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Abstract: Among the various types of cancer, lung cancer is the second most-diagnosed cancer
worldwide. The kinesin spindle protein, Eg5, is a vital protein behind bipolar mitotic spindle
establishment and maintenance during mitosis. Eg5 has been reported to contribute to cancer cell
migration and angiogenesis impairment and has no role in resting, non-dividing cells. Thus, it
could be considered as a vital target against several cancers, such as renal cancer, lung cancer,
urothelial carcinoma, prostate cancer, squamous cell carcinoma, etc. In recent years, fungal secondary
metabolites from the Indian Himalayan Region (IHR) have been identified as an important lead
source in the drug development pipeline. Therefore, the present study aims to identify potential
mycotic secondary metabolites against the Eg5 protein by applying integrated machine learning,
chemoinformatics based in silico-screening methods and molecular dynamic simulation targeting
lung cancer. Initially, a library of 1830 mycotic secondary metabolites was screened by a predictive
machine-learning model developed based on the random forest algorithm with high sensitivity
(1) and an ROC area of 0.99. Further, 319 out of 1830 compounds screened with active potential by
the model were evaluated for their drug-likeness properties by applying four filters simultaneously,
viz., Lipinski’s rule, CMC-50 like rule, Veber rule, and Ghose filter. A total of 13 compounds passed
from all the above filters were considered for molecular docking, functional group analysis, and
cell line cytotoxicity prediction. Finally, four hit mycotic secondary metabolites found in fungi from
the IHR were screened viz., (−)-Cochlactone-A, Phelligridin C, Sterenin E, and Cyathusal A. All
compounds have efficient binding potential with Eg5, containing functional groups like aromatic
rings, rings, carboxylic acid esters, and carbonyl and with cell line cytotoxicity against lung cancer cell
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lines, namely, MCF-7, NCI-H226, NCI-H522, A549, and NCI H187. Further, the molecular dynamics
simulation study confirms the docked complex rigidity and stability by exploring root mean square
deviations, root mean square fluctuations, and radius of gyration analysis from 100 ns simulation
trajectories. The screened compounds could be used further to develop effective drugs against lung
and other types of cancer.

Keywords: Eg5; lung cancer; secondary metabolites; fungi; machine learning; molecular docking;
Indian Himalayan Region

1. Introduction

Cancer is the second-leading cause of death globally after cardiovascular disease,
and it is accountable for a 19.3 million increase in cases with 10 million deaths in 2020.
Worldwide, the most commonly diagnosed cancer is female breast (11.7%), followed by
lung cancer (~11.4%), colorectal cancers (10.0%), liver cancer (8.3%), stomach cancer (7.7%),
and prostate cancer (7.3%) [1]. Being the second-leading cause of cancer-related deaths in
developed countries, lung cancer is mounting at alarming rates in developing countries
and low-middle-income countries, responsible for ~1.3 million deaths per year [2]. The
over-expression of Eg5 has been reported in lung cancer and has an essential role in cell
migration and angiogenesis impairment [3–6]. In this context, the mitotic kinesin, Eg5,
is a promising target as it has a critical role in assembling the mitotic spindle during cell
division. Kinesin superfamily proteins or KIF11/Eg5 are microtubule-based motor proteins
that generate directional movement along microtubules. KIFs are core proteins, and these
are not only essential for intracellular transport but are also important for various cellular
and morphology functions [7]. KIF11/Eg5 is also identified as a prognostic factor. Overall,
it indicates poor survival and the worst progression-free survival in lung cancer patients.
Its knockdown is reported for induced G2/M phase arrest and improved apoptosis in
lung cancer cells [8]. Various studies reported that the natural compounds inhibit the
abnormal Eg5 effect and minimize tumors in patients suffering from lung cancer [9,10].
Therefore, Eg5 is a good target for anti-cancer drug development, and natural products
may provide a huge source of compounds with therapeutic potential. With the above
context, several fungal-derived natural products, such as lovastatin, echinocandin B, and
cyclosporine A, are well reported with excellent therapeutic potential. Currently, several
fungal secondary metabolites from the Indian Himalayan Region (IHR) have been iden-
tified as a vital source of potent therapeutic compounds. A diverse structural class of
secondary metabolites, including aromatic compounds, amino acids, anthacenones, bu-
tanolides, butenolides, cytochalasans, macrolides, naphthalenones, pyrones, and terpenes,
are produced by fungi [11]. Therefore, in the present study, mycotic secondary metabolites
are screened for their anti-lung cancer property targeting the Eg5 protein. Several in silico
techniques were used for screening, based on machine learning, chemo-informatics, and
molecular dynamics simulation.

