell permeable DCFH-DA was deacetylated using intracellular esterases to form non-fluorescent
2′,7′-dichlorodihydrofluorescein (DCFH). In the presence of ROS, the DCFH was intracellularly
converted to the highly fluorescent 2′,7′-dichlorofluorescein (DCF). Briefly, six-well plates were
seeded with RAW364.7 cells at a density of 5 × 105 cells/2 mL, then cultured in the presence of
two concentrations of BAW for 2 h in a 37 ◦C incubator. After washing with 1× PBS, the cells were
treated with either vehicle (DMSO) or BAW (100 µg/mL) for 2 h, exposed to LPS (1 µg/mL) for another
24 h, then incubated with 25 µM DCFH-DA for 30 min at 37 ◦C. Finally, the cells were observed at
200× magnification for green fluorescence using a fluorescence microscope (Eclipse TX100, Nikon,
Tokyo, Japan).

2.6. Design of Animal Experiment

The Institutional Animal Care and Use Committee at Pusan National University (PNU-IACUC)
reviewed and approved the ethical and scientific care procedures for the animal experiments (Approval
Number PNU-2015-0779). BALB/c mice (6-week-old females) were provided by Samtako BioKorea Co.
(Osan, Korea). Prior to the experiment, they were acclimatized to the experimental environment for at
least 1 week. During the experiment, mice were given ad libitum access to a standard irradiated chow
diet (Samtako-Bio Korea Co., Osan, Korea) and autoclaved water. All BALB/c mice were maintained
in a specific pathogen-free state (SPF) under a strict light cycle (lights on at 08:00 h and off at 20:00 h)
at 23 ± 2 ◦C and 50 ± 10% relative humidity throughout the animal study. The Laboratory Animal
Resources Center at Pusan National University, which is accredited by the AAALAC International
according to the National Institutes of Health guidelines (Accredited Unit Number; 001525), was used
for breeding of all mice.

Asthma was induced in BALB/c mice via OVA administration as previously described [23,24].
Briefly, BALB/c mice (6-week-old female, n = 48) were randomly divided into either a No-treated group
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(untreated controls, n = 8) or an ovalbumin (OVA)-treated group (n = 40). The experimental procedures
for OVA-induced asthma consisted of sensitization for 20 days and challenge for 3 days. At day 1
and day 14, sensitization was achieved by intraperitoneal injection with OVA (20 µg) (albumin from
chicken, Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) emulsified with aluminum hydroxide
(Alum, Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) in 200 µL 1× PBS solution. From days
21 to 23, all sensitized mice were subject to inhalation with 2% OVA aerosol for 30 min through a
nebulizer (NE-C28, Omron, Tokyo, Japan). The OVA-treated group was further assigned into one of
following groups: vehicle-treated group (OVA + Vehicle, n = 8), Dex-treated group (OVA + Dex, n = 8),
PG-treated group (OVA + PG, n = 8), low concentration of BAW-treated group (OVA + BAWLo, n = 8),
and high concentration of BAW-treated group (OVA + BAWHi, n = 8). These groups were administered
orally for 6 days from 3 days prior to the first challenge. The OVA + BAW treated groups were orally
administered 250 and 500 mg/kg body weight of BAW (BAWLo and BAWHi, respectively) for 6 days.
Moreover, the OVA + Vehicle group, OVA + Dex group, and OVA + PG group were orally administered
the same volume of vehicle solution (0.5% Tween-20), Dex solution (3 mg/kg body weight), and PG
(250 mg/kg body weight) for 6 days. All animals were euthanized using CO2 gas at 48 h after the final
treatment, at which time tissue samples to be used in the analyses were collected and stored at −70 ◦C.

2.7. Enumeration of Total Cells in Bronchoalveolar Lavage Fluid (BALF)

After anesthetizing the BALB/c mice with alfaxan (Alfaxalone®, Jurox Pty Ltd., Hunter Valley,
Australia), the mouse lungs were lavaged three times with cold 1× PBS (yield: 80%,
total volume = 0.8 mL). After centrifugation of BALF at 2,000× g for 5 min at 4 ◦C, the supernatant
was collected for ELISA analysis and the pellets were used for cell analysis. Total cells of the BALF
pellet were attached to a slide glass using a cytospin (5 min, 500 rpm, Hanil Electric, Wonju, Korea),
then fixed in methanol for 30 s. These slides were subsequently processed in May–Grunwald solution
(Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) for 5 min, then in Giemsa solution (Sigma-Aldrich;
Merck KGaA, Darmstadt, Germany) for 12 min. After rinsing three times, the slides were covered,
after which immune cells were counted under light microscopy at 400×magnification.

