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Sleep deprivation (SD) has become very common in contemporary society, where
people work around the clock. SD-induced cognitive deficits show large inter-individual
differences and are trait-like with known neural correlates. However, few studies
have used neuroimaging to predict vulnerability to SD. Here, resting state functional
magnetic resonance imaging (fMRI) data and psychomotor vigilance task (PVT) data
were collected from 60 healthy subjects after resting wakefulness and after one night
of SD. The number of PVT lapses was then used to classify participants on the
basis of whether they were vulnerable or resilient to SD. We explored the viability
of graph-theory-based degree centrality to accurately classify vulnerability to SD.
Compared with during resting wakefulness, widespread changes in degree centrality
(DC) were found after SD, indicating significant reorganization of sleep homeostasis with
respect to activity in resting state brain network architecture. Support vector machine
(SVM) analysis using leave-one-out cross-validation achieved a correct classification
rate of 84.75% [sensitivity 82.76%, specificity 86.67%, and area under the receiver
operating characteristic curve (AUC) 0.94] for differentiating vulnerable subjects from
resilient subjects. Brain areas that contributed most to the classification model were
mainly located within the sensorimotor network, default mode network, and thalamus.
Furthermore, we found a significantly negative correlation between changes in PVT
lapses and DC in the thalamus after SD. These findings suggest that resting-state
network measures combined with a machine learning algorithm could have broad
potential applications in screening vulnerability to SD.

Keywords: sleep deprivation, vulnerability, functional magnetic resonance imaging, machine learning,
psychomotor vigilance task

INTRODUCTION

Cognitive ability and healthy brain function rely on sufficient sleep, during which metabolic waste
products are cleared away (Xie et al., 2013; Fultz et al., 2019). Lack of sleep, however, can impact
nearly all aspects of cognitive and emotional function, including attention, working memory, and
affect (Durmer and Dinges, 2005). Notably, functional magnetic resonance imaging (fMRI) studies
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measuring blood oxygen level–dependent (BOLD) signals have
demonstrated that sleep deprivation (SD) is associated with
widespread brain network alterations (Chee and Chuah, 2008).
These include changes in interhemispheric connectivity (Zhu
et al., 2016, 2020), connectivity between the thalamus and
prefrontal cortex (Shao et al., 2013), and compromised anti-
correlation between the Default Mode Network (DMN) and
dorsal attention network (Kaufmann et al., 2016).

While cognitive deficits have been well documented and
reliably related to SD, large inter-individual differences in
cognitive deterioration after SD have been noted (Hudson
et al., 2020). For some cognitive domains, such as sustained
attention, SD-induced differences in performance are stable
within a given individual even when assessed months or years
apart (Rupp et al., 2012). Previous studies have indicated that
differences in the vulnerability/resistance of individuals to SD-
induced deficits in cognition and performance are trait-like
(Van Dongen et al., 2004). Thus, the underlying mechanisms
of these individual differences are a current research focus. For
instance, many recent brain imaging studies have attempted
to identify the neural correlates of vulnerability/resistance to
SD. Using the hierarchical regression model, our previous
study found that the white matter integrity of the upper
longitudinal tract fibers connecting the frontal and parietal
lobes was negatively associated with individual differences
in psychomotor vigilance task (PVT) performance after SD
(Zhu et al., 2017). Another study found that stronger anti-
correlations among several networks (such as between DMN
and Attention networks) during rested wakefulness could
predict the vulnerability of PVT performance during SD
(Yeo et al., 2015).

However, as traditional approaches are based on average
estimates of differences at the group level, a reliable predictive
marker of cognitive vulnerability to SD has been elusive. The
translational applicability of such data to clinical practice should
be based on inferences at the individual rather than group level.
With recent advancements in the field of machine learning, such
as the support vector machine (SVM) model, a multivariate
pattern recognition machine learning (ML) technique especially
well-suited for discriminating high-dimensional rsFC fMRI data,
measurements derived from fMRI combined with artificial
intelligence algorithms have led to improvements in diagnoses,
classification, and treatment outcome prediction for a range of
situations (Zhao et al., 2018; Liu et al., 2020). Furthermore,
multivariate machine learning techniques are more sensitive to
differences that are subtle and spatially distributed because they
consider inter-regional correlations, which might be undetectable
using group comparisons (Liu et al., 2020). Because SD is
associated with widespread changes in functional networks,
graph-based measurements of network organization, such as
degree centrality (DC) (Wang et al., 2011), might have potential
in predicting vulnerability to SD-induced deficits in function.

