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Liver X receptors (LXRs) belong to the nuclear hormone receptor superfamily and
function as ligand-dependent transcription factors that regulate cholesterol
homeostasis, lipid homeostasis, and immune responses. LXR antagonists are
promising treatments for hypercholesterolemia and diabetes. However, effective LXR
antagonists and inhibitors are yet to be developed. Thus, we aimed to develop LXR
degraders (proteolysis targeting chimeras PROTACs against LXR) as a complementary
strategy to provide a similar effect to LXR inhibition. In this study, we report the
development of GW3965-PEG5-VH032 (3), a PROTAC capable of effectively
degrading LXRβ protein. Compound 3 induced the ubiquitin-proteasome system-
dependent degradation of the LXRβ protein, which requires VHL E3 ligase. We hope
that PROTACs targeting LXR proteins will become novel therapeutic agents for LXR-
related diseases.
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INTRODUCTION

Liver X receptor (LXR) is a ligand-dependent transcription factor belonging to the
nuclear hormone receptor superfamily (Edwards et al., 2002). Two isoforms, LXRα and
LXRβ, have high amino acid sequence homology (78%) but different expression
distributions. LXRα is mainly expressed in the liver, intestines, macrophages, and
kidneys, whereas LXRβ is ubiquitously expressed in various tissues (Zhu and Li, 2009).
Ligand-unbound LXR forms a repressor complex at the LXR target gene promoter. When
the ligand binds, it dissociates from the corepressor complex and recruits coactivators
such as thyroid hormone receptor-associated protein (TRAP220/DRIP-2) to the target
promoter (Wagner et al., 2003; Phelan et al., 2008). LXRs play a pivotal role in the
transcriptional regulation of cholesterol homeostasis, fatty acid metabolism, glycolysis,
immune responses, and inflammatory responses (Janowski et al., 1996; Wang and
Tontonoz, 2018).

Oxidized cholesterol derivatives (oxysterols) such as (22R)-22-hydroxycholesterol, (20S)-
22-hydroxycholesterol, and (24S)-24,25-epoxycholesterol are known to be endogenous
ligands for LXR, and they activate both LXRα and LXRβ (Baranowski, 2008). In addition,
a variety of synthetic LXR ligands have been reported, including isoform-selective ligands
(Kick et al., 2016; Kirchgessner et al., 2016). LXR agonists have potential applications as
cholesterol-lowering drugs and treatments for atherosclerosis. However, their clinical use is
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limited because they promote hepatic steatosis by increasing
hepatic lipid synthesis (Grefhorst et al., 2002; Viennois et al.,
2012). On the other hand, inverse agonists (Griffett et al.,
2013; Flaveny et al., 2015) and antagonists (Noguchi-
Yachide et al., 2009; Moriwaki et al., 2014; Renga et al.,
2015) for LXRs have been developed because inhibiting
excessive activation of LXR in the liver is an appropriate
strategy to improve hepatic lipid metabolism. However, they
have issues with their weak activity and difficulty in
chemical synthesis. Thus, the development of

complementary strategies could help realize the full
potential of LXR inhibition.

Proteolysis targeting chimera (PROTAC) technology has
been receiving much attention as a novel strategy to degrade
proteins of interest (POI) (Pavia and Crews, 2019; Sun et al.,
2019). PROTACs are bifunctional molecules with a ligand for
the POI and a ligand for an E3 ligase. PROTACs cross-link
between the POI and E3 ligase, which in turn degrades POI by
the ubiquitin-proteasome system (UPS). Hence, PROTACs are
expected to be a promising tool for suppressing the function of

FIGURE 1 | (A) X-ray crystal structure of a GW3965-LXRα complex (PDB: 3IPQ). (B) Designated PROTACs in this study.

SCHEME 1 | Synthesis of PROTACs for LXR (GW3965-PEG-VH032, 1–4).
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disease-related proteins in drug discovery. Therefore, we
hypothesized that we could produce promising compounds
with LXR inhibitory activity by developing PROTACs using
reported agonists (Gustafson et al., 2015). Herein, we report the
design and synthesis of LXR-agonist-based PROTACs which
exhibit LXR degradation activity via the UPS.

FIGURE 2 | Degradation of the LXRβ protein by the synthesized compounds. HuH-7 cells that had been cultured in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% fetal bovine serum (FBS) were treated with the indicated compounds for 24 h (A, B) or 8 h (C). Immunoblots of the cell lysates that had been stained with
the indicated antibodies are shown (representative data are shown). The numbers below the LXRβ panels represent LXR/actin normalized by designating the expression
from the vehicle control condition as 100%. Data in the bar graph are the mean ± S.D. (error bars) of three independent experiments. Asterisks indicate p < 0.05
compared with vehicle control.

TABLE 1 | Binding affinities (EC50; half maximal effective concentration) of
compounds against LXRβ determined by TR-FRET coactivator assays.

Compounds EC50 (nM)

GW3965 20 ± 7.2
Compound 3 31 ± 4.4

Frontiers in Chemistry | www.frontiersin.org May 2021 | Volume 9 | Article 6749673

Xu et al. PROTAC for LXR Degradation

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


RESULT AND DISCUSSION

For PROTAC design, a potent LXRα/LXRβ agonist GW3965
(Collins et al., 2002) was selected because the binding mode
between LXRα and GW3965 has previously been determined by
X-ray diffraction (Fradera et al., 2010). In the co-crystal structure,
the carboxyl group of GW3965 is oriented toward the outside of
the protein (Figure 1A). Based on this structural information, we
designed a GW3965-based PROTAC by linking the carboxyl
group with an E3 ligase ligand via a polyethylene glycol linker
(PEG3–PEG6). Two representative types of E3 ligase ligands,
pomalidomide binding to cereblon (CRBN) and VH032 binding
to Von Hippel-Lindau (VHL), were selected (Figure 1B).