2.8. Enzyme-Linked Immunosorbent Assay (ELISA) for IL-4 in BALF and Serum

The concentration of mouse IL-4 was measured in both BALF and serum using an IL-4 ELISA
kit (BioLegend, San Diego, CA, USA) following the manufacturer’s recommendations. Mixtures of
BALF (or serum, 50 µL each) and assay buffer (50 µL) were reacted with anti-IL-4 antibody in a 96-well
plate for 2 h at room temperature. After removal of unbound proteins, detection antibody solution
(100 µL), and avidin–horseradish peroxidase (HRP) D solution (100 µL) was sequentially added to the
wells, after which samples were incubated at room temperature for 30 min. Finally, these mixtures
were reacted with substrate solution (100 µL) for 15 min, after which the reaction was stopped with
blocking solution (100 µL). The absorbance of the mixture was then read at 450 nm using a Versa-max
plate reader (Molecular Devices, San Jose, CA, USA).

2.9. Detection of OVA-Specific IgE Concentration

Assessment of the OVA-specific IgE concentration in the BALF and serum of mice was conducted
using an ELISA kit (BioLegend Inc., San Diego, CA, USA). Briefly, a mixture of BALF (or serum, 50 µL
per each) and assay buffer (50 µL) was reacted with OVA-specific IgE antibody in each well for 2 h while
shaking at room temperature. Following removal of unbound proteins, detection antibody solution
(100 µL) and Avidin-HRP D solution (100 µL) was sequentially added to each well, then incubated
for 1 h with shaking at room temperature. An enzyme reaction was initiated by adding the substrate
solution and terminated by adding 2 M H2SO4 solution. The absorbance of the mixture was then read
at 450 nm with a Versa-max plate reader (Molecular Devices, San Jose, CA, USA).
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2.10. Histopathological Analysis

To exactly measure the epithermal thickness of the bronchial tree, the histopathological features
were analyzed in the same region of the lung. Briefly, the right lungs were collected from mice of a
subset group, then fixed in a 10% neutral buffered formalin for 48 h. Next, the middle lobes were
exactly trimmed from the fixed tissues and embedded in the same direction and position to make
paraffin blocks. After sectioning the block into 4 µm thick slices, the lung section forms #50 to #70
were collected from the whole series of the section. The sections were then stained with hematoxylin
and eosin (H&E) (Sigma-Aldrich; Merck KGaA, Darmstadt, Germany), after which the same region
on the positioning of the bronchus within the bronchial tree were microscopically examined at 400×
magnification for histopathological features. The smooth muscle thickness and epithelial thickness
in the bronchial tubes were determined using the Leica Application Suite (Leica Microsystems, Wetzlar,
Germany). In addition, the degree of cell infiltration in the airway was scored in a double-blind
screen by two independent investigators based on a previous study [25]. The peri-bronchiole and
peri-vascular inflammation were evaluated using a scoring of 0–5 (0, no cells; 1, a few cells; 2, a ring
of cells 1 cell-layer deep; 3, a ring of cells 2–4 cells deep; 4, a ring of cells; and 5, cells deep). For each
mouse, five airway sections that were randomly distributed through the left lung were analyzed,
and their average scores were calculated.

Periodic acid–Schiff (PAS) staining detected the goblet cell hyperplasia for mucus production.
Deparaffinization and dehydration of the lung sections were followed by oxidization of the samples
in periodic acid solution for 5 min, washing, and depositing in Schiff reagent for 15 min. After washing
these sections, the lung tissue was stained with hematoxylin solution for 30 s (Sigma-Aldrich;
Merck KGaA, Darmstadt, Germany), then observed under light microscopy at 400× magnification
for goblet cell hyperplasia and sub-epithelial fibrosis. The mucus score was also measured by four
independent investigators in a double-blind study analysis based on four different random locations
using a microscope as follows: 0, no goblet cells; 1, <20% of the epithelium; 2, 20–40% of the epithelium;
3, 40–60% of the epithelium; 4, 60–80% of the epithelium; and 5, >80% of the epithelium [25].

2.11. Quantitative Real-Time Polymerase Chain Reaction (PCR) Analysis for Cytokine Gene Expression

Quantitative real-time PCR assessed the relative quantities of mRNA for IL-4, IL-13, TNF-α,
and IL-1β. Total RNA molecules were isolated from frozen lung tissues using RNA Bee solution
(Tet-Test Inc., Friendswood, TX, USA). After quantification of the RNA concentration, the complement
DNA (cDNA) was synthesized using a mixture of oligo-dT primer (Invitrogen, Carlsbad, CA, USA),
dNTP and reverse transcriptase (Superscript II, 18064-014, Invitrogen; Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). Q-PCR was then conducted using a cDNA template and 2× Power SYBR Green
(TOYOBO Co., Osaka, Japan) as described in previous studies [26]. The reaction cycle at which
PCR products exceeded this fluorescence intensity threshold during the exponential phase of PCR
amplification was considered as the threshold cycle (CT).