In the current study, we adopted supervised machine learning-
based SVM algorithms to investigate whether baseline resting
wakefulness (RW) DC measures could predict inter-individual
differences in PVT lapses after SD. We hypothesized that the
baseline DC in hub regions of the DMN, frontal-parietal network,

and thalamus could be used to accurately classify participants as
vulnerable or resistant to SD.

MATERIALS AND METHODS

Subjects
This study was approved by the clinical trial ethics committee
of Xijing Hospital at the Air Force Medical University. Written
informed consent was obtained from each subject prior to
the study. All participants were recruited via advertisements
distributed in the local community. The exclusion criteria were as
follows: (1) having a history of alcohol or drug abuse; (2) having
a history of psychiatric or neurological illness; (3) sleep disorders;
(4) sleep later than 24 o’clock or get up earlier than 5 o’clock; and
(5) claustrophobia. The Pittsburgh sleep quality index (PSQI) was
used to evaluate sleeping quality (Guo et al., 2016), and subjects
who scored more than five points on the PSQI test were also
excluded. Hence, the final sample comprised 60 participants.

Study Procedure
All subjects were asked to make three visits to the laboratory.
During the first visit, they were briefed about the study protocol
and signed the informed consent form. All subjects agreed to
undergo an MRI scan after normal sleep and after 24 h of
SD, which occurred on the last two visits to the laboratory.
To minimize the influence of the scanning sequence on the
experimental results, the experimental condition in the last two
visits was presented in a pseudo-random order. The interval
between these two visits was at least 1 week. The SD process began
at 8:00 AM on 1 day and ended at 8:00 AM on the following day.
During SD, the participants could read books or use their mobile
phones. The SD took place in a room with standard light (340
lux) and the temperature was maintained at approximately 23◦C.
No snack food was given after midnight. The entire SD process
was monitored by two researchers to prevent the subjects from
falling asleep. All of the MRI scans were scheduled between 8:00
AM and 10:00 AM.

Psychomotor Vigilance Task
A 10-min PVT was used in the current study (Basner and Dinges,
2011). The PVT task was rendered using E-prime (version 3.0)
software. During the task, participants were asked to focus on
a blank box in the middle of a computer screen. A millisecond
counter then began to scroll at a random interval of 2–10 s.
The participants were required to press the space bar to stop
the counter as quickly as possible. Reaction time was displayed
for 1 s as feedback so that the participants could monitor
their performance. Reaction times longer than 500 ms were
recorded as a lapse in performance (Zhu et al., 2017). The
participants completed 10 min of the PVT every hour from
8:00 PM to 6:00 AM.

MRI Data Acquisition
MRI data were collected using a GE Discovery MR750 3.0T
scanner with a standard 8-channel head coil at Xijing Hospital.
The subjects were instructed to lie quietly on the scan flatbed,
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wear earplugs, open their eyes, stay awake, and try to avoid
sleeping (Song et al., 2020). Cotton pads and tape were used
to minimize head motion. During each scan, the subjects were
reminded via a microphone to stay awake, and the heart and
respiratory rates of the subjects were recorded. Resting-state
functional images were collected via an axial gradient-echo EPI
sequence with the following parameters: TR/TE: 2,000/30 ms,
FOV: 240 × 240 mm2, matrix size: 128 × 128, slices: 45, and
a total of 210 volumes. The structural MRI data were obtained
using a sagittal 3D Bravo T1-weighted scan sequence with the
following parameters: TR/TE: 8.2/3.2 ms, FOV: 256 × 256 mm2,
matrix: 256 × 256, slice thickness: 1.0 mm, slices: 196.

MRI Data Analysis
The fMRI data were preprocessed using Data Processing
and Analysis for Brain Imaging (DPABI)1 with the statistical
parameter mapping software package (SPM12)2 and the Resting-
State Functional MR imaging toolkit (REST)3 (Yan et al., 2016).
First, the initial 10 volumes were discarded to stabilize the
signal. Then, the remaining 200 volumes were realigned to the
first volume after correcting for the differences in acquisition
times, during which the mean frame-wise displacement (FD)
was calculated. Data were excluded if head motion exceeded
2 mm and 2◦. Two participants were excluded because of
heavy head motion. The effects of nuisance signals and head
motions (Friston-24 model) were also regressed out. Then, the
diffeomorphic anatomical registration through exponentiated Lie
algebra (DARTEL) tool was used for normalization (Asami et al.,
2012), and the normalized data were finally band-pass filtered
(0.01–0.08 Hz).

Degree Centrality
The correlation matrix was obtained by calculating the Pearson
correlation coefficient between the time course of one voxel
within the predefined gray matrix mask and the time courses of all
other voxels. Then, an undirected adjacency matrix was obtained
by eliminating the weak correlation caused by noise through
threshold processing of each correlation item at r > 0.25. Finally,
z-score maps were obtained by converting the individual voxel-
wise DC. The z-score maps were registered with 3-mm3 cubic
voxels into the MNI space using the transformation information
obtained from DARTEL and smoothed using a kernel of 6 mm.

Statistical Analysis
Demographic data were analyzed using IBM SPSS Statistics
(IBM SPSS Statistics for Windows, version 18.0, IBM Corp.).
For detection of between-group differences in DC, the General
Linear Model (GLM) with a paired t-test (resting wakefulness
(RW) vs. SD) was used to identify regional DC changes. The
threshold for significance was P < 0.05, corrected with the
false discovery rate (FDR) criterion. The mean FD calculated
during the preprocessing step was accounted for by including this

1http://rfmri.org/dpabi
2https://www.fil.ion.ucl.ac.uk/spm/
3http://www.restfmri.net

term as a covariate. The differences between RW and SD were
binarized as a mask for further machine learning analysis.

Support Vector Machine Analysis
Trait-like individual differences in vulnerability to SD were
defined using the same methods stated in our previous study
(Zhu et al., 2017). Vulnerability to SD was computed on the basis
of the extent of change in the number of lapses in each individual
after SD. The participants were then ranked from highest to
lowest per the vulnerability value. Finally, the participants were
categorized into a vulnerability group and a resilience group.

The SVM was applied using the Pattern Recognition for
Neuroimaging Toolbox (PRoNTo)4 to investigate whether the
DC during RW could classify vulnerability to SD (Schrouff
et al., 2013). In the first step (feature selection) the feature
vector encoded the pattern of baseline DC values masked by the
aforementioned mask. Feature selection comprised identifying
brain regions that were expected to differ between the two
sub-groups. These procedures were processed in the “Prepare
feature set” program. In the second step, Leave-one-out cross-
validation (LOOCV) was used to evaluate the performance of
the classifier (Liu et al., 2020). In LOOCV, data from one
subject was used as test data and the classifier is trained on
the remaining dataset. These procedures were processed in the
“Specify model” program. Next, once the SVM algorithm had
been established, a 1,000-times permutation test was used to
evaluate the performance of the SVM model. The corresponding
accuracy, sensitivity, specificity, and area under the receiver
operating characteristic curve were obtained. One advantage
of the PRoNTo is that the weight map can be built at the
voxel level. According to the contribution in the classification
model, the region contributions can be ranked and presented for
illustration. Finally, for each region, we used Pearson correlation
to examine the associations between the changes in DC and
PVT lapses using SPSS. Correction for multiple comparisons
was accomplished using the FDR criterion (“mafdr” script
implemented in MATLAB) (Zhu et al., 2019).

RESULTS

A total of 58 subjects successfully completed the SD experiment.
Sleep diaries and Actiwatches confirmed that all subjects
normally had good quality, habitual sleep. On the basis of the
differences in the PVT lapses between the SD and RW conditions,
subjects were divided into a vulnerable group and resilience
group. The average number of PVT lapses for each group was
8.47 and 1.69, respectively. As expected, significant differences
in PVT lapses were found between the two groups (t = 5.39,
p < 0.001). No significant differences were found for gender,
age, body mass index, or objective sleep measures observed via
Actiwatches. Detailed sleep information is listed in Table 1.

A paired t-test was used to investigate the significant changes
in DC measures after SD. As shown in Figure 1, we observed
significantly increased DC within the bilateral inferior temporal

4http://www.mlnl.cs.ucl.ac.uk/pronto
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TABLE 1 | Demographic characteristics, objective sleep measures, and
PVT performance.

Vulnerable Resilience p-value

Gender (male/female) 15/14 15/14 1

Age (years) 22.4 ± 1.9 22.2 ± 1.6 0.43

Body mass index 23.7 ± 2.8 23.5 ± 2.3 0.81

Objective sleep characteristics from Actiwatch

Time of falling asleep 00:05 ± 0:22 00:06 ± 0:27 0.86

Number of wakening each night 27.2 ± 6.4 27.4 ± 6.8 0.94

Sleep duration all night 6:45 ± 1:10 6:43 ± 1:25 0.91

Night sleep durations before
work days

6:27 ± 0:52 6:25 ± 0:59 0.94

Night sleep durations before
free days

7:06 ± 1:18 7:01 ± 1:19 0.83

Sleep efficiency in% 84 ± 2.8 83 ± 2.2 0.31

Sleep latency in minutes 16.6 ± 13.8 16.4 ± 14.3 0.84

PVT performance

Number of lapse 8.47 (6.01) 1.69 (3.15) <0.001

Values represent mean ± SEM (n = 58); PVT, psychomotor vigilance task.

gyrus, left insula, left inferior frontal gyrus, and bilateral
precentral gyrus. We found significantly reduced DC within the
bilateral cerebellum, thalamus, putamen, middle occipital gyrus,
and right supramarginal gyrus.

We obtained an accuracy of 84.75% with a sensitivity of
82.76% and specificity of 86.67% for classification of the two
groups. The area under the curve was 0.939 (Figure 2). The brain
regions that contributed most to the classification are shown in
Figure 3 and listed in Table 2. The top 10 regions were the
right supplementary motor area, right cerebellum, left inferior
occipital gyrus, left precentral gyrus, left supramarginal gyrus, left
thalamus, left middle temporal gyrus, left inferior parietal lobule,
right middle frontal gyrus, and right middle occipital gyrus; their
corresponding discriminative weights are also listed in Table 2.

FIGURE 2 | ROC curve of the classifier.

Finally, the mean DC changes (SD-RW) within each region
were extracted and plotted against the changes in PVT lapses. We
found a significantly negative correlation with the left thalamus
(see Figure 4).

DISCUSSION

Using a multivariate pattern classification method, the present
study demonstrates that degree centrality derived from fMRI data
collected during RW can be used to classify subjects on the basis
of whether they are vulnerable or resilient to SD. With excellent

FIGURE 1 | Areas of significant degree centrality differences between resting wakefulness state and sleep deprivation state.
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FIGURE 3 | Brain regions of interest that contributed mostly to the accurate classification.

accuracy, the brain regions that showed the most discriminatory
power were mainly located within the sensorimotor network
(SMN), DMN, and thalamus. Furthermore, we found a significant
negative correlation between the changes in PVT lapses and DC
in the thalamus after SD. These findings suggest that graph-
theory-based measures, such as DC, combined with machine-
learning algorithms, can help to predict vulnerability to SD.

Because SD has become very common in contemporary 24/7
society, efficient screening for resilient and vulnerable people has
social significance. Although previous studies have used baseline
measures of psychomotor vigilance and the drift diffusion model

TABLE 2 | The top ten ranked regions that contributed mostly to the classification.

