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Abstract: In this work, green composites have been developed and characterized using a bio-based
polymeric matrix such as BioPBSA and the introduction of 30 wt.% short hemp fibers as a natural
reinforcement to obtain materials with maximum environmental efficiency. In order to increase the
interfacial adhesion between the matrix and the fiber to obtain better properties in the composites,
a reactive extrusion process has been carried out. On the one hand, different additives derived
from bio-based itaconic acid have been added to the BioPBSA/HEMP composite, such as dibutyl
itaconate (DBI) and a copolymer of PBSA grafted with itaconic acid (PBSA-g-IA). On the other hand,
a different copolymer of PBSA grafted with maleic anhydride (PBSA-g-MA) was also tested. The
resulting composites have been processed by injection-molding to obtain different samples which
were evaluated in terms of mechanical, thermal, chemical, dynamic-mechanical, morphological
and wettability and color properties. In relation to the mechanical properties, the incorporation
of hemp fibers resulted in an increase in the stiffness of the base polymer. The tensile modulus of
pure BioPBSA increased from 281 MPa to 3482 MPa with 30% fiber. The addition of DBI shows
a remarkable improvement in the ductility of the composites, while copolymers with IA and MA,
generate mechanically balanced composites. In terms of thermal properties, the incorporation of
hemp fiber and compatibilizing agents led to a reduction in thermal stability. However, from the
point of view of thermomechanical properties, a clear increase in rigidity is achieved throughout the
temperature range studied. As far as the color of the samples is concerned, the incorporation of hemp
generates a typical color, while the incorporation of the compatibilizing agents does not modify this
color excessively. Finally, the introduction of lignocellulosic fibers greatly affects water absorption
and contact angle, although the use of additives helped to mitigate this effect.

Keywords: BioPBSA; hemp natural fibers; green composites; itaconic acid; agricultural
waste valorization

1. Introduction

Plastics are a basic element of our daily life. They are widely used due to their ver-
satility, durability, ease of processing and low cost [1]. Plastics are polymers that are
chemically synthesized from fossil resources such as petroleum and which contain long
monomer chains. As a consequence of its widespread use, there are large amounts of waste
that must be properly managed to prevent these wastes from ending up in landfills or
spread throughout the natural environment [2]. As a result of the intensive use of non-
compostable or non-recyclable petroleum-derived materials, there is great concern about
environmental pollution, greenhouse gas emissions, human health, and the depletion of
fossil resources [3,4]. In addition, plastics are the main cause of pollution and toxicity of
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the aquatic ecosystem of rivers, seas, and oceans [5]. These are the main factors that have
promoted the study and development of environmentally friendly polymeric materials with
good properties in order to replace traditional petroleum-based plastics [6,7]. The develop-
ment of biorefinery has been a major step forward in the production of the corresponding
bio-based monomers or building blocks for the production of polyester, polyurethanes
and polyamides [8–10], among others. As a result, the production of biobased polymers,
as an alternative to fossil-sources, is currently in a growing state [11]. Bio-polyesters
such as poly(butylene succinate) (PBS), poly[(butylene adipate)-co-terephthalate] (PBAT),
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly[(butylene succinate)-co-
adipate] (PBSA) have high ductility, good processability and the capacity to biodegrade [12].
In this context, it is currently possible to obtain PBSA from renewable natural sources, thus
obtaining a material with high environmental efficiency.

Bio-based PBSA is a random copolymer of poly(butylene succinate) (PBS); it is synthe-
sized by polycondensation of 1,4-butanediol in the presence of succinic and adipic acids
with relatively low production cost, satisfactory mechanical properties and also has excel-
lent processability [13], being able to be conformed by extrusion, injection, blow molding, in
addition to obtaining filaments, multifilaments and films [14–17]. Due to these characteris-
tics, PBSA is a thermoplastic polyester with great potential. However, it has limited thermal
stability and gas barrier properties, which limit it in certain applications. [18]. To solve, or at
least mitigate, this problem, several improvement strategies have been proposed in recent
years, such as binary or ternary blending with other polymers, the development and intro-
duction of copolymers, and the introduction of reinforcements or fillers, for example [19].
Currently, the so-called circular economy is growing, and its objective is to establish a loop
in which waste could be reused to obtain new products, in order to reduce the requirement
of raw materials and energy necessary to obtain them. In this context, the revalorization
of by-products from industries or agroforestry is being applied to obtain natural fiber
reinforced plastics (NFRP) [20,21] and wood–plastic composites (WPC) [22,23]. Natural
fibers could play an important role in the development of biodegradable composites with
improved properties and minimize existing environmental problems. Research has shown
that the incorporation of fibers from husks, stems, leaves and forest residues into polymeric
matrices has improved their mechanical properties [24–26].

One of the most interesting natural fibers is hemp fiber (Cannabis sativa L.), since it is an
agricultural residue that is widely available, economical, and capable of reducing the cost
of the polymer in which it is introduced. Although it is necessary to improve the affinity
between the hemp fibers and the polymer matrix, there are several procedures such as the
treatment of the fibers [27], or the use of additives (plasticizers and compatibilizers) [28],
or the introduction of nanoparticles [29]. As a result of these strategies it is possible
to produce components with a wide range of applications, such as indoor and outdoor
furniture, manufacturing of automotive parts [30], building structures [31,32], or textile
applications [33]. In particular, hemp fiber has been used effectively as a reinforcement in
polymeric matrices such as polyethylene (PE), polypropylene (PP) and even polylactic acid
(PLA) [34–36].

The use of compatibilizers is particularly interesting, because the complex treatments
to be applied to fillers are not required. Due to their versatility and ease of use, a wide
variety of these additives are now available, and new strategies are being developed to
improve their synthesis and efficiency. In this respect, itaconic acid (IA) is attracting the
interest of researchers and industries due to its natural origin, and it is the most easily
produced bio-based unsaturated monomer by fermentation [37]. Itaconic acid (methylene
succinic acid) is a crystalline unsaturated dicarbonic acid in which a carboxyl group is
conjugated to the methylene group. It can be produced cost-effectively from sustainable
substrates and has the potential to replace petrochemicals in the future [38]. It is used as
a base chemical for the production of various value-added products, such as monomers,
copolymers and terpolymers with properties similar to those of acrylates. In this regard,
dibutyl itaconate (DBI) is a biobased monomer derived from the esterification of IA and
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1-butanol [39]. In addition, DBI is mainly utilized as a comonomer in the synthesis of
bio-based elastomers [40].