2.12. AChE Activity Analysis

The AChE activity was determined using an Acetylcholinesterase Assay Kit (Abcam, Cambridge,
UK) according to the manufacturer’s protocols. Briefly, the lung tissue of each mouse was homogenized
in PRO-PREP protein extraction solution (1.0 mM PMSF, 1.0 mM EDTA, 1.0 µM pepstatin, 1.0 µM
leupeptin, and 1.0 µM aprotinin)(iNtRON Biotechnology Inc., Seoul, Korea), after which the
homogenates were stored at −70 ◦C until analysis. The sample or standards and ACh reaction
mixture were then incubated on a 96-well plate for 10 min at room temperature while protected from
the light. Color alterations were read using a Vmax plate reader (Molecular Devices, Sunnyvale, CA,
USA) at 410 nm.
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2.13. Western Blot Analysis

After collecting total tissue homogenates using the PRO-PREPTM Solution (iNtRON Biotechnology
Inc., Sungnam, Korea), the proteins were separated on 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) for 2 h at 100 V, then transferred to a nitrocellulose membrane
(GE Healthcare, Little Chalfont, UK) at 40 V for 2 h. The proteins on membranes were subsequently
hybridized with specific primary antibodies overnight at 4 ◦C: anti-MMP-9 (1:1000, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), anti-VEGF (1:1000, PeproTech, Rocky Hill, NJ, USA), anti-ERK
(1:1000, Cell Signaling Technology, Danvers, MA, USA), anti-p-ERK (1:1000, Cell Signaling Technology),
anti-MLC (1:1000, Abcam, Cambridge, UK), anti-p-MLC (1:1000, Abcam), anti-mAChR M3 (1:1000,
Abcam), anti-G protein α (1:1000, Abcam), anti-PKC (1:1000, Cell Signaling Technology), anti-p-PKC
(1:1000, Cell Signaling Technology), anti-PI3K (1:1000, Cell Signaling Technology), anti-p-PI3K (1:1000,
Cell Signaling Technology), and anti-β-actin (1:1000, Sigma-Aldrich; Merck KGaA, Darmstadt,
Germany). After removing the unbound antibodies, the membranes were incubated with horseradish
peroxidase-conjugated anti-secondary antibody for 1 h at room temperature. Finally, each specific
band was detected using an enhanced chemiluminescence reagent plus kit (Amersham Biosciences,
Corston, UK). The Image Analyzer System (Fluorchem FC2, Alpha Innotech, CA, USA) was used to
quantify the results, which are expressed as the fold-increase over control values.

2.14. Statistical Analysis

Statistical significance was evaluated using one-way analysis of variance (ANOVA) (SPSS for
Windows, Release 10.10, Standard Version, Chicago, IL, USA) followed by Tukey’s post hoc t-test for
multiple comparisons. All values were expressed as the means ± SD and a p < 0.05 was considered
statistically significant.

3. Results

3.1. Bioactive Components and Antioxidant Activity of BAW

As shown in Figure 2B, BAW contained high concentrations of two bioactive components related
to anti-inflammatory activity, crude saponins and total phenols (340± 31.4 mg/g and 1.99± 0.03 mg/g,
respectively). Among the crude saponins, protodioscin generated a sharp peak in the chromatogram
of HPLC and was determined to be present at a level of 34.5 µg/mg in BAW (Figure 2A). Furthermore,
the increase in scavenging activity of BAW against DPPH radicals was rapid during the early stages,
but was slower in the latter stage, with an IC50 of 31.07 µg/mL (Figure 2C). Intracellular ROS analysis
revealed a significant increase in the number of cells stained with DCFH in the LPS + Vehicle-treated
group relative to the No-treated group. However, these numbers dramatically decreased in cells
pretreated with LPS + BAW (Figure 2D). These results provide strong evidence that BAW encompassed
high anti-oxidative activity, which was obtained because of the high levels of anti-oxidant compounds
as well as inhibition of increases in intracellular ROS production.

3.2. BAW Suppress the Influx of Leukocytes in BALF of OVA-Induced Asthma Model

To investigate the suppression effects of BAW against the influx of leukocytes in the
bronchoalveolar lavage, we determined the number of total cells, macrophages, and eosinophils
in BALF of OVA + BAW treated mice. A significant enhancement of all cells was observed
in the OVA + Vehicle group compared to the No-treated group, reflecting OVA-challenged airway
inflammation. However, the treatment groups OVA + Dex, OVA + PG, and OVA + BAW showed a
significant decline in the number of total cells, macrophages, and eosinophils in BALF when compared
with those of the OVA + Vehicle group. The suppressive effects of BAW were very similar to those of
Dex, which was used as a positive control (Figure 3A,B). These findings indicate that BAW treatment
suppressed the influx of leukocytes into the bronchoalveolar fluid after OVA inhalation.
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Figure 2. Antioxidant properties of BAW. (A) Chromatograms of protodioscin were obtained by
performing high-performance liquid chromatography (HPLC) of BAW. The peak height/area reflects
the concentration of protodioscin in BAW. (B) Crude saponins and total phenolic contents were analyzed
in mixtures containing different concentrations of BAW. The contents of crude saponins were calculated
using the following equation: crude saponins (mg/g) = A − B/S, where, A is the dry weight of the
n-butanol layer (mg), B is the weight of the flask (mg), and S is the weight of the BAW extract (g).
(C) Free radical scavenging activity of BAW. DPPH radical scavenging activity was assayed in a mixture
containing 0.1 mM DPPH and varying concentrations of BAW (0−600 µg/mL). The data represents
the means ± standard deviation (SD) (n = 8). DPPH, 2,2-diphenyl-1-picrylhydrazyl radical; IC50, half
maximum inhibitory concentration. (D) Green fluorescence of ROS in cells co-treated with LPS and
BAW was observed using fluorescence microscopy at 200×magnification. Arrows indicate cells stained
with DCFH-DA.
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Figure 3. Suppression effects of BAW on the influx of inflammatory cells and IgE concentration
in BALF. (A) Total cells were collected from the BALF of lungs using centrifugation and measured
repeatedly. These cells were then suspended in PBS and applied to a slide by cytospinning, stained with
May–Giemsa solution, and observed under a light microscope at 400× magnification. (B) The number
of total cells, eosinophils, and macrophages was determined by counting within a 1 mm2 area.
(C) The concentration of OVA-specific IgE was quantified in BALF and serum using an enzyme-linked
immunosorbent assay with a minimum detectable concentration of 20.7 pg/mL. Es, Eosinophil; Mc,
Macrophage. The data shown represents the means ± SD (n = 8). * indicates p < 0.05 compared to the
No-treated group. # indicates p < 0.05 compared to the OVA + Vehicle treated group.
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3.3. BAW Effect on IgE Concentration in Serum and BALF of OVA-Induced Asthma Model

Altered IgE levels are considered key evidence for the improvement of pathological symptoms
in OVA-treated BALB/c mice [1,4]. Therefore, to evaluate the suppression of OVA-specific IgE secretion
from B cells, we measured the IgE levels in the BALF and serum of OVA-sensitized BALB/c mice
treated with vehicle, Dex, PG, and BAW. We observed higher levels of the OVA-specific IgE in the
OVA + Vehicle treated group, suggesting successful OVA induction in the asthma model. Conversely,
the OVA-specific IgE levels decreased in the OVA + Dex, OVA + PG, and OVA + BAW treated groups
when compared with the OVA + Vehicle treated group (Figure 3C). Furthermore, this suppressive
effect was greater in BALF than in serum. Therefore, the present results indicate that BAW treatment
successfully inhibits the production of OVA-specific IgE through the induction of B-cell isotype
switching in the OVA-induced asthma model.

3.4. Alterations in Inflammatory Cell Infiltration and Epithelial Damage of OVA-Induced Asthma Model
Treated with BAW

To investigate whether BAW induces recovery from inflammatory cell infiltration and epithelial
damage to airways, we studied the changes in the histopathological features of lungs in an
OVA-induced asthma model treated with BAW. We observed increased thickness of the respiratory
epithelium in lung tissue sections in mice that had been sensitized with OVA (OVA + Vehicle
treated group). However, the thickness significantly decreased in the OVA + BAWLo- and
OVA + BAWHi-treated groups when compared with the OVA + Vehicle-treated group. Furthermore,
there was decreased infiltration of the inflammatory cells in the peribronchiolar region in both
BAW-treated groups (Figure 4A,C,D). These results indicate that BAW treatment has the potential to
alleviate the epithelial damage and infiltration of the inflammatory cells in airways of the OVA-induced
asthma model.

3.5. Alteration in the Expression of Key Cytokines in OVA-Induced Asthma Model Treated with BAW

To examine the inhibitory effects of BAW on the expression of Th2-like and pro-inflammatory
cytokines, the levels of IL-4, IL-13, TNF-α, and IL-1β were measured in the lung tissue, BALF,
and serum of an OVA-induced asthma model treated with BAW using real-time PCR and ELISA.
For Th2-like cytokines, the mRNA levels of IL-4 and IL-13 were higher in the lung tissue of the
OVA + Vehicle-treated group than in the No-treated group. These levels decreased remarkably
in the OVA + Dex-, OVA + PG-, OVA + BAWLo-, and OVA + BAWHi-treated groups relative to the
OVA + Vehicle-treated group, even though the decrease ratio varied (Figure 5C,D). The decrease pattern
for IL-4 mRNA was consistent with the concentration of IL-4 protein in BALF and serum (Figure 5A,B).
Similar results were observed for pro-inflammatory cytokines (TNF-α and IL-1β). After BAW treatment,
the levels of the two cytokines in the lung tissue decreased significantly in a dose-dependent manner
(Figure 5E,F). These results indicate that the BAW treatment inhibited the expression of Th2-like and
pro-inflammatory cytokines during airway inflammation in the OVA-induced model.
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Figure 4. Histopathology in lung tissue of OVA-induced asthma model. (A) Histological alteration
of lung tissue. The epithelial thickness and infiltration of inflammatory cells in the peribronchiolar
region were observed in lung tissue stained with H&E solution at 400×magnification. (B) Goblet cell
hyperplasia. Mucus production was observed in Periodic acid–Schiff (PAS) stained lung tissue at 400×
magnification. (C) Quantification of epithelial thickness. Alterations in epithelial thickness of lung
tissue were measured using the Leica Application Suite. (D) Inflammatory infiltration score of airway.
The degree of cell infiltration in the airway was scored in a double-blind screen by two independent
investigators based on a previous study [25]. The peri-bronchiole and peri-vascular inflammation were
evaluated using a score of 0–5: 0, no cells; 1, a few cells; 2, a ring of cells 1 cell-layer deep; 3, a ring of
cells 2–4 cells deep; 4, a ring of cells; and 5, cells deep. For each mouse, five airway sections that were
randomly distributed through the left lung were analyzed, and their average scores were calculated.
(E) Mucus score of airway. The mucus score was measured by four independent investigators in a
double-blind study based on four different random locations using a microscope: 0, no goblet cells;
1, <20% of the epithelium; 2, 20–40% of the epithelium; 3, 40–60% of the epithelium; 4, 60–80% of the
epithelium; and 5, >80% of the epithelium [25]. Br, Bronchus; RE, Respiratory epithelium. The data
represents the means ± SD (n = 8). * indicates a p < 0.05 compared to the No-treated group. # indicates
a p < 0.05 compared to the OVA + Vehicle-treated group. Arrows represent the areas of mucin secretion.
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To determine if suppression of airway remodeling is accompanied by therapeutic effects of 
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Figure 5. Level of inflammatory cytokines. After collecting the supernatant from BALF and serum from
the OVA-induced asthma model were treated with BAW, the concentrations of IL-4 were measured
in BALF (A) and serum (B) using an IL-4 ELISA kit that could detect IL-4 at 0.5 pg/mL. The levels of
IL-4 (C), IL-13 (D), TNF-α (E), and IL-1β (F) mRNAs in lung tissue were detected using real-time PCR
analysis using specific primers. The relative level of mRNA for each specific cytokine was calculated
based on the intensity of β-actin mRNA as an endogenous control. The data shown represent the
means ± SD (n = 8). * indicates p < 0.05 compared to the No-treated group. # indicates p < 0.05
compared to the OVA + Vehicle-treated group.

3.6. Alteration in Airway Remodeling of OVA-Induced Asthma Model Treated with BAW

To determine if suppression of airway remodeling is accompanied by therapeutic effects of
BAW, we assessed the alterations in the goblet cell hyperplasia, peribronchiolar collagen layer and
the expression of angiogenesis regulator in the OVA-sensitized asthma model after treatment with
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BAW. Following sensitization with OVA, the OVA + Vehicle-treated group had an enhanced mucus
score in the bronchial airways of mice when compared to the No-treated group, indicating goblet
cell hyperplasia. However, these levels were significantly lower in the OVA + BAWLo- and
OVA + BAWHi-treated groups than in the OVA + Vehicle-treated group. Recovery of the goblet
cell hyperplasia of the airway was also observed after BAW treatment, although the decrease rate
varied in each group (Figure 4B,E).

We observed similar results when assessing the expression of MMP-9. Elevated expression of
MMP-9 is associated with severe asthma and a decline in pulmonary functions [27]. The enhanced
MMP-9 expression was recovered in the OVA + BAW-treated groups when compared with the
OVA + Vehicle-treated group (Figure 6). Furthermore, we analyzed the expression levels of regulators
under the VEGF signaling pathway to investigate the suppression effect of BAW on lung angiogenesis.
The expression level of VEGF, which is considered as a stimulator of angiogenesis that causes structural
changes in the lung tissue of asthma patients, significantly decreased in the OVA + BAW-treated groups
when compared with the OVA + Vehicle-treated group. However, alterations in the VEGF pattern were
reflected in entirety only in the ERK phosphorylation among members of the downstream signaling
pathway (Figure 6). Therefore, the above results indicate that BAW potentially suppresses airway
remodeling by regulating goblet cell hyperplasia, collagenase level, and angiogenesis in airways of the
OVA-induced asthma model.
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Figure 6. Level of airway remodeling-related factors. (A) The expression level of MMP-9 in lung tissue
of the OVA + BAW-treated model was measured using specific antibodies. Moreover, changes in
the expression of VEGF and the regulator protein under the signaling pathway downstream of
VEGF were also examined in lung tissue of a subset group using specific antibodies. (B) Band
intensities were determined using an imaging densitometer and the expression levels of four proteins
were evaluated relative to the intensity of actin bands. The data shown represent the means ± SD
(n = 8). * indicates p < 0.05 compared to the No-treated group. # indicates p < 0.05 compared to the
OVA + Vehicle-treated group.



J. Clin. Med. 2018, 7, 377 14 of 22

3.7. The Mechanism of BAW Action on Cholinergic Regulation of Airway Inflammation and Remodeling

To investigate the mechanism of the effects of BAW on cholinergic regulation of airway
inflammation and remodeling, we measured changes in AChE activity and the AChR M3 downstream
signaling pathway in airway tissue of an OVA-induced asthma model. After sensitization with OVA,
the level of AChE activity was lower than that of the No-treated group. However, these levels increased
remarkably in a dose-dependent manner in the OVA + BAWLo- and OVA + BAWHi-treated groups
(Figure 7A). These results suggest that BAW can recover the secretion ability of ACh from neuronal
and nonneuronal cells in the airway to prevent airway inflammation and remodeling.

In addition, recovery patterns observed in AChE activity were detected in the response of
airway smooth muscle cells as target cells for ACh although, although they showed the opposite
pattern. The phosphorylation level of mLC was higher in the OVA + Vehicle-treated group than
the No-treated group. However, these levels were remarkably recovered in the OVA + BAW-treated
group (Figure 7B,C). These results indicate that BAW-induced cholinergic recovery may be linked to
regulation of the phosphorylation of mLC in smooth muscle cells.

Moreover, similar patterns were observed in the downstream signaling pathway of mAChR
M3 in lung tissue, even though the range of alteration varied. After BAW treatment, the enhanced
expression of mAChR M3, Gα, and phosphorylation of PKC and PI3K markedly recovered to those
in the No-treated group (Figure 8A,B). However, alteration of the three signaling molecules as mAChR
M3 downstream signaling factors did not fully reflect the activation of mAChR M3 because they
were involved in various cellular responses in different cell types, including leukocytes. Nonetheless,
these results show that the anti-asthmatic activity of BAW may be associated with the recovery of
downstream signaling of mAChR M3 in lung tissue.
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Measurement of AChE activity. After homogenization of lung tissue, AChE activity was measured 
using an Acetylcholinesterase Assay Kit that could detect as little as 0.01 mU AChE in a 100 µL assay 
volume (0.1 mU/mL). (B) Detection of MLC phosphorylation. Expression of MLC and p-MLC 
measured using western blot analyses with an HRP-labeled secondary anti-rabbit IgG antibody, and 
(C) the relative levels of each protein was calculated relative to the intensity of actin bands. The data 
shown represent the means ± SD (n = 8). * indicates p < 0.05 compared to the No-treated group. # 
indicates p < 0.05 compared to the OVA + Vehicle-treated group. 

 

Figure 7. AChE activity and AChR M3 downstream signaling pathway of smooth muscle cells.
(A) Measurement of AChE activity. After homogenization of lung tissue, AChE activity was measured
using an Acetylcholinesterase Assay Kit that could detect as little as 0.01 mU AChE in a 100 µL assay
volume (0.1 mU/mL). (B) Detection of mLC phosphorylation. Expression of mLC and p-MLC measured
using western blot analyses with an HRP-labeled secondary anti-rabbit IgG antibody, and (C) the
relative levels of each protein was calculated relative to the intensity of actin bands. The data shown
represent the means ± SD (n = 8). * indicates p < 0.05 compared to the No-treated group. # indicates
p < 0.05 compared to the OVA + Vehicle-treated group.
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Figure 8. AChR M3 downstream signaling pathway in epithelial cells. (A) Expression of key 
components in the mAChR M3 downstream signaling pathway. Alterations in the expression of 
proteins related to the mAChR M3 signaling pathway were determined using western blot assays 
with an HRP-labeled anti-rabbit IgG antibody. (B) Band intensities were determined using an imaging 
densitometer, and the expression levels of the six proteins were evaluated relative to the intensity of 
actin bands. The data shown represent the means ± SD (n = 8). * indicates p < 0.05 compared to the 
No-treated group. # indicates p < 0.05 compared to the OVA + Vehicle-treated group. 
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technique is extensively applied to produce biomass, extracellular metabolites, and intracellular 
components, as well as to transform one specific substance into another [29]. Researchers are now 
focusing on identifying the pharmacologically active ingredients in fermented natural products to 
alleviate chronic diseases. Although there is a great deal of scientific evidence regarding the 
therapeutic effects of fermented products, only a few fermented products have been investigated for 
their anti-asthma effect in disease models [30,31]. Therefore, this study utilized the OVA-induced 
asthma model to examine the possibility that the fermented products of A. cochinchinensis roots could 
be potential anti-asthmatic agents. The results of the present study provide strong evidence that 
administration to BAW notably improves airway inflammation and remodeling in the lungs of OVA-
induced asthma model mice and could therefore be considered a potential therapeutic drug for 
patients with allergic asthma. 

Two previous reports have presented the relationship between fermented natural products and 
stimulation of anti-asthmatic parameters, although the analysis parameters were very limited. The 
treatment of Artemisia princeps Pampanini fermented with Bifidobacterium infantis K-525 showed the 
reduction of the IgE and cytokines levels in the trachea and lungs of experimental asthmatic mice [30]. 
Another study demonstrated that effective microorganism fermentation extract (EM-X) attenuated 
the airway hyper-reactivity and inflammatory response through suppression of leukocyte 
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Figure 8. AChR M3 downstream signaling pathway in epithelial cells. (A) Expression of key
components in the mAChR M3 downstream signaling pathway. Alterations in the expression of
proteins related to the mAChR M3 signaling pathway were determined using western blot assays
with an HRP-labeled anti-rabbit IgG antibody. (B) Band intensities were determined using an imaging
densitometer, and the expression levels of the six proteins were evaluated relative to the intensity of
actin bands. The data shown represent the means ± SD (n = 8). * indicates p < 0.05 compared to the
No-treated group. # indicates p < 0.05 compared to the OVA + Vehicle-treated group.

4. Discussion

Fermentation is a metabolic process in which a microorganism converts solid or liquid substances,
such as starch or a sugar, into various products including an alcohol or an acid [28]. This technique
is extensively applied to produce biomass, extracellular metabolites, and intracellular components,
as well as to transform one specific substance into another [29]. Researchers are now focusing on
identifying the pharmacologically active ingredients in fermented natural products to alleviate chronic
diseases. Although there is a great deal of scientific evidence regarding the therapeutic effects of
fermented products, only a few fermented products have been investigated for their anti-asthma effect
in disease models [30,31]. Therefore, this study utilized the OVA-induced asthma model to examine
the possibility that the fermented products of A. cochinchinensis roots could be potential anti-asthmatic
agents. The results of the present study provide strong evidence that administration to BAW notably
improves airway inflammation and remodeling in the lungs of OVA-induced asthma model mice and
could therefore be considered a potential therapeutic drug for patients with allergic asthma.

Two previous reports have presented the relationship between fermented natural products
and stimulation of anti-asthmatic parameters, although the analysis parameters were very limited.
The treatment of Artemisia princeps Pampanini fermented with Bifidobacterium infantis K-525 showed
the reduction of the IgE and cytokines levels in the trachea and lungs of experimental asthmatic
mice [30]. Another study demonstrated that effective microorganism fermentation extract (EM-X)
attenuated the airway hyper-reactivity and inflammatory response through suppression of leukocyte
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recruitment, as well as decreased Th2 cytokine levels and IgE concentrations in mice challenged
with OVA [31]. These results are in agreement with those of the present study, in which airway
inflammation was significantly alleviated after BAW treatment (250 and 500 mg/kg) for 6 days,
although the natural product type and bacterial strain differed. However, the scope of analysis
confirming the effectiveness of fermented products was more extensive in our study than in previous
studies. This is because we investigated the effects related to lung histology in the current study,
including the suppression of airway inflammation (including inflammatory cell infiltration and
respiratory epithelium hyperplasia), as well as the inhibition of airway remodeling, such as excessive
mucus production, collagen deposition, and angiogenesis. Furthermore, anti-asthmatic effects were
higher in BAW than unfermented products of A. cochinchinensis when the relative effectiveness of
quantitative indicators was compared. The rate of decrease of total cells (31%), macrophages (18%),
and IL-4 concentration (79.3%) were greater in BAW than unfermented products of A. cochinchinensis,
while the number of eosinophils, IgE level and thickness of respiratory epithelium remained constant
in the same group. Taken together, these comparisons show that fermentation can be considered a
technique to enhance the anti-asthmatic effects of A. cochinchinensis.

We further examined alterations in the influx of leukocytes, including total cells, eosinophils,
and macrophages, where eosinophils are the major regulators of airway remodeling [32].
Eosinophil-mediated damage is a major mechanism underlying the pathogenesis of asthma,
including airway inflammation and remodeling [33]. In the present study, there was a remarkable
decrease in the total number of leukocytes (including lymphocytes, macrophages, and eosinophils)
in the BALF of BAW-treated animals relative to the vehicle-treated group. Our finding indicates that
BAW inhibits the influx of leukocytes during airway inflammation, which is consistent with the results
of a previous study showing therapeutic effects of several fermented products including EM-X of
unpolished rice, papaya, and seaweed in an OVA-induced asthma model in mice [31,34].

Alterations in the IgE and IL-4 levels are considered key markers of anti-asthmatic effects
since the inflammatory response associated with asthma is characterized by infiltration of Th2
cells and leukocytes [35], and is characterized by elevated IgE in serum [1]. Among various Th2
cytokines, IL-4 has multiple immunological effects, including promotion of Th2 lineage differentiation,
regulation of Ig class switching, and stimulation of mast cell proliferation [36]. Therefore, IgE and
IL-4 levels are reportedly higher in OVA-induced asthma model mice than in normal controls [11].
These levels decreased significantly after treatment with fermented Artemisia princeps and EM-X,
although there were some differences in the decrease ratio [30,31]. In this study, these two parameters
dramatically decreased in the BALF and serum of OVA-induced asthma mice treated with BAW,
which is consistent with the results of previous studies that showed the anti-asthmatic effects of
fermented Artemisia princeps and EM-X. However, more studies are required to understand which key
components determine the suppression of IgE and IL-4 production in each fermented product.

In this study, the increase in BAW dosage was correlated with suppression of airway remodeling
in OVA-induced BALB/c mice. Several key factors are characteristic of airway remodeling, including
thickening collagen layer, smooth muscle hyperplasia and enhancing VEGF expression. In the
OVA-induced asthma model, a marked enhancement in the thickness of the collagen layer was
observed and the α-SMA stained region within the airway [37,38]. Moreover, epithelial cell-derived
VEGF is known to promote airway remodeling [39]. The hyperplasia of goblet cells and thickness of the
basement membrane were significantly reduced when VEGF expression decreased [40]. In this study,
there was a significant recovery of goblet cell hyperplasia, thickness of the collagen layer, and the
VEGF signaling pathway in BAW-treated groups. These findings are similar to those of previous
in vivo studies in which numerous natural products, including Vitex rotundifolia L. [41], Astragali radix
Anti-Asthmatic Decoction [42], Bangpungtongseong-san [43], and Suhuang antitussive capsule [44],
were reported to induce the stimulation of airway remodeling in OVA-treated BALB/c mice. However,
the preventive effects of fermented natural products against airway remodeling have never been
investigated in an OVA-induced asthma model. The results presented herein provide the first evidence
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that airway remodeling prevention of BAW may be linked to the regulation of goblet cell hyperplasia,
collagen deposition, and angiogenesis.

Meanwhile, cholinergic regulation is considered an important factor in airway inflammation and
remodeling during inflammatory lung diseases including asthma and COPD [45,46]. During this
regulation, secretion of ACh from neuronal and nonneuronal cells exerts its functions through either
mAChRs or nicotinic receptors [47]. mAChR have been shown to play a proinflammatory role
in most structural cells of airway walls such as smooth muscle cells, fibroblasts, epithelial cells,
and immune cells [45]. The expression level of mAChR M2 was reduced in airway neurons of
asthma, while M1 and M3 levels were increased in airway structural cells of COPD patients [48–50].
Moreover, mAChR M3 mediated the effects of ACh in allergen-induced airway inflammation and
remodeling of mice and guinea pigs [51,52]. The physiological and pathophysiological action of ACh,
including bronchoconstriction, muscle thickening, and cytokine production, was observed in airway
smooth muscle cells [53]. In this study, we investigated the action mechanism of BAW during the
cholinergic regulation of airway inflammation and remodeling in an OVA-induced asthma model.
A significant recovery of AChE activity and the mAChR M3 downstream signaling pathway was
observed in epithelial cells and smooth muscle cells after BAW treatment. These results are the
first to suggest that anti-inflammation and anti-remodeling activity of BAW may be associated with
muscarinic cholinergic regulation in structural and inflammatory cells.

Furthermore, in this study, the unfermented product of P. grandiflorum was selected as a natural
product with anti-asthmatic activity to compare the efficacy of BAW because only unfermented
forms are commonly used to treat asthma in Korea [54,55]. Several extracts of unfermented
roots of this plant effectively ameliorated bone marrow-derived mast cell-mediated allergy and
OVA-induced asthma [56,57]. The aqueous extracts of P. grandiflorum inhibit the development of
AD-like skin lesions in NC/Nga mice by inhibiting the Th2 cell response and stimulating the Th1
cell responses [58]. The greatest anti-asthmatic effects of BAW are observed at 500 mg/kg compared
with 250 mg/kg for PG. However, the rate of decrease of OVA-specific IgE concentrations was higher
than 70.7% in the OVA + BAWHi-treated group than the OVA + PG-treated group, but similar in the
OVA + BAWLo-treated group (Figure 3C). Recovery of the expression of VEGF and the phosphorylation
of mLC and PI3K were significantly greater in the BAW-treated (250 or 500 mg/kg) group than in the
PG-treated (250 mg/kg) group. Therefore, our study shows the possibility that BAW can replace PG
extracts for asthma treatment, although further analysis is needed to determine the therapeutic dosage
and durability.

Taken together, the results of our study suggest that BAW attenuates airway inflammation
and remodeling through cholinergic regulation in an OVA-induced asthma model in mice.
The anti-asthmatic activities of BAW include inhibition of leukocyte influx, OVA-specific IgE
production, Th2 cell activation, inflammatory cell infiltration, respiratory epithelial hyperplasia,
goblet cell hyperplasia, angiogenesis, and collagen deposition. Cholinergic regulation in airways
is associated with recovery of AChE activity and mAChR M3 downstream signaling. To the best
of our knowledge, this study is the first to report that fermented products of A. cochinchinensis
have anti-asthmatic activities and its functions are associated with cholinergic regulation using an
OVA-induced asthma model. However, further studies are required to advance our understanding of
the impending effects of BAW, as well as the molecular mechanisms responsible for these effects.
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