Brain regions Cluster
size

Peak coordinates (MNI) Discriminative
weight (%)

X Y Z

Supplementary
motor area R

290 9 −15 57 5.02

Cerebellum R 1402 6 −63 −12 3.84

Inferior occipital
gyrus L

46 −21 −99 −12 3.81

Precentral gyrus L 80 −24 −12 51 3.53

Supramarginal R 92 48 −24 36 2.98

Thalamus L 403 −12 −3 6 2.58

Middle temporal
gyrus L

88 −63 −27 0 2.44

Inferior parietal
lobule L

21 −42 −30 39 2.31

Middle frontal gyrus
R

21 24 −21 54 2.22

Middle occipital
gyrus R

92 36 −84 3 1.85

to classify vulnerability to SD (Patanaik et al., 2014), the accurate
classification rate was around 77–82%, which was less than
satisfactory. Vulnerability to SD has been shown to be stable
and trait-like, with characteristic neural correlates that have
been identified. Therefore, neuroimaging data combined with
state-of-the-art artificial intelligence algorithms might enable
greater classification performance. Our results verified that SD
leads to significant DC reductions in the cerebellum, thalamus,
and putamen. This indicates that functional connections within
subcortical regions are compromised, which is consistent with

FIGURE 4 | Correlation between change of lapse of psychomotor vigilance
task and change of degree centrality within left thalamus.
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previous studies (Nechifor et al., 2020). A significant increase in
DC was mainly found within the SMN and DMN, which suggests
that SD affects lower functional network segregation and higher
network integration (Yu et al., 2017).

The brain regions that contributed most to the classification
model include the supplementary motor area, middle temporal
gyrus, and middle frontal gyrus, which are core regions of
the DMN. The DMN is more active during passive tasks than
during externally orientated tasks, and has been extensively
examined in SD research (Gujar et al., 2010). Furthermore, the
anti-correlation between sub-networks of the DMN and frontal-
parietal networks subserves working memory performance
during the mid-point of night in the regular biological sleep cycle
(Zhu et al., 2019). These consistent findings highlight the role of
the DMN in predicting vulnerability to SD.

Apart from that related to the DMN, another interesting
finding of the present study is that the thalamus also exerts an
important role in modulating SD vulnerability. The thalamus is
one of the core network brain regions that subserves vigilant
attention in humans (Avanzini et al., 2000). Previous studies
have indicated that the thalamus is involved in sensory gating
and attentional modulation by acting as a bridge between
sensory perception and cognition (Saalmann and Kastner, 2011).
Increased thalamus activation has been frequently reported in
SD studies (Hershey et al., 1991; Gent et al., 2018). However, the
activity pattern in the thalamus has been found to be correlated
significantly with mean melatonin levels, and therefore, the
thalamus is modulated more by circadian rhythms than by sleep
debt (Muto et al., 2016; Zhu et al., 2020). Previous studies have
indicated that SD vulnerability is stable after total SD or short
periods of sleep restriction, suggesting that SD vulnerability is
not solely modulated by sleep debt (Van Dongen et al., 2004;
Rupp et al., 2012). The common patterns found in thalamus
activity and vulnerability to SD, coupled with the discriminative
weight and negative correlation found in the current study, imply
that baseline activity within the thalamus has broad potential
applications in screening for SD vulnerability.

Several limitations are present in the current study. First, the
sample size was relatively small. However, we selected the SVM
algorithm for classification because it has good efficiency when
used with small sample sizes. Second, although it is possible
that micro-sleep occurred during the SD period, two research
assistants were present to prevent subjects from falling asleep, so
this is unlikely. Furthermore, the subjects were required to stay
awake and keep their eyes open during the scanning procedure,
and their heart rate and breathing frequency were collected
concurrently to verify that they were not asleep.

CONCLUSION

Our study demonstrates that graph-theory-based DC measures
combined with machine learning algorithms have the potential to
predict vulnerability to SD. Brain regions within the SMN, DMN,
and thalamus contributed most to the accurate classification
model. Future studies may benefit from the integration of white
matter connectivity or other imaging modality measurements.
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