The main objective of this work is the development of green composites from the
incorporation of short hemp fibers from agroforestry waste into a PBSA bio-based polymeric
matrix. The aim is to obtain maximum environmental efficiency and improved mechanical
properties by introducing different compatibilizing additives. In order to improve the
matrix–fiber interaction, different compatibilization strategies have been developed. The
use of additives based on itaconic acid, such as DBI (dibutyl itaconate) and the development
of copolymers grafted with maleic anhydride (MA) and itaconic acid (IA), has been another
objective to follow during the development of the work due to the great novelty in this field.
Finally, the effectiveness of these strategies has been evaluated by chemical, mechanical,
morphological, thermal, thermomechanical and FTIR characterization, as well as visual
and wetting characteristics.

2. Materials and Methods
2.1. Materials

The matrix polymer, BioPBSA with CAS number 152049-37-1, was supplied by PTTMCC
Biochem Company (Chauchak, Bangkok 10900, Thailand). The manufacturer supplies this
bio-based PBSA in white granules with a relative density of 1.20–1.30. The hemp fiber used
as reinforcement was supplied by SCHWARZWÄLDER TEXTIL-WERKE (Schenkenzell,
Germany). This fiber had an irregular cross section with an average size between 15–50 µm
and a specific weight of 1.48–1.50 g/cm3.

Itaconic acid (IA) and maleic anhydride (MA) were used to make the grafted copoly-
mers. A dicumyl peroxide (DCP) initiator was used to improve the reaction. The above-
mentioned compounds were supplied by Sigma-Aldrich S.A. (Madrid, Spain). The most
important characteristics of each of these compounds are described below. Itaconic acid
(IA), CAS number 97-65-4, has a molecular weight of 130.10 g/mol, relative density of
1.573 g/cm3 at 25 ◦C and water solubility of 77.49 g/L at 20 ◦C. Maleic anhydride (MA),
CAS number 33225-51-3, has a specific gravity of 100.07 g/mol and a purity of 98%. Both
AI and MA were supplied in white powder form. Dicumyl peroxide (DCP), CAS number
80-43-3, has a specific gravity of 270.37 g/mol and a purity of 98%, with an appearance of
crystals or flakes with a white to pale yellow color.

2.2. Sample Preparation

Due to the moisture absorption capacity of the materials used, specifically BioPBSA
and hemp fibers, they were previously dried for 48 h in a dehumidifying dryer MDEO
(Industrial Marsé, Barcelona, Spain), in order to avoid hydrolysis in the processing of the
mixtures. The compositions were mixed and homogenized and then introduced into a
co-rotating twin screw extruder, Construcciones Mecánicas Dupra, S.L. (Alicante, Spain).
This extruder has a screw diameter of 25 mm with a length/diameter (L/D) ratio of 24. The
extruder has 4 heating zones, from the hopper to the die, where an ascending temperature
ramp of 115–120–125–135 ◦C was applied. Once the different compositions were extruded,
they were introduced into a pelletizer to obtain granules for subsequent processing by
injection molding, using a Meteor 270/75 injector from Mateu & Solé (Barcelona, Spain),
with the same temperature profile used in the extrusion process. The different compositions
obtained together with their codification are summarized in Table 1.
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Table 1. Summary of compositions according to the weight content (wt.%) of BioPBSA/HEMP and
parts per hundred resin (phr) of different compatibilizers.

Code BioPBSA
(wt. %)

HEMP
(wt. %)

DBI
(phr)

PBSA-g-IA
(phr)

PBSA-g-MA
(phr)

BioPBSA 100 0 0 0 0
BioPBSA/HEMP 70 30 0 0 0

BioPBSA/HEMP/7.5DBI 70 30 7.5 0 0
BioPBSA/HEMP/15DBI 70 30 15 0 0

BioPBSA/HEMP/PBSA-g-IA 70 30 0 5 0
BioPBSA/HEMP/PBSA-g-MA 70 30 0 0 5

2.3. Grafting Procedure

The grafting reaction was carried out in a mini mixer (HAAKETM PolyLabTM QC,
Thermo Fisher Scientific, Karlsruhe, Germany), together with the dicumyl peroxide (DCP)
initiator. To obtain PBSA-g-IA, PBSA granules were started with PBSA granules that were
physically mixed with IA and DCP at contents of 10 and 1 parts per hundred resin (phr)
of PBSA, respectively. PBSA-g-MA was obtained with MA and DCP, following the same
process and amounts as with PBSA-g-IA. The resulting mixtures were introduced into
the mixing device and processed at 135 ◦C for 7 min. The resulting material was purified
by refluxing in chloroform (Panreac S.A., Barcelona, Spain) for 4 h, and the hot solution
was filtered and precipitated in cold methanol (Sigma-Aldrich S.A.). For the removal of
unreacted or excess reagents, methanol was used to perform several successive washes,
finishing the process with drying at 50 ◦C for 24 h in a CARBOLITE Eurotherm 2416 CG air
circulation oven (Hope Valley, UK).

2.4. Characterization of PBSA/HEMP Composites
2.4.1. Mechanical Characterization

The mechanical properties of neat BioPBSA pieces and PBSA/HEMP composites
were evaluated for tensile properties, impact strength and hardness. Tensile tests were
performed on an ELIB 50 universal testing machine from S.A.E. Ibertest (Madrid, Spain) on
bone-type samples. The test was performed at a speed of 10 mm/min using a 5 kN load
cell. The impact strength analysis was performed by Charpy impact test following ISO
179-1:2010 on 80× 10× 4 mm3 rectangular specimens notched on a Charpy pendulum from
Metrotec S.A. (San Sebastian, Spain) with a 6 J pendulum. The hardness of the different
compositions was obtained in a 76-D hardness tester from J. Bot Instruments (Barcelona,
Spain), using the Shore D scale with a stabilization time of 15 s according to ISO 868:2003,
taking measurements in different parts of a rectangular specimen of 80 × 10 × 4 mm3. All
mechanical characterizations were performed at room temperature, and a minimum of
6 samples of each formulation were tested, and the values were averaged.

2.4.2. Morphology Characterization

To study the morphology of the samples, the field emission scanning electron mi-
croscopy (FESEM) technique was used, using a ZEISS ULTRA 55 microscope from Oxford
Instruments (Abingdon, UK). Samples used in the impact test were prepared, in which the
breakage surface was treated by dispersing a thin layer of gold and palladium alloy in an
EMITECH sputter coating SC7620 from Quorum Technologies, Ltd. (East Sussex, UK), to
achieve a conductive surface, necessary for the correct operation of this technique. Subse-
quently, the samples were introduced into the microscope, with an accelerating voltage of
2 kV, with which 1000× images of the different samples were obtained.

2.4.3. Infrared Spectroscopy

Chemical analysis was carried out by attenuated total reflection Fourier transform
infrared (ATR-FTIR) spectroscopy. Spectra were acquired using a Bruker S.A. Vector 22
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(Madrid, Spain) attached to a PIKE MIRacle™ single reflection diamond ATR accessory
(Madison, WI, USA). The results data were obtained from the average of ten scans between
4000 and 600 cm−1 with a spectral resolution of 4 cm−1.

2.4.4. Thermal Analysis

The study of the main thermal transitions of BioPBSA composites was determined by
differential scanning calorimetry (DSC) in a Mettler-Toledo 821 calorimeter (Schwerzenbach,
Switzerland). To guarantee the reliability of the tests, the average mass of the samples was
kept at 5–8 mg, and they were placed in standard 40 µL aluminum crucibles. The samples
were subjected to a thermal program that consisted of three steps, two heating cycles and
one cooling cycle. The first heating cycle is destined to eliminate the thermal background
trace due to processing and ranges from 20 to 130 ◦C, followed by the cooling cycle down
to 0 ◦C, and finally a second heating cycle up to 250 ◦C. The heating and cooling rates
were set at 10 ◦C/min. The tests were performed under an inert nitrogen atmosphere
with a flow rate of 66 mL/min. The degree of crystallinity (χc) was calculated using the
following equation:

%χc =

(
∆Hm − ∆Hcc

∆H0
m

· 100
w

)
(1)

where ∆Hmy∆Hcc are the cold melting and crystallization enthalpies, respectively, and
∆H0

m = 116.9 J/g corresponds to theoretical enthalpy of a 100% crystalline PBSA sam-
ple [41]. The term w represents the weight fraction of BioPBSA in the blend.

The thermal degradation and thermal stability of neat BioPBSA and composites were
analyzed by thermogravimetric analysis (TGA) on a LINSEIS TGA 1000 thermobalance
(Selb, Germany). The samples with an average mass of 15–20 mg were each placed in
70 µL alumina crucibles and subjected to a dynamic heating schedule from 30 to 600 ◦C at
a heating rate of 10 ◦C/min in nitrogen atmosphere. All tests were carried out in triplicate
to obtain reliable results.

2.4.5. Thermomechanical Characterization

The thermomechanical properties of BioPBSA/HEMP were evaluated by dynamic-
mechanical thermal analysis (DMTA) on a dynamic analyzer DMA1 from Mettler-Toledo
(Schwerzenbach, Switzerland), working in single cantilever flexural conditions. Rectan-
gular samples of dimensions 20 × 6 × 2.7 mm3 were subjected to a dynamic temperature
sweep from 30 to 140 ◦C at a constant heating rate of 2 ◦C/min. The selected frequency
was 1 Hz, and the maximum flexural deformation or cantilever deflection was set to 10 µm.
A total of three tests per sample were averaged.

2.4.6. Color and Wetting Characterization

For color measurement of samples, a Konica CM-3600d Colorflex-DIFF2 spectropho-
tometer from Hunter Associates Laboratory, Inc. (Reston, VA, USA) was used. Using this
equipment, the coordinates (L*a*b*) were obtained according to the CIE L*a*b* (CIELAB)
color space. L is the coordinate representing brightness L* = 0, darkness; L* = 100, lightness;
a* represents the coordinate from green (a* < 0) to red (a* > 0); b* represents the coordinate
from blue (b* < 0) to yellow (b* > 0). At least ten different measurements of the color coordi-
nates were obtained and averaged. Contact angle measurements were performed with an
EasyDrop Standard goniometer model FM140 (KRÜSS GmbH, Hamburg, Germany) that
was equipped with a video capture kit and analysis software (Drop Shape Analysis SW21;
DSA1). Distilled water was used as the test liquid. Wetting properties were evaluated
on the surface of 80 × 10 × 4 mm3 rectangular samples. At least 10 water contact angle
measurements were collected and averaged.

2.4.7. Water Uptake Characterization

The evolution of the water absorption was studied using injection molded samples
of 80 × 10 × 4 mm3, which were immersed in distilled water at 23 ◦C. The samples were
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removed and weighed weekly using an analytical balance with an accuracy of 0.1 mg,
after removing the residual water with a dry cloth. The evolution of water absorption was
followed for a period of 12 weeks. Measurements were performed in triplicate.

2.4.8. Statistical Analysis

To measure the significant differences among the samples were evaluated at 95%
confidence level (p ≤ 0.05) by one-way analysis of variance (ANOVA) following Tukey’s
test. Software employed for this propose was the open-source R software (http://www.r-
project.org), date of access: 5 May 2022.

3. Results
3.1. Mechanical Properties of BioPBSA/HEMP Composites

Mechanical characterization of BioPBSA composites are summarized in Table 2. The
results indicate the effect on the mechanical properties of the different BioPBSA/HEMP
composites. Neat BioPBSA showed a tensile modulus (E) of 281 MPa, a tensile strength of
21.1 MPa, and an elongation at break of 313.6%. These are typical values for this polymer,
similar to those reported by other authors [42,43]. These values are indicative of a material
with high ductility but with some stiffness. The incorporation of 30 wt.% of hemp fibers
leads to a great increase in the tensile modulus (E), attaining a value of 3482 MPa and
maintaining a tensile strength very similar to the neat BioPBSA, with a value of 19.6 Mpa,
thus an improvement in the stiffness of the BioPBSA matrix can be observed. These values
are remarkable, because the introduction of fillers, in general, reduces the tensile strength
values of the composites in comparison with the neat polymer [44]. Roumeli et al. have
observed the same behavior in high density polyethylene (HDPE) composites with hemp
fibers [45]. With the addition of DBI to the base mixture, a reduction of the tensile modulus
can be observed as the amount of DBI in the formulations increases, having tensile modulus
values of 2405 and 1726 Mpa for the formulations with 7.5 phr and 15 phr DBI, respectively;
with respect to tensile strength, the previous trend is repeated, with values of 16.3 and
12.7 MPa for the compounds formulated with a 7.5 and 15 phr DBI, respectively. This
behavior could be due to the fact that the DBI produces some plasticization effect into
polymer matrices [46]. The introduction of a plasticizer reduces tensile modulus and tensile
strength, and at the same time the elongation increases with regard to the other compounds
studied; all these phenomenon can be explained by several plasticization theories, such
as the lubricity, gel and free volume theories [47,48]. With the introduction of PBSA-g-IA
and PBSA-g-MA copolymers into the BioPBSA/HEMP, the tensile modulus and tensile
strength results are 2505 MPa and 23.2 MPa, respectively, for the BioPBSA/HEMP/PBSA-g-
IA composite, and 2748 MPa and 29.1 MPa for the BioPBSA/HEMP/PBSA-g-MA. These
values may indicate an improvement in the interfacial adhesion between the polymer
matrix and the natural fiber, as reported by El-Rafey et al. [49], as by preserving high tensile
modulus values, an improvement in tensile strength is also achieved, surpassing even the
polymer matrix.

On the other hand, the incorporation of the fibers randomly dispersed in the matrix
causes a lack of homogeneity of the polymeric networks, due to the loss of cohesion between
the polymer and the filler, which negatively affects the elongation at break values of the
composites obtained [50]. This effect can be clearly seen in all PBSA/HEMP samples with
an elongation at break (εb) ranging from 5.2–8.2%, significantly lower than that obtained
by the neat BioPBSA with an elongation of 313.6%. Other authors have reported similar
behavior when incorporating natural fibers in polymeric PBS matrices [51,52].

Neat BioPBSA is a very ductile material, with a relatively high impact strength,
30.7 kJ/m2, obtained on notched test samples. Again, it can be seen how all the sam-
ples with hemp have reduced their impact strength values, yielding very similar values
among the different samples, ranging between 9.5 and 10.6 kJ/m2, with this last result being
obtained due to the incorporation of the PBSA-g-MA copolymer, as the incorporation of
DBI achieves a certain plasticizing effect, although it does not produce any significant effect
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on the impact strength properties. This loss of impact strength is related to the presence of
internal stresses due to the finely dispersed hemp particles incorporated in the matrix [53].
Several authors reported a similar decrease in impact absorbed energy when incorporating
natural fibers in polypropylene and HDPE polymeric matrices [54,55].

Table 2. Summary of mechanical properties of the BioPBSA/HEMP composites in terms of tensile
modulus (E), maximum tensile strength (σmax), elongation at break (εb), Shore D hardness and
impact strength.

Code E (MPa) σmax (MPa) εb (%) Shore D
Hardness

Impact Strength
(kJ/m2)

BioPBSA 281 ± 3 a 21.1 ± 1.0 a 313.6 ± 6.1 a 56.2 ± 0.8 a 30.7 ± 1.2 a

BioPBSA/HEMP 3482 ± 23 b 19.6 ± 2.6 a 5.2 ± 0.6 b 65.5 ± 0.4 b 9.5 ± 0.4 b

BioPBSA/HEMP/7.5DBI 2405 ± 28 c 16.3 ± 0.3 b 8.2 ± 0.8 c 60.4 ± 0.5 c 9.9 ± 0.2 b

BioPBSA/HEMP/15DBI 1726 ± 19 d 12.7 ± 0.4 c 8.2 ± 0.5 c 54.6 ± 0.9 d 9.5 ± 0.2 b

BioPBSA/HEMP/PBSA-g-IA 2505± 12 e 23.2 ± 0.9 d 5.4 ± 0.3 d 64.2 ± 0.5 e 9.7 ± 0.3 b

BioPBSA/HEMP/PBSA-g-MA 2748 ± 15 e 29.1 ± 0.4 e 5.8 ± 0.2 d 64.7 ± 0.6 e 10.6 ± 0.3 c

a–e Different letters in the same column indicate a significant difference among the samples (p < 0.05).

Regarding the Shore D hardness, the results obtained indicated a great improvement
in hardness, with respect to the neat BioPBSA and the different hemp composites. The hard-
ness of BioPBSA stands at 56.2, while the addition of hemp fibers into the BioPBSA matrix
promotes an improvement in the surface hardness of the composites, with values reaching
65.5 for BioPBSA/HEMP. The plasticizing effects provided by the DBI into the BioPBSA ma-
trix are similar to those observed in the tensile modulus, with a decrease in hardness as the
percentage of DBI in the composites increases, 60.4 and 54.6 for BioPBSA/HEMP/7.5DBI
and BioPBSA/HEMP/15DBI composites, respectively. In relation to the composites compat-
ibilized with PBSA-g-IA and PBSA-g-MA, their hardness values are close to those obtained
in the PBSA/HEMP base composite.

3.2. Morphology of BioPBSA/HEMP Composites

The internal morphology of the composites is always related to their mechanical
performance. Figure 1 gathers the field emission scanning electron microscopy (FESEM)
images at 1000×magnification of the fractured surface of impact test samples from neat
BioPBSA and BioPBSA/HEMP composites. Figure 1a shows the fracture surface of neat
BioPBSA. The observed morphology is the typical rough surface ascribed to the plastic
deformation of the polymer, which is indicative of its highly ductile behaviour [35], as it was
stated in the mechanical properties due to an extremely high elongation at break. Figure 1b
shows the addition of hemp fibers into BioPBSA. It can be seen that the adhesion and
interaction between the lignocellulosic filler and the matrix is poor, due to the huge gap that
exists between them. This is due to the filler being highly polar, while the matrix is mostly
non-polar, promoting voids at the interface; this is indicative of some incompatibility
between the polymer matrix and the fillers [56].The difference in polarity provokes a
debonding phenomenon during the impact test, as was also observed by Burgada et al. [35].
This poor adhesion is responsible for the poor mechanical properties observed in the
previous section. The addition of DBI (Figure 1c,d) reduced the gap between BioPBSA and
hemp, which results in a better matrix–filler interaction. Additionally, the polymer surface
seems to present higher roughness than the previous sample, which could be indicative of
the plasticizing effect exerted by DBI, which corroborates the increase in elongation at break
observed in the mechanical properties section. Finally, Figure 1e,f show the morphology
of the blends with both compatibilizers, PBSA-g-IA and PBSA-g-MA, respectively. Their
addition clearly improves the compatibility between the filler and the matrix. This fact
is denoted by a practically inexistent gap between them. This is ascribed to the dual
functionality of the compatibilizers. On the one hand, PBSA chains interact with the
BioPBSA matrix. On the other hand, itaconic acid and maleic anhydride functionalizations
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interact with the hydroxyl groups present in hemp [57], thus leading to an improvement
in the compatibility between the matrix and the loads, improving the interfacial adhesion
between them, and providing a more homogeneous distribution of the applied external
forces, which led to a higher mechanical strength [58].
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Figure 1. Field emission scanning electron microscopy (FESEM) images at 1000× of the
fractured surfaces of (a) neat BioPBSA; (b) BioPBSA/HEMP; (c) BioPBSA/HEMP/7.5DBI;
(d) BioPBSA/HEMP/15DBI; (e) BioPBSA/HEMP/PBSA-g-IA; (f) BioPBSA/HEMP/PBSA-g-MA.

All in all, these results perfectly match what was observed in the mechanical properties
section, corroborating the plasticizing effect of DBI and the efficiency of PBSA-g-IA and
PBSA-g-MA as compatibilizers, overcoming the difference in polarity between BioPBSA
and hemp.

3.3. Chemical Properties of BioPBSA/HEMP Composites

Figure 2 gathers the FTIR spectra of all the developed BioPBSA/HEMP composites
in the range 4000–600 cm−1. First, the FTIR spectra of neat BioPBSA shows the typical
absorption peak at 1740 cm−1, corresponding to the stretching vibration of –OH and –C=O
groups [59]. Other characteristic bands appear at 1451, 1080 and 1180 cm−1, which are
related to C–O–C symmetric (1451 cm−1) and asymmetric (1080 and 1180 cm−1) stretching
vibrations [60]. A very similar spectra for PBSA was observed by Seggiani et al. [61]. The
mentioned peaks are present in all the blends, due to BioPBSA being the base material
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for all of them. When adding hemp to the blend, the main variation in the spectra is the
appearance of a high intensity peak at 1200 cm−1, which is ascribed to the C–O stretch
of the acetyl group in lignin present in hemp fiber [62]. This peak also appears in all the
formulations with hemp, as it was expected. The incorporation of DBI does not provoke
great modifications in the spectra. Nonetheless, a slight increase in the intensity of the peaks
located in the range between 2800 and 3000 cm−1 is observed, attributed to the stretching
vibration of the asymmetric stretching of the –CH and –CH2 groups [63,64]. The main
PBSA peak at 1740 cm−1 seems to increase its intensity too, which could indicate higher
concentration of C=O bonds present in DBI. Finally, the addition of PBSA-g-IA and PBSA-g-
MA does not apparently vary the spectra of BioPBSA/HEMP. However, there is an increase
of the intensity of the band at 1740 cm−1 in comparison with the non-compatibilized sample,
which could be ascribed to the carbonyl groups of itaconic acid and maleic anhydride,
indicating a certain degree of interaction between the compatibilizer and the blend [65].
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3.4. Thermal Properties of BioPBSA/HEMP Composites

Figure 3 shows the results obtained in differential scanning calorimetry (DSC) tests
for the second heating cycle of BioPBSA/HEMP composites. Additionally, the main
thermal parameters are listed in Table 3. The first parameter to be analyzed is the melting
temperature (Tm) of the different samples. It can be observed that the introduction of hemp
in the compounds does not produce significant differences in this parameter. The melting
points of the composites ranged between 86.1 ◦C and 88.2 ◦C. Chiu et al. [42] obtained
similar fusing temperatures in composites of PBSA with kenaf fibers, with Tm varying
between 88–89 ◦C. The addition of a plasticizing agent such as DBI and compatibilizing
agents such as PBSA-g-IA and PBSA-g-MA did not alter the Tm of the composites. On the
other hand, the introduction of fibers did cause changes in the enthalpy of fusion ∆Hm,
due to the dilution effect [66], which affects the proportion of polymeric chains undergoing
thermodynamic transition during melting.
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Table 3. Main thermal parameters of the composites with different amounts of hemp fiber in terms of
melting temperature (Tm), normalized melting enthalpy (∆Hm), and degree of crystallinity (χc).

Code Tm (◦C) ∆Hm (J/g) χc (%)

BioPBSA 86.1 ± 1.2 a 21.6 ± 0.9 a 18.5 ± 0.2 a

BioPBSA/HEMP 87.1 ± 2.4 a 15.0 ± 1.1 b 18.3 ± 0.5 a

BioPBSA/HEMP/7.5DBI 85.2 ± 1.7 a 13.3 ± 1.3 c 16.3 ± 0.2 b

BioPBSA/HEMP/15DBI 84.3 ± 1.3 a 13.1 ± 1.4 c 16.0 ± 0.3 b

BioPBSA/HEMP/PBSA-g-IA 87.2 ± 1.5 a 18.1 ± 1.1 d 22.1 ± 0.3 c

BioPBSA/HEMP/PBSA-g-MA 88.2 ± 1.1 a 17.5 ± 1.4 d 21.4 ± 0.4 c

a–d Different letters in the same column indicate a significant difference among the samples (p < 0.05).

Regarding to crystallinity, it can be observed how the degree of crystallinity of the neat
BioPBSA and the composite with 30 wt.% of hemp fibers does not vary, with a value around
18.5% in both cases. According to the data reported by Dolçà et al. this is due to the amount
of fiber introduced in the matrix polymer, increasing the crystallinity values as the fiber
percentage increases [67]. With the addition of DBI to the BioPBSA/HEMP composite, the
degree of crystallinity decreases slightly, leading to a combined effect of, to a lesser degree,
plasticizing, predominating the compatibilization effect, increasing the polarity between
the BioPBSA and hemp chains, resulting in a restriction in the mobility of the chains, with
percentages of 16% for both formulations. With respect to the copolymers PBSA-g-IA and
PBSA-g-MA, an increase in the percentage of crystallinity can be observed, exceeding the
neat BioPBSA (18.5%) in both cases, with values of 22.1% for the BioPBSA/HEMP/PBSA-g-
IA compound and 21.4% for BioPBSA/HEMP/PBSA-g-MA. This effect may be due to the
better interaction between matrix and fiber provided by both compatibilizers, which favors
the formation of crystallization nuclei, leading to a higher degree of crystallinity [68].
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Figure 4 shows the mass percentage (Figure 4a) and the first derivative with respect to
temperature (Figure 4b), corresponding to the study of the thermal stability and degradation
of the BioPBSA/HEMP samples, while Table 4 gathers the main thermal parameter related
to this test. Thermal degradation is highly dependent on the structure of the polymer and
the additives and fillers it contains. Thermogravimetric analysis (TGA) allows the study of
mass loss with increasing temperature. This mass loss is usually attributed to the scission
of the polymer chain at high temperatures and to the volatilization of the low molecular
weight components of the base polymer and of the additives used.
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Table 4. Main thermal degradation parameters of the BioPBSA/HEMP composites in terms of the
onset degradation temperature at a mass loss of 5 wt.% (T5%), maximum degradation rate (peak)
temperature (Tdeg), and residual mass at 600 ◦C.

Code T5% (◦C) Tdeg (◦C) Residual Mass (%)

BioPBSA 335.9 ± 2.3 a 383.1 ± 2.6 a 1.3 ± 0.1 a

BioPBSA/HEMP 281.4 ± 3.3 b 364.1 ± 1.9 b 2.5 ± 0.1 b

BioPBSA/HEMP/7.5DBI 220.9 ± 1.7 c 365.6 ± 1.6 b 3.0 ± 0.2 c

BioPBSA/HEMP/15DBI 191.9 ± 1.5 d 364.5 ± 2.2 b 3.0 ± 0.1 c

BioPBSA/HEMP/PBSA-g-IA 219.4 ± 2.8 e 360.1 ± 2.3 b 2.7 ± 0.2 c

BioPBSA/HEMP/PBSA-g-MA 278.9 ± 1.4 f 360.7 ± 1.9 b 2.7 ± 0.1 c

a–f Different letters in the same column indicate a significant difference among the samples (p < 0.05).

In this respect, the neat BioPBSA exhibited a one-step thermal degradation process,
with T5% and Tdeg values of 335.9 and 383.1 ◦C, respectively. It can be observed that the
incorporation of hemp into BioPBSA causes a decrease in thermal stability. These fibers are
composed of 44.5% cellulose, 33% hemicellulose and 22% lignin [69]. These compounds
have a degradation range that is occasionally lower than the degradation temperature
of BioPBSA. Cellulose degrades thermally at 300–400 ◦C, hemicellulose at 220–315 ◦C,
and lignin in the temperature range of 150–900 ◦C [70]. As a consequence, the thermal
degradation of the composite starts at a lower temperature, with T5% of 281.4 ◦C. With
the addition of DBI to the composites, the T5% is 220.9 ◦C for the BioPBSA/HEMP/7.5DBI
composite and 191.9 ◦C for BioPBSA/HEMP/15DBI. This decrease in thermal stability is
caused by the high sensitivity of DBI to temperature, evaporating as it reaches a temperature
close to 200 ◦C, as happens with other compounds based on itaconic acid [71]. Thus, the
composite with PBSA-g-IA has a similar thermal degradation behavior to the composite
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with 7.5 phr of DBI, with a T5% value of 219.4 ◦C. On the other hand, the incorporation
of PBSA-g-MA does not cause substantial changes in the T5%, being located in the same
temperature range as the BioPBSA/HEMP base compound with a value of 278.9 ◦C.

With respect to the degradation temperature, Tdeg, a slight reduction of the values was
observed in the composites, in a range of 360–366 ◦C, with a reduction of the degradation
temperature varying between 17–23 ◦C, compared to the base polymer. This could be due
to the thermal degradation of the hemp fiber components, which occurs over a wide range
of temperatures, as mentioned above. The Tdeg of the compatibilized composites show
very similar results, indicating that the different additives added to the composites do not
greatly affect the degradation temperature.

Regarding the residual mass, BioPBSA showed a mass percentage of 1.3%, while the
hemp composites produced small residual amounts in the range of 2–3%. Similar values
have been reported for blends with hemp fibers [69].

3.5. Dynamic-Mechanical Behaviour of BioPBSA Composites

Figure 5a,b show the curves of the evolution of the storage modulus (E′) and the damp-
ing factor (tan δ) as a function of temperature for BioPBSA samples and BioPBSA/HEMP
composites with different compatibilizers. Table 5 summarizes the values of E’ at different
temperatures, as well as the glass transition temperature (Tg), obtained from the maximum
peak in the dynamic damping factor diagram.
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Table 5. Dynamic-mechanical properties of injection-molded samples of BioPBSA/HEMP composites,
at different temperatures.

Code E′ (MPa) at −110 ◦C E′ (MPa) at 0 ◦C E′ (MPa) at 20 ◦C Tg (◦C)

BioPBSA 2405 ± 25 a 247.5 ± 0.7 a 212.6 ± 1.5 a −37.0 ± 0.7 a

BioPBSA/HEMP 3056 ± 28 b 770.4 ± 1.0 b 676.1 ± 0.7 b −37.3 ± 0.5 a

BioPBSA/HEMP/7.5DBI 3336 ± 31 c 682.0 ± 0.8 c 595.8 ± 2.1 c −42.1 ± 0.7 b

BioPBSA/HEMP/15DBI 3194 ± 30 c 555.3 ± 0.6 d 477.5 ± 2.7 d −45.6 ± 0.8 b

BioPBSA/HEMP/PBSA-g-IA 3000 ± 21 c 729.0 ± 0.7 e 646.7 ± 3.1 e −37.8 ± 0.6 c

BioPBSA/HEMP/PBSA-g-MA 3070 ± 23 c 771.2 ± 0.5 e 682.0 ± 3.9 e −37.3 ± 0.5 c

a–e Different letters in the same column indicate a significant difference among the samples (p < 0.05).
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The thermomechanical behavior of BioPBSA was characterized by a E′ value of
2405 MPa at −110 ◦C. In the temperature range between 0 and 20 ◦C, the storage modulus
decreases dramatically to 212.62 ◦C. This decrease in mechanical stiffness relates to the
glass transition of the material, located at −37 ◦C and the low intrinsic stiffness of the
base polymer [42]. By incorporating hemp fibers, an increase of the storage modulus is
achieved in the different temperature ranges, as can be observed in the non-compatibilized
BioPBSA/HEMP sample. This same trend is followed by the composites compatibi-
lized with PBSA-g-IA and PBSA-g-MA copolymers, with slightly lower values for the
BioPBSA/HEMP/PBSA-g-IA composite, and slightly higher for BioPBSA/HEMP/PBSA-g-
MA. With respect to the Tg of the aforementioned composites, they are between −37 ◦C.
In contrast, with the use of DBI as an additive, the Tg decreases to values of −42 ◦C and
−45 ◦C as the proportion of DBI in both compounds increases. This decrease in Tg is an in-
dicator of the plasticizing effect that DBI produces in the BioPBSA/HEMP base compound,
as reported by Liu et al. [72]. The storage modulus for the BioPBSA/HEMP composites
with DBI is characterized by the highest E′ results at −110 ◦C, while increasing the temper-
ature to the 0–20 ◦C range results in E′ values below those of the other composites, with
the lowest E’ values being obtained as the amount of DBI in the mixture increases. These
results are in agreement with those previously observed in the mechanical properties.

3.6. Colour Measurement and Wetting Properties of PBSA/HEMP Composites

The results of the visual appearance of neat PBSA and PBSA/HEMP composites
are shown in Figure 6. Generally, the introduction of natural fibers allows wood–plastic
composites (WPC) to be obtained due to the intrinsic color of the lignocellulosic filler.
In this case, the incorporation of short hemp fibers gives the composites a characteristic
brown-like color [67].

Furthermore, the color coordinates of the CIELab space of each material have been
measured, and these results are shown in Table 6. BioPBSA has a whitish color, with
color coordinates L* = 76, with a*and b* showing values of −2 and 1.95, respectively. This
is indicative of pure BioPBSA having low saturation shades between green and yellow.
Similar color coordinates were reported by Liminana et al. [73] for PBS, with coordinates
a* and b* very close to PBSA, but with a luminance L* of 85. With the addition of hemp
fibers to virgin BioPBSA, a decrease in the luminance L* can be observed, with values
around 44 in their composites. On the other hand, the a* and b* coordinates underwent
a notable increase, especially the b* coordinate, with values between 17 and 22; on the
other hand, the a* coordinate for the different composites increased with values from 7.7 to
9.9. These values in the a* and b* coordinates denote red and yellow shades, resulting in
brownish colors, similar to natural woods, such as pine and oak woods [74]. As mentioned,
all the obtained composites show similar values regarding the coordinates L*, a* and b*,
maintaining the same percentage of hemp in each of the samples, so the addition of the
different additives does not significantly affect the value of the color coordinates. This
could be an advantage since the most suitable formulation could be used according to the
chosen performance without affecting its characteristic color.

Table 6. CIELab color space measurements in terms of luminance and color coordinates (L*, a*, b*) of
BioPBSA/HEMP composites.

Code L* a* b*

BioPBSA 76.0 ± 0.1 a −2.0 ± 0.1 a 2.0 ± 0.1 a

BioPBSA/HEMP 43.6 ± 0.3 b 7.7 ± 0.1 b 20.9 ± 0.2 b

BioPBSA/HEMP/7.5DBI 43.8 ± 0.1 b 8.8 ± 0.1 c 19.8 ± 0.1 b

BioPBSA/HEMP/15DBI 44.0 ± 0.2 b 8.7 ± 0.2 c 19.1 ± 0.1 b

BioPBSA/HEMP/PBSA-g-IA 44.1 ± 0.1 b 7.7 ± 0.1 c 17.7 ± 0.1 b

BioPBSA/HEMP/PBSA-g-MA 44.3 ± 0.2 b 9.9 ± 0.1 d 22.1 ± 0.2 c

a–c Different letters in the same column indicate a significant difference among the samples (p < 0.05).
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Figure 6. Visual appearance of the samples: (a) neat BioPBSA; (b) BioPBSA/HEMP;
(c) BioPBSA/HEMP/7.5DBI; (d) BioPBSA/HEMP/15DBI; (e) BioPBSA/HEMP/PBSA-g-IA;
(f) BioPBSA/HEMP/PBSA-g-MA.

In addition to the visual appearance, the surface wetting properties have also been eval-
uated. Figure 7 summarizes the water contact angle (θw) of BioPBSA and BioPBSA/HEMP
composites. Low values of θw are representative of hydrophilic materials, while high values
of θw imply low water affinity or hydrophobic behavior. In this aspect, a contact angle
θw > 65◦ can be considered as the threshold of hydrophobicity [75]. Neat BioPBSA shows a
θw of 73.2◦, which is representative for the typical hydrophobic nature of polyesters, with a
high contact angle value. According to the literature, the water contact angle of PBSA varies
between 62◦ and 104◦ [63,76]. This variation may be due to the sample preparation process,
which directly affects the surface roughness of the samples, a parameter that strongly influ-
ences the wettability of polymeric composites [76,77]. With the addition of hemp fibers,
the different composites undergo a decrease in the contact angle, the most notable being
that of the BioPBSA/HEMP base composite, dropping to values of 64◦. On the other hand,
all the BioPBSA/HEMP samples with additives show angles greater than 65◦, showing a
hydrophobic behaviour, which demonstrates the effectiveness of the additives with respect
to the hydrophilic behavior of the BioPBSA/HEMP base composite.
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3.7. Water Uptake Characterization

In general, the use of natural fibers in composites leads to an increased water absorp-
tion capacity, due to the high proportion of lignin, cellulose and hemicellulose they contain,
since these compounds are highly hydrophilic [78]. This tendency to absorb water is one of
the main drawbacks of wood–plastic composites (WPC), since excessive water absorption
can reduce the mechanical properties of the final product, which is an impediment for cer-
tain industries and applications. Figure 8 shows the evolution of water uptake absorption
of injection-molded composites for a total period of 12 weeks.
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Neat BioPBSA has a very limited water uptake capacity, due to its hydrophobic be-
havior, with approximately 1 wt.% at 12 weeks of immersion in distilled water. Similar
results were reported by Pei-lei et al. [79]. The BioPBSA/HEMP base mixture presents a
maximum water absorption value of 7.5 wt.% in 12 weeks. Therefore, the addition of hemp
fibers to the BioPBSA matrix significantly increases the water absorption capacity of the
composites. This is due to the lignocellulosic nature of hemp fiber, which contains lignin,
pectin, hemicellulose and cellulose, components with a high polarity that increase affinity
for water [80]. The BioPBSA/HEMP/PBSA-g-IA and BioPBSA/HEMP/PBSA-g-MA com-
posites yield water absorption results with values of 6.8 wt.% and 6.2 wt.%, respectively.
This slight improvement is due to the functionalized groups of both formulations. On
the one hand PBSA-g-MA presents some affinity for water due to the grafting of maleic
anhydride, which has several highly hydrophilic oxygen-based groups [81], while itaconic
acid (IA) presents polar carboxyl groups [82] with a less hydrophilic nature. In relation to
the PBSA/HEMP formulations with DBI, the higher the DBI content, the lower the water
absorption, with values of 6.2 wt.% for the formulation with a 7.5 phr of DBI and 5.2 wt.%
for the formulation with a 15 phr of DBI. These results are related to improved fibre/matrix
adhesion, significantly reducing water dispersion through the structure.

The results obtained here demonstrate the great water absorption capacity of BioPBSA/
HEMP composites, and although this may seem a drawback in some applications, in other
applications such as packaging, where the ability to absorb moisture from the food to
preserve it is needed, this water absorption capacity becomes a great advantage [83].

4. Discussion

In this work, we have been demonstrated how the introduction of 30 wt.% of hemp
fibers derived from agricultural waste has been used as reinforcement in BioPBSA matrices
obtaining composites with a high environmental value. The obtention of the composites was
assessed by means an extrusion process followed by an injection molding process to obtain
the test samples. In terms of mechanical properties, the incorporation of fibers has allowed a
large increase in the tensile modulus, starting from 2281–2748 MPa for the BioPBSA/HEMP
base composite depending on the compatibilization strategy followed. The introduction
of different additives helped to improve the different mechanical properties compared
with the uncompatibilized composite. On the one hand, DBI promoted a plasticization
phenomenon overlapped with an improvement of the compatibility between the polymer
and the fiber, as observed in FESEM analysis. As a result, a reduction in the tensile modulus
was observed but the best elongation at break results were obtained with respect to the base
compound. On the other hand, the use of copolymers, such as PBSA-g-IA and PBSA-g-MA,
managed to reduce the gap between the polymer and the filler, allowing improvement of
the compatibility so that the tensile strength of the composites improved the neat polymer
due to the reinforcement obtained with the natural fiber. With respect to thermal properties,
the DBI-compatibilized composites show a decrease in terms of glass transition temperature
and melting temperature with respect to the uncompatibilized compounds, while the other
composites were not affected by the modifications proposed. In terms of thermal stability,
the use of additive-based itaconic acid with a relatively low evaporation temperature
led to a reduction of the thermal stability of the compatibilized composites; nevertheless,
the initial degradation temperature is higher than the extrusion and injection molding
working temperatures. With regard to the color study, when hemp is introduced, the
composites acquire a brown color, which does not vary significantly with the addition of
the different compatibilizers, acquiring a wood appearance, characteristic of WPCs. As
could be expected, when adding a lignocellulosic filler, the contact angle decreases and
the water absorption increases significantly with respect to the matrix polymer; although
when adding the different compatibilizers, an increase in the contact angle can be observed,
where the best results are obtained with the PBSA copolymers, and lower water absorption
in DBI-containing composites. Overall, the results obtained with the different PBSA/HEMP
compatibilized samples are really interesting, since the processing properties do not change
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too much, making it possible to use one material or another depending on the purpose of
the application without affecting the visual aspect, an indispensable property in certain
industrial sectors, such as rigid packaging. The employment of additives based on the
itaconic acid has a great novelty since the polymer matrix employed and the filler are
bio-based, so that the composites obtained are fully bio-based.

5. Conclusions

The use of new bio-based polymers, such as BioPBSA together with the addition of
natural fibers from agroforestry industry residues, in this case short hemp fiber, allows the
creation of novel environmentally friendly composite materials. The results of the mechani-
cal tests indicate a great improvement in the tensile properties, and a decrease of the ductile
properties; with the incorporation of the different additives this tendency is maintained,
although with slight variations in the different mechanical properties, depending on the
effect produced to the base compound (compatibilization or plasticization) that can be
supported with the morphology results. The thermal properties obtained reveal negligi-
ble changes in the melting and glass transition temperatures, except for the compounds
with DBI, which produced a decrease in these values. The DMTA results showed that the
addition of hemp fibers and different compatibilizers resulted in an improvement of the
storage modulus in the different temperature ranges studied. The use of compatibilizers
also produced improvements in the water uptake properties, reducing the amount of water
absorbed, as well as increasing the surface hydrophobicity of the compatibilized samples.
Therefore, composites with attractive properties have been obtained, in addition to being
environmentally friendly and helping to promote the circular economy.
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