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ABSTRACT
Gastric cancer, one of the most common malignant tumors of the digestive tract, is devoid of
effective treatment owing to its highly invasive ability. Aquaporins (AQPs), transmembrane
water channel proteins, has been shown to be involved in the malignancy of gastric cancer. This
study aims to investigate the pathophysiological roles of AQP-1 in gastric cancer. We first
demonstrated quantitative real-time polymerase chain reaction analysis and found up-
regulation of AQP-1 in gastric cancer cell lines. Additionally, silence of AQP-1 inhibited cell
proliferation via decrease of proliferating cell nuclear antigen (PCNA) and minichromosome
maintenance complex component 2 (MCM2). Moreover, migration and invasion of gastric cancer
cells were also suppressed by the interference of AQP-1. However, the tumorigenic mechanism
of AQP-1 on gastric cancer is yet to be found. We demonstrated western blot analysis and
found that knockdown of AQP-1 decreased protein expression of phospho (p)-GRB7 (growth
factor receptor-bound protein 7) and led to a remarkable reduction of p-extracellular signal-
regulated kinase (ERK) via inactivation of RAS. In general, our findings indicated that AQP-1
facilitates proliferation and invasion of gastric cancer cells via GRB7-mediated ERK and Ras
activation, illuminating a novel AQP-1-RAS/ERK molecular axis as regulator in gastric cancer
progression and suggesting potential implications in the treatment of gastric cancer.
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Introduction

Gastric cancer is one of the most common malignancies
of the digestive tract, and remains high incidence and
mortality in Asian, especially in China (Bar-Zeev et al.
2018). Radical surgery and chemotherapy are still the
standard treatments for gastric cancer, in spite of recent
development of new therapeutic strategies (Chan et al.
2016). However, serious adverse reactions of radical
surgery and chemotherapy drugs limit the efficacy in
gastric cancer (Galluzzi et al. 2014). The pathogenesis of
gastric cancer is extremely complicated, so it is of great
significance to clarify the pathogenesis of gastric cancer
to find new therapeutic means and therapeutic targets.

Widely found in human tissues, aquaporins (AQPs)
can transport water molecules efficiently and selectively
(Verkman 2005). It is an important material basis for
rapid water transport across cell membranes and plays
an important role in cell metabolism, proliferation and
the realization of physiological functions of various

organs (Verkman 2008). A recent study has shown the
close relation between AQPs with many clinical diseases
(Verkman 2012). Moreover, AQP-1, member of AQPs, is
involved in cell migration (Papadopoulos et al. 2008),
angiogenesis (Zou et al. 2013) and tumor growth (Nico
and Ribatti 2011). AQP-1 is highly expressed in tumor
cells of different origins, especially in aggressive
tumors (Verkman et al. 2008). AQP-1 could promote
the growth and metastasis of brain glioma (Hayashi
et al. 2007). The migration ability of melanoma cells
with high expression of AQP-1 was significantly
enhanced compared with cells with knockout of AQP-
1, as well as local tumor infiltration and metastasis
(Simone et al. 2018). Although AQP-1 was reported to
be expressed in gastric cancer cells (Nagaraju et al.
2016), whether AQP-1 demonstrates a cancer-promoting
role in gastric cancer remains to be investigated.

RAS proteins, belonging to small protein GTPase
family, are major regulator of cellular events, such as
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cell growth, proliferation, differentiation, adhesion and
migration in humans (Brossier et al. 2015). The study
has shown that aberrantly activated RAS mutations,
including H-RAS (Harvey rat sarcoma viral oncogene
homolog), N-RAS (neuroblastoma RAS viral oncogene
homolog) and K-RAS (Kirsten rat sarcoma viral oncogene
homolog), were closely associated with carcinogenesis in
various tumors (LeBleu et al. 2013). Oncogenic RAS
mediated downstream effector molecules, RAF-MEK-
ERK signaling cascade, to regulate tumor cell proliferation
and migration (Fey et al. 2016). Inactivation of RAS-RAF-
MEK-ERK could suppress cell proliferation and migration
of gastric cancer (Lin et al. 2014). The role of AQP-1 in RAS
associated carcinogenesis of gastric cancer and the
underlying mechanisms are poorly understood.

Here, the expression levels of AQP-1 in gastric cancer
cells were firstly detected, and hereafter, the impact of
AQP-1 on tumor progression of gastric cancer was
then determined. The meaning results might provide
new evidence for the development of novel treatment
for gastric cancer.

Materials and methods

Cell culture

Human gastric cancer cell lines, including HGC-27,
MKN74, MKN45, AGS, and human gastric epithelium
cell line (GES-1), were cultured in RMPI-1640 medium
supplemented with 10% fetal bovine serum (Lonza,
Basel, Switzerland) at 37̊ C with 5% CO2 atmosphere.

Cell transfection

For the knockdown of AQP-1, siRNAs target AQP-1 (1#:
5′-CCACGACCCTCTTTGTCTT-3′ and 2#: 5′-GGAGGAG-
TATGACCTGGAT-3′) and the negative control (siNC; 5′-
TTCTCCGAACGTGTCACGT-3′) were synthesized by Gen-
ePharma (Suzhou, China). AGS and MKN45 cells were
transfected with 100 pM siRNAs via Lipofectamine
2000 (Invitrogen, Carlsbad, CA, USA).

CCK8

AGS and MKN45 cells (1 × 103/well) were seeded, and
then treated with 10 μL CCK-8 solution (Dojindo, Tokyo,
Japan) every 24 h intervals (24, 48, 72 h) for 2 h.Microplate
reader (Molecular Devices Sunnyvale, CA, USA) was used
to measure the optical densities at 450 nm.