Currently, machine learning (ML) techniques are widely used in the cancer drug
discovery process, including structure-based molecular docking, deep learning, and ligand-
based cheminformatics modeling. ML also applies to proteo-chemometrics modeling,
cell phenotype data, transcriptomics, and electronic health records (EHRs) based ML [12].
Drug development using artificial intelligence (Al), such as ML, is less costly and more
time effective than the rational drug discovery process. In the drug discovery market, Al
is projected to reach USD 1434 million by 2024 from USD 259 million in 2019 at a com-
pound annual growth rate (CAGR) of 40.8% [13]. The machine learning-based quantitative
structure-activity relationships (QSAR) models are widely used nowadays for screening
huge compounds to predict potential inhibitors against diverse diseases. These types of
models codify the chemical 3D structure based on molecular descriptors, such as con-
stitutional, functional groups, geometrical, thermodynamic, topological, and quantum
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mechanical. However, the development of a QSAR model with high accuracy is a chal-
lenging task that depends on the correct analysis and selection of computed descriptors,
application of proper classifier, and proper statistical understating of the model [14]. In
the present work, machine-learning-based QSAR modeling, molecular docking, and other
chemoinformatics-based screening techniques and molecular dynamics simulation were
employed for screening natural inhibitors against the Eg5 protein targeting lung cancer.

2. Methods
2.1. Machine Learning Model Development and Screening

In the present work, the complete PubChem Human A549 Lung Tumor Cell Growth
Inhibition Assay (AID: 317) data set of percentage inhibition for the cancer line was con-
sidered for model development [15]. The assay consisted of 3317 compounds in total, out
of which for model development, 278 compounds (50% growth inhibition at 10 uM) were
considered as active, and 294 compounds with negative or not having growth inhibition
capacity were considered as inactive (Supplementary Materials, Table S1).

For screening, a structural library of 1830 mycotic secondary metabolites from 184 medici-
nal fungi was retrieved from the Medicinal Fungi Secondary Metabolite And Therapeutics
(MeFSAT) database [16]. All compounds within the model and screening data set were
further converted from the three-dimensional (3D) standard data format (SDF) to the
molecular-input line-entry system (SMILES) format with the help of the O’babel soft-
ware [17]. Thereafter, molecular descriptors were calculated for the compounds. Molec-
ular descriptors generally encode various information about molecular fragmentation.
A total of 2633 molecular descriptors were obtained, including one-dimensional (1D),
two-dimensional (2D), and three-dimensional (3D) fingerprint features using the PaDEL-
descriptor software [18]. Thereafter, both datasets, i.e., the CHEMBL dataset (AID 371) and
the MeFSAT dataset were subjected to the Waikato Environment for Knowledge Analysis
(WEKA) software [19] for building the predictive machine-learning model and screening.
The CfsSubsetEval module implemented in WEKA was used for the significant descriptor
selection. The descriptors with zero values were excluded followed by the removal of
highly correlated descriptors. A total 16 descriptors from 8 descriptor types selected by
the CFS Subset Evaluator were considered for the model development. Selected descriptor
types include autocorrelation (ATSC6i, AATSC8s, GATS7c, GATS1e, GATS1p, GATS2i),
basic group count (nBase), burden-modified eigenvalues (SpMin3_Bhe, SpMin1_Bhs), crip-
penLogP, atom type electrotopological state (nHsOH, SssNH, maxHCsatu), information
content (BIC2), ring count (nFRing), and XLogP. Among them are the autocorrelation de-
scriptors pool chemical information given by property values in specified molecule regions
and structural information. They are based on a conceptual segmentation of the molecular
structure and the application of an autocorrelation function to molecular properties of
different molecular regions [20]. The second descriptor class is nBase, which counts the
number of basic groups in the compounds that tend to be protonated in the gastrointestinal
tract. Basic compounds have higher polarity and low lipophilicity that limits passive
absorption across bio-membranes [21]. Further, the third descriptor class, Burden modified
eigenvalues, derived from the eigenvalues of a modified adjacency matrix, is chemically
intuitive in that its elements relate to atomic and bonding properties of the compounds [22].
The fourth, CrippenLogP descriptor class, simply determines the log P of the compounds
by fitting an extensive training set of 9920 molecules with r2 of 0.918 and σ of 0.677 [23].
The fifth descriptor class, atom type electrotopological state descriptors, characterized by
atoms in molecules, is introduced as the electrotopological state index, which combines
both the electronic character and the topological environment of each skeletal atom in a
molecule. They help to identify atoms and regions in the molecule which are important for
activity [24]. The BIC2 descriptors are vital for the count of bond information content index
(neighborhood symmetry of 2-order). The second to last descriptor, nFRing, gives infor-
mation about the number of fused rings in a compound. The last descriptor class, XLogP,
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calculates partition coefficients of solutes in octanol/water responsible for lipophilicity of
compounds, a vital parameter responsible for its ability to cross the cell membrane [25].

To develop a machine-learning model the PubChem dataset was divided into 70:30
as a training and test set. The training set was made up of 374 compounds while the
test set had 161 compounds (Supplementary Materials, Table S1). Five machine-learning
algorithms, namely, random forest, J48, decision stump, random tree, and REPTree classifier
with bagging (Bootstrap Aggregation) ensemble algorithm were applied individually to
get the best screening model. Random forest is one of the most frequently used ensemble-
learning algorithms in the field of in silico drug discovery. It generates multiple decision
trees and for one test instance, and the classification of each tree is regarded as one vote,
and the test descriptors were confirmed by integrating the prediction results of each tree
(sub-classifier) [26]. In J48, the main root of the decision tree is established based on the gain
and gain ratio values of the descriptors. In the decision stump algorithm, the classification
process is performed by considering only one key feature in the sample set and has root
node and leaves. In a random tree algorithm, trees are constructed using randomly selected
samples from the descriptor data set and a random one is selected. Whereas, the REPTree
creates rapid multiple decision trees, using information gain, prunes them using reduced
error pruning and selects the best tree among all generated trees [27]. The accuracy of the
models was evaluated by using the following statistical parameters [28]:

Binary classification accuracy = TN+TP
(TN+TP+FN+FP) ,

Sensitivity = TP
(FN+TP) ,

Specificity = (TN)
(FP+TN)

,

Accuracy_random =
((TP + FN)× (TP + FP) + (TN + FN)× (TN + FP))

N̂2

Matthews correlation coefficient (MCC) =
(TN × TP)− (FN × FP)√

(FP + TP)(FN + TP)(FP + TN)(FN + TN)
,

TP = true positives; FP = false positives; TN = true negatives; FN = false negatives.

The best machine model was used as a predictive model to screen anti-lung cancer
compounds from the library of 1830 mycotic secondary metabolites.

2.2. Drug-Likeness Screening and Molecular Docking

The DruLiTo-screening tool was further used to screen the ligands with drug-likeness
properties [29]. Chemical descriptors such as atom molar refractivity (AMR), AlogP, logP, H-
bond acceptor (HBA), H-bond donor (HBD), molecular weight (MW), number of rotatable
bonds (nRB), number of atoms, number of acidic groups, rotatable bond count (RC), number
of rigid bonds (nRigidB), nAtomRing, nHB, and total polar surface area (TPSA) for all of
the ligands were calculated using the chemistry development kit (CDK) [30].

DruLiTo screened the ligands based on the various drug-likeness rules, such as Lip-
inski’s rule, CMC-50-like rule, Veber rule, and Ghose filter [31]. After screening through
the machine-learning model, screened compounds were subjected to target-specific vir-
tual screening. For that, the three-dimensional structure of the target protein, Eg5 (PDB
id: 4BXN), was downloaded from an online protein data bank portal [32]. The tar-
get protein and machine-learning screened compounds were docked using the PyRx
graphic user interface (GUI), which utilizes the AutoDockVina virtual screening pro-
gram [31]. All screened ligands were docked in the active site of the Eg5 protein with
coordinates of X = 11.82, Y = 37.46, and Z = −9.79 to obtain protein–ligand complexes. The
compound, N-(3-aminopropyl)-N-[(1R)-1-(3-benzyl-7-chloro-4-oxo-4H-chromen-2-yl)-2-
methylpropyl]-4, methylbenzamide, was considered as a reference compound for examin-
ing the necessary binding score. Further, the docked protein and ligand complexes were
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visualized using UCSF chimera [33]. The in-depth interactions were investigated using the
protein–ligand interaction profiler server (PLIP) [34].

2.3. Functional Group Analysis and Cell Line Cytotoxicity Prediction

The functional group analysis method was used to functionalize the physical and
chemical properties of small groups and atoms that exhibit a distinctive chemical na-
ture when in their original form. The functional group’s frequencies of the screened
compounds were analyzed in ‘R’ (version 3.4.3) [35] using the ChemMineR [36] pack-
age followed by standard deviation analysis. Five established inhibitors against Eg5
(CID: 132472242, 53494981, 11609157, 11553595, and 11521919) were also subjected to func-
tion group analysis for comparison. Functional groups, such as aromatic rings, rings,
carboxylic acid esters, and carbonyl, were evaluated for both screened inhibitors and
reference inhibitor groups [37]. Thereafter, virtually screened compounds from machine
learning, docking, and functional group analysis were additionally executed to evaluate
their cell line cytotoxicity prediction. This analysis was carried out by using CLC-Pred web
facilities (CLC-Pred: in silico prediction of cytotoxicity for tumor and non-tumor cell lines
(way2drug.com, accessed on 8 June 2021)). This estimation of web services was conducted
based on the QSAR model build on the prediction of activity spectra for substances (PASS)
tools (http://www.way2drug.com/PASSonline, accessed on 8 June 2021) and the training
dataset produced based on ChEMBLdb cytotoxicity data [38,39].

2.4. Molecular Dynamics Simulation

The docked complexes of the final screened compounds were further checked for
their binding stability to MD simulations using GROMACS 5.0 [40]. The CGenFF server
was used to generate topologies and coordinate files. The CHARMM 36 force field was
used for topologies of the complex structures of the ligand molecules [41]. The SPC/E
water mode l40 was used for solvation of the complexes followed by the addition of
counterions for neutralization. The simulation was carried out up to 100 ns time in NVT
(constant volume), as well as NPT (constant pressure), maintaining the temperature at 300 K
and pressure 1 bar. Finally, the stability of the protein–ligand complexes was analyzed
by considering parameters, such as RMSD (root mean square deviations) and radius of
gyration (Rg).

3. Results
3.1. Performance Comparison of Different ML Classifiers and Data Set Screening

The performance of the ML algorithms varies with the type of training data set of
the model. Therefore, for identification of the best-performing algorithm on the lung
cancer inhibitor data set, five classifiers were evaluated for their classification accuracy,
namely, random forest, J48, decision stump, random tree, and REP tree classifier with
bagging. The performance of the models was assessed with the evaluation of various
statistical parameters, viz., correctly classified instances, incorrectly classified instances,
Kappa statistic, mean absolute error, root mean square error, Matthews correlation coef-
ficient (MCC), and receiver operating characteristic curve (ROC) area (Figure 1, Table 1).
Among all the classifiers, the random forest classifier with the highest sensitivity (1), Kappa
statistics of 0.94, and ROC of 0.99 area in the training set was selected for the final screening
model (Supplementary Materials, Table S2). The model also performed best in the test
set (Supplementary Materials, Table S3). It was able to classify 97.05% of instances of the
supplied training set data correctly with a mean out-of-bag (OOB) error of 0.07 (MAE). In
the bagging (REPTree) model out-of-bag estimates, 96.52% instances were correctly classi-
fied with 0.18 root mean squared error (RMSE). However, bagging (REPTree) and decision
stump showed lower sensitivity than random forest. The random tree classifier showed
the lowest performance with sensitivity of 0.90, specificity of 0.92, and accuracy of 0.09
(K = 0–4, randomly chosen attributes at each node). The random forest classifier consists
of a collection of tree-structured classifiers {h(x, Θ k), k = 1 . . . }, where each tree creates a

http://www.way2drug.com/PASSonline
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unit vote against the most popular class at input xand the {Θ k} are independent identically
distributed random vectors [42]. The model of the current work was obtained based on the
default mtry (number of randomly drawn candidate variables) for classification, square
root of the number of descriptors, p = 16, and 100 trees in the forest (ntree). The “forest”
built by the model, is an ensemble of decision trees, usually trained with the “bagging”
method. The bagging algorithm simulates a defined method before applying a certain
training set to remove the instability of learning techniques. The initial training set data
is improved by removing some samples and duplicating others in its place of sampling a
new training dataset each time by random sampling. The process of sampling necessarily
rejects some of the instances and duplicates the others. Bagging simply resamples the
native training data instead of creating autonomous data sets from the domain. It makes a
combined model that mostly performs better than the single model made from the native
training data [43]. The selected model classifies 319 mycotic secondary metabolites with
active potential out of 1830 compounds.

Figure 1. Statistical performance of different classifiers used for the development of screening model
in the training set.

Table 1. Comparison of performance of different classifiers for development of screening model in
the training set.

Classifier
Name

Correctly Classified
Instances % (Value) Kappa Statistic Mean

Absolute Error
Root Mean

Square Error MCC ROC Area

Random forest 97.0588 0.9401 0.08 0.1731 0.942 0.989
J48 96.7914 0.9346 0.05 0.175 0.937 0.964

Decision stump 96.7914 0.9346 0.06 0.175 0.937 0.947
Random tree 92.7807 0.8544 0.07 0.2687 0.855 0.928

Bagging (REP tree) 96.5241 0.9292 0.06 0.1844 0.931 0.96

3.2. Drug Likeness and Molecular Docking

Screened compounds from ML were further checked for their drug-likeness prop-
erty by applying four pharmacological filters, namely, Lipinski’s rule, CMC-50-like rule,
Veber rule, and Ghose filter. According to Lipinski’s rule, a drug-like compound should
have LogP ≤ 5, molecular weight ≤ 500, number of hydrogen bond acceptors ≤ 10, and
number of hydrogen bond donors ≤ 5. Whereas, according to the CMC-50-like rule,
a drug-like compound must have logP (ALOGP) between 1.3 and 4.1, molar refractiv-
ity (AMR) between 70 and 110, molecular weight (MW) between 230 and 390, and the
number of atoms (nAT) between 30 and 55. To qualify the Veber rule and Ghose filter,
compounds should have rotatable bonds < 12 and polar surface area < 140, logP in the
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−0.4 to +5.6 range, molar refractivity from 40 to 130, molecular weight from 180 to 480,
and the number of atoms from 20 to 70, respectively. A total of 13 compounds out of 319
(Supplementary Materials, Table S4) compounds were able to ensure all the above filters
and were considered for molecular docking to check their binding potential with the Eg5
protein (Table 2 and Figure 2). Of those 12, compounds having the lowest binding energy
(highest inhibitory potency) were screened further based on the binding energy of the
reference compound.

Table 2. Pharmacological indices of the screened ligands by Lipinski’s rule, CMC-50 like rule, Veber
rule, and Ghose filter.

Title * 1 2 3 4 5 6 7 8 9 10 11 12 13

Pharmacological Indices

MW 358 358 372 372 330 346 378 378 380 364 386 370 358
logp 4 4 2 2 2 2 1 1 2 2 4 4 2

Alogp 1 1 1 1 0 −1 1 1 0 1 3 3 0
HBA 5 5 6 6 7 8 6 6 8 7 7 6 7
HBD 2 2 3 3 2 3 4 4 4 3 4 3 3
TPSA 84 84 96 96 102 123 107 107 134 113 124 104 113
AMR 98 98 105 105 90 91 113 113 106 104 109 108 87
nRB 3 3 4 4 3 3 3 3 2 2 6 6 5

nAtom 52 52 51 51 38 39 46 46 40 39 50 49 55
nAcidicGroup 0 0 0 0 0 0 0 0 0 0 1 0 0

RC 4 4 3 3 3 3 4 4 4 4 2 2 2
nRigidB 26 26 25 25 23 24 28 28 29 28 23 22 21

nAromRing 1 1 1 1 1 1 3 3 2 2 2 2 0
nHB 7 7 9 9 9 11 10 10 12 10 11 9 10

SAlerts 4 4 5 5 5 5 0 0 4 4 3 4 2

* Compound CID: 1-138970029, 2-139591442, 3-139590281, 4-139590280, 5-16737098, 6-16737097, 7-12085445,
8-54586497, 9-10339712, 10-10248188, 11-77461063, 12-77461065, and 13-10203477.

Figure 2. (a) Drug-likeness filters used for screening compounds. (b,c) Active site prediction of Eg5
protein for molecular docking.
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3.3. Functional Group Cell Line Cytotoxicity and Binding Pattern of Screened Molecules

During the analysis of the functional group frequency among some of the established
inhibitors of Eg5, viz., the presence of aromatic rings, rings, carboxylic acid esters, and
carbonyl groups were shown. A similar frequency pattern was observed in the screened
compounds (Figure 3), which reflects their excellent Eg5 inhibitory property. The high
frequency of alcohol (ROH), ketone (RCOR), esters (RCOOR), and ether (ROR) groups
were analyzed in screened inhibitors as compared to reference inhibitors (Figure 3). The
groups, such as alcohol (ROH), ketone (RCOR), and esters (RCOOR), indicate more H-
bonding capacity of the compounds or more water solubility. Simultaneously, screened
compounds also exhibited a high presence of rings and aromatic rings that prove their
strong drug-likeness potential. Aromatic rings commonly promote Van der Waals inter-
actions with the binding site atoms of the protein [44]. Further, the inhibition potential of
the compounds in cell lines was checked, and four compounds, namely, (-)-Cochlactone A,
Phelligridin C, Sterenin E, and Cyathusal A, were predicted to be active against the lung
cancer cell lines, NCI-H226, NCI-H522, A549, and NCI-H187 (Supplementary Materials,
Table S5), respectively. The binding profiles of the screened compounds were also checked
and all of the above compounds were found with efficient binding potential and can form
diverse bonds, including hydrophobic interactions, H-bonds, salt bridges, and π–cation
interactions (Table 3, Figure 4). Hydrophobic interactions are vital as they have an energetic
contribution to the stability of the protein–ligand complex [45], whereas H-bonds are neces-
sary for enzymatic catalysis to stabilize ligands in the binding pocket [46]. All the screened
compounds were found to be able to bond within the switch II (Leu266–Asn289) and
α-helix 4 (Gln290–Val303) regions of the allosteric site of the Eg5 protein. ATP-competitive
inhibitors of Eg5, including the biphenyl derivatives, have been reported to bind with the
protein between the α4 and α6 helices. In Eg5, switch I forms repeated contacts with the
γ-phosphate of ATP while switch II offered a β-hairpin conformation [47].

Figure 3. (a) Binding free energy of the screened ligands through molecular docking. (b) Functional
group frequency comparison between established inhibitors and screened compounds. (c) Binding
insights of the screened ligand, Phelligridin-C, with Eg5 protein. (d) 2D structure of screened compound.
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Table 3. Interaction profile of screened ligands with Eg5 protein.

Ligand Name Hydrophobic Interactions Hydrogen Bond Other

Residue AA Distance Residue AA Distance Residue AA Distance

(−)-
Cochlactone-A

79B ILE 3.85 286A GLY 1.85 Salt Bridges
- - - 286A GLY 2.16 138B ARG 4.45

131B PRO 3.53 297A ARG 3.13 141B HIS 5.14
- - - - - - - - -

285A ALA 3.42 - - - - - -
- - - - - - - - -

Phelligridin-C

79B ILE 3.92 83B ARG 3.27 π–Cation Interactions
125B TYR 3.72 142B GLN 2.55 83B ARG 4.97

- - - 286A GLY 1.92
131B PRO 3.83 290A GLN 2.5 Salt Bridges
285A ALA 3.29 297A ARG 2.2 138B ARG 4.1

Sterenin-E

79B ILE 3.43 83B ARG 3.09 π–Cation Interactions
82B TYR 3.52 141B HIS 2.69 83B ARG 5.19

- - - 142B GLN 2.72 Salt Bridges
- - - 142B GLN 2.66 138B ARG 4.74

293A LEU 3.38 287A ASN 2.55 141B HIS 5.08
- - - 290A GLN 2.66 - - -
- - - 297A ARG 3.36 - - -

Cyathusal-A

79B ILE 3.73 83B ARG 3.15 π–Cation Interactions
- - - 138B ARG 2.37 83B ARG 5.11

285A ALA 3.92 142B GLN 2.51 - - -
- - - 290A GLN 2.5 - - -
- - - 297A ARG 2.45 - - -

Figure 4. Interaction profile of screened ligands with Eg5 protein: (a) (−)-Cochlactone A, (b) Phel-
ligridin-C, (c) Sterenin E, and (d) Cyathusal A.

3.4. Binding Stability Analysis of the Screened Compounds

Finally, the structural stability of the screened ligands with the protein was studied by
molecular dynamics (MD) simulations. MD simulation was used to predict the movement
of every atom in a protein and protein ligand complex over time, based on the general
physics model of the governing interatomic interactions. The structural compactness of
the screened compounds was assessed by calculating the radius of gyration (Rg) defined
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as the distribution of atoms of a protein around its axis. All the systems, such as pro-
tein and the four complexes, showed stability in the MD simulation approach towards
100 ns time scale between 1.7 and 1.8 nm, reflecting the high structural compactness of
the protein, as well as the inhibitor. The lower degree of fluctuation with its consistency
throughout the simulation designates more compactness and rigidity of the protein ligand
complex. The Rg of Cochlactone A is found to be almost stable in terms of consistency
of fluctuations throughout the simulation. Deviations of the conformational stability of
macromolecules from the backbone structure to the initial structure were evaluated to
check their stability by calculating the root mean square deviation (RMSD). All complexes
showed RMSD values between 0.31 and 0.37 nm, and the value starts to increase after 10 ns.
The compound, Sterenin E, showed a decreasing pattern after 80 ns. Further, the flexibility
of proteins along with all the complexes throughout the simulation process was evaluated
by calculating the root mean square fluctuations (RMSF). It indicates the occurrence of
local changes along with the protein structure at the selected temperature and pressure.
The Cyathusal A_EG5 complex showed the highest RMSF (0.14 nm) values followed by
other screened compounds. It can also be understood from Figure 5 that the binding of
Cyathusal A makes the protein most flexible in all areas in contrast to the other complexes
(Supplementary Materials Table S6, Figure 5).

Figure 5. Curves illustrating the behavior of the interactions of screened compounds with EG5
protein in the form of Rg, RMSF, and RMSD during MD simulation.

4. Discussion

The IHR is well known in the field of drug discovery as a treasure house for numerous
natural compounds with extensive therapeutic potential. However, the endophytic micro-
bial biodiversity of the area is less explored to date. The endophytic fungus isolated from
the medicinal plants of IHR contain several anti-cancer compounds, e.g., Taxol found in
Annulohypoxylon sp. Isolated from the Himalayan yew (Taxus wallichiana Zucc.), Vinblas-
tine produced by Curvularia verruculosa, and Vincristine by Fusarium oxysporum isolated
from Catharanthus roseus, Podophyllotoxin from Phialocephala fortinii, Camptothecin from
Entrophospora infrequens from the plant Nothapodytes nimmoniana etc. [48,49].

Based on the present work, four mycotic secondary metabolites were screened, namely,
(−)-Cochlactone A, Phelligridin C, Sterenin E, and Cyathusal A. (−)-Cochlactone A is an
alkyl-phenyl ketone, an aromatic compound containing a ketone replaced by one alkyl
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group and a phenyl group. In 2018, it was found in the fungus Ganoderma cochlear, an
edible and medicinal fungus. The compound has a bicycle [4.4.0] decane ring system with
a γ-lactone fragment and possesses anti-inflammatory activity [50]. Other species, such
as Ganoderma lucidum from the same genus, is well known as a medicinal fungus from
the IHR [51]. The second screened compound, Phelligridin C, is a furo [3, 2-c] pyran-4-
one derivative reported from the fungus Phellinus igniarius [52]. It is recorded to have
cytotoxicity against a human lung cancer cell line. The genus is also reported from the
IHR of the Himachal Pradesh and Uttarakhand states of India [53]. The third screened
compound, Sterenin E, is a polyketide that has α-glucosidase inhibitory activity from the
mushroom, Stereum hirsutum [54]. Naturally, the fungi are known from the Hmuifang forest
and Tanhril forest of the IHR from Mizoram, Northeast India [55]. The fourth screened
compound, Cyathusal A, is recorded from the mushroom, Cyathus stercoreus, and has
free-radical-scavenging activities on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and
is thus a potent antioxidant [56]. The fungus is naturally found in the humicolous soil in
the Khasi hills of Meghalaya, the upper Shillong area of the IHR [57].

5. Conclusions

The Kinesin protein, Eg5, is a well-established anti-lung cancer target for its role in the
assembling of the mitotic spindle directional movement during cell division. Therefore, in
the current work, four natural anti-lung cancer inhibitors, viz., (−)-Cochlactone A, Phelli-
gridin C, Sterenin E, and Cyathusal A, have been identified against lung cancer targeting
the Eg5 protein by applying the machine-learning and chemoinformatics approaches. All
the screened compounds were of mycotic origin and found in the fungi from the IHR. Being
of a natural origin, the screened mycotic secondary metabolites may have fewer side effects
than other chemotherapeutic drugs used against lung cancer and can be obtained easily
by culturing the fungi in the laboratory. They are potential anti-inhibitors as screened by
the machine-learning model designed using a lung cancer inhibitor bioassay and have
efficient binding potential with the Eg5 protein. Additionally, they have passed all the se-
lected drug-likeness filters and have an excellent presentation of diverse functional groups
with pharmacological importance and a stable-binding profile during the MD simulation
process, which proves their potential as an anti-cancer drug candidate.

Supplementary Materials: Table S1: Percent growth inhibition data of active and inactive compounds
used for ML, Table S2: Training set performance matrix, Table S3: Test set performance matrix,
Table S4: Pharmacological properties of screened ligands by machine learning, Table S5: Percent
growth inhibition data of active and inactive compounds used for ML, Table S6: Binding stability
parameters of the screened compounds during molecular dynamics simulation.
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Abbreviations
AL Artificial Intelligence
AMR Atom Molar Refractivity
CAGR Compound Annual Growth Rate
CDK Chemistry Development Kit
CSF Correlation-Based Feature Selection
ER Estrogen Receptor
GUI Graphic User Interface
HER Electronic Health Records
IHR Indian Himalayan Region
KIF-11 Kinesin Family Member-11
MCF-7 Michigan Cancer Foundation-7
MD Molecular Dynamics
MeFSAT Medicinal Fungi Secondary Metabolite And Therapeutics
ML Machine Learning
NIC National Cancer Institute
PDB Protein Data Bank
PLIP Protein Legend Interaction Profiler
QED Quantitative Estimate of Drug-Likeness
QSAR Quantitative Structure-Activity Relationship
RG Radius of Gyration
RMSD Root Mean Square Deviations
ROC Receiver Operating Characteristic Curve
SMILES Standard Data Format (SDF) To Molecular-Input Line-Entry System
TPSA Total Polar Surface Area
USD United States Dollar
WEKA Waikato Environment for Knowledge Analysis
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