The representative synthetic route for VH032-based PROTACs,
GW3965-(PEG3–PEG6)-VH032, 1–4 is shown in Scheme 1.
Ligand GW3965 was conjugated with E3 ligase ligand VH032
with PEG linkers of different lengths via a condensation reaction
using HATU/DIPEA or EDCI. Other molecules, including
pomalidomide-based PROTAC, were also synthesized in a
similar manner, as shown in the Supplementary Material.

The degradation activities of the synthesized chimeric
compounds against target proteins, LXRα and LXRβ, that bind
to GW3965 were evaluated by western blot using HuH-7 human
hepatoma cells expressing the target proteins. Since we could not
obtain the appropriate antibodies to detect endogenous LXRα,
only the results for LXRβ are shown. We first evaluated the LXRβ
reduction activities of a series of chimeric compounds containing
different E3 ligands (pomalidomide for CRBN and VH032 for
VHL) or different linker lengths (PEG3, PEG4, and PEG5).
Compound 3 showed the most potent activity among them

(Figure 2A and Supplementary Figure S8). To investigate the
optimal linker length in the VHL series, compound 4 with PEG6
linker was synthesized. The reduction activity was almost lost
with this linker extension, suggesting that the PEG5 length is
optimal (Figure 2B). Compound 3 effectively reduced LXRβ
protein levels even after 8 h (Figure 2C). The LXRβ binding
affinity (EC50) of compound 3 was determined using a time-
resolved fluorescence energy transfer (TR-FRET) assay with
GW3965 as a positive control. This confirmed that the EC50

values of compound 3 (EC50 � 31 ± 4.4 nM) were comparable
to that of GW3965 (EC50 � 20 ± 7.2 nM) (Table 1). As observed in
the results of compound 3 and 7 (Figure 2A), the protein
degradation efficacy by PROTAC molecules was often
suppressed at higher concentrations, which is known as a hook
effect (Bondeson et al., 2015). This effect is explained by the
inhibition of ternary complex formation (E3-PROTAC-target)
by an excess amount of bivalent compounds such as PROTACs.

To investigate the mechanism of LXRβ reduction by
compound 3, we examined the effect of UPS inhibitors
(Figure 3A). Compound 3-induced decrease in the LXRβ
protein was abrogated by co-treatment with a proteasome
inhibitor, MG132, and a ubiquitin-activating inhibitor,
MLN7243, indicating that the compound induces UPS-
dependent degradation of the LXRβ protein. To confirm
whether VHL is required for the degradation of the LXRβ
protein by compound 3, we examined the effect of silencing
the E3 ligase by short interfering RNA (siRNA) (Figure 3B). The
depletion of VHL by siRNAs completely suppressed the
degradation of the LXRβ protein by compound 3, indicating
that VHL is required for degradation.

FIGURE 3 | Mechanism of LXRβ reduction by GW3965-PEG5-VH032 (3). (A) Effect of UPS inhibitors on GW3965-PEG5-VH032-induced reduction of the LXRβ
protein. HuH-7 cells that had been cultured in DMEM containing 10% FBS were treated with the indicated concentrations of GW3965-PEG5-VH032 in the presence or
absence of 10 μm of MG132 or MLN7243 for 8 h (B) VHL E3 ligase is required for the degradation of the LXRβ protein by GW3965-PEG5-VH032. HuH-7 cells were
transfected with the VHL siRNA for 42 h and treated with the indicated concentrations of GW3965-PEG5-VH032 for 8 h. Amixture of three different siRNAs against
VHL was used to suppress expression. Immunoblots of cell lysates that had been stained with the indicated antibodies are shown (representative data are shown). The
numbers below the LXRβ panels represent LXR/actin normalized by designating the expression from the vehicle control condition as 100%. Data in the bar graph are the
mean ± S.D. (error bars) of three independent experiments. Asterisks indicate p < 0.05.

Frontiers in Chemistry | www.frontiersin.org May 2021 | Volume 9 | Article 6749674

Xu et al. PROTAC for LXR Degradation

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


CONCLUSION

Herein, we report the synthesis of a PROTAC for LXR degradation
as an effective inhibitory molecule. In the molecular design, the
linking position of chimeric compounds was determined based on
the structural information from X-ray crystallography of LXRα and
its agonist GW3965. For the E3 ligase ligand in the PROTAC,
VH032 and pomalidomide were introduced into chimeric
compounds. The LXRβ degradation activity of the synthesized
PROTACs was evaluated by western blot using HuH-7 human
hepatoma cells, and it was found that the activity of VH032-based
PROTACs (GW3965-PEG-VH032) was more potent than that of
pomalidomide-based PROTACs (GW3965-PEG-POM) between
the PEG3-PEG5 linkers. To investigate the effect of the linker
length on the degradation activity, a series of VH032-type
PROTACs with PEG3–PEG6 were examined, which revealed that
the PROTAC with PEG5 (GW3965-PEG5-VH032, 3) exhibits the
most potent activity for LXRβ degradation among them. Compound
3 was confirmed to bind to LXRβ, inducing its degradation. LXRβ
degradation by this molecule occurs via the ubiquitin-proteasome
system mediated by VHL E3 ligase. The degraders developed in this
study have potential as novel therapeutic agents for LXR-related
diseases. Therefore, our results suggest that agonist-based PROTACs
could be a new approach to create PROTACs, even in the absence of
an appropriate antagonist as a binding ligand for the POI.
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