Wound healing

AGS and MKN45 cells (1 × 106/well) were seeded with a
wound gaps generated by a plastic pipette tip. After

removing debris or the detached cells, cells were cul-
tured in RMPI-1640 medium for another 24 h before cal-
culating the wound width under an inverted
microscope.

Transwell assay

AGS and MKN45 cells (5 × 104/well) were seeded into the
upper wells of chamber (BD Biosciences, Bedford, MA,
USA) with the Matrigel-coated membrane (BD Bio-
sciences). Migration-inducing medium (with 10% FBS)
was added to the lower wells of chambers. 24 h later,
the invasive cells to the lower wells of chambers were
fixed with 100% methanol for 30 min, and then
stained with 0.1% crystal violet for 1 h. The stained
cells were imaged and counted under a microscope
(Olympus).

qRT-PCR

Total RNAs from tissues or cells were isolated with Trizol
(Invitrogen), and then the RNAs were reverse-tran-
scribed into cDNAs by PrimeScript RT Reagent (Takara,
Shiga, Japan). qRT-PCR was performed via SYBR Green
Master (Roche, Mannheim, Germany). GAPDH was used
as endogenous control. The primer sequences were
shown in Table 1.

Pulldown assay

GST (glutathione S-transferase)-fused Ras-binding
domain of Raf protein (GST-Raf-RBD) was precoupled
with glutathione-Sepharose 4B beads (GE Healthcare,
Marlborough, MA, USA) and then incubated with AGS
or MKN45 cell lysates for 90 min at 4°C. After washing
with phosphate-buffered saline, the beads were ana-
lyzed by western blot to detect active RAS via antibodies
(Abcam, Cambridge, MA, USA). The total RAS in lysates
was also evaluated by western blot.

Western blot

Proteins extracted from cells (30 µg) were separated by
SDS-PAGE, and then electro-transferred onto PVDF
membrane. After blocking with 5% BSA, the membrane
was incubated overnight with primary antibody: anti-

Table 1. Primer.
ID Sequence(5′–3′)

GAPDH F ACCACAGTCCATGCCATCAC
GAPDH R TCCACCACCCTGTTGCTGTA
AQP-1 F TGCCATCGGCCTCTCTGTAG
AQP-1 R AAGGACCGAGCAGGGTTAATC
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PCNA, anti-MCM2 antibodies (1:1500, Abcam), GRB7 and
p-GRB7 (1:2000, Abcam), ERK and p-ERK (1:2500, Abcam),
GAPDH (1:3000, Abcam) at 4°C. Following incubation
with horseradish peroxidase-labeled secondary anti-
body (1:10,000; Abcam), the immunoreactivities were
detected by enhanced chemiluminescence (KeyGen,
Nanjing, China).

Statistical analysis

All results are expressed as mean ± SEM. The statistical
analyses were determined via GraphPad Prism software
and one-way analysis of variance. P < .05, P < .01 or P <
.001 was considered as a mark of statistically significant.

Results

Up-regulation of AQP-1 in gastric cancer cell lines

A significantly up-regulation of AQP-1 in gastric cancer
cell lines, including HGC-27, MKN74, MKN45, AGS, com-
pared to human gastric epithelium cell line (GES-1) was
verified by qRT-PCR (Figure 1), suggesting a potential
correlation between AQP-1 and gastric cancer pro-
gression. AGS and MKN45 cells with the higher
expression of AQP-1 were selected for the subsequent
experiments.

Interference of AQP-1 inhibited gastric cancer
progression

To explore the potential effect of AQP-1 on gastric
cancer progression, CCK8 and western blot assays were
employed to estimate cell proliferation. Firstly, AGS
and MKN45 cells were transfected with siRNAs targeting

AQP-1 (siAQP1 #1 and siAQP1 #2). Both of qRT-PCR
(Figure 2(A)) and western blot (Figure 2(B)) analysis indi-
cated the silence efficiency of siAQP1 #1 and siAQP1 #2
compared to siNC. siAQP1 #1 with lower expression of
AQP-1 was selected for the subsequent experiments,
and named as siAQP1. Moreover, lower cell viability
was discovered in AGS and MKN45 cells transfected
with siAQP1 compared cells transfected with siNC
(Figure 2(C)), suggesting that interference of AQP-1
inhibited cell proliferation of gastric cancer. Proteins
involved in cell proliferation, including PCNA and
MCM2, were down-regulated in cells transfected with
siAQP1 (Figure 2(D)). Cell migration (Figure 3(A)) and
invasion (Figure 3(B)) were also suppressed by the inter-
ference of AQP-1 in AGS and MKN45 cells, indicating that
AQP-1 may account for the malignant phenotypes of
gastric cancer.

Interference of AQP-1 inhibited GRB7-mediated
RAS/ERK activation

To explore the molecular mechanism of AQP-1 on gastric
cancer progression, western blot analysis was then
employed. Although interference of AQP-1 had no sig-
nificant change on protein expression of GRB7 and ERK
in AGS and MKN45 cells, AQP-1 silence decreased the
activation of GRB7-mediated ERK activation, as demon-
strated by decrease of p-GRB7 and p-ERK (Figure 4(A)).
Moreover, total RAS protein was not affected by
siAQP1, while GST pulldown showed that the active
form of RAS was dramatically down-regulated in AGS
and MKN45 cells transfected with siAQP1 (Figure 4(B)).
These results suggested that AQP-1 was involved in
RAS/ERK associated carcinogenesis of gastric cancer.

Discussion

Ion channels, which are localized in the plasma mem-
brane, respond to extracellular signals to participate in
cell signaling and cancer progression, especially in
gastric cancer (Anderson et al. 2019). Inhibitors of ion
channels show anti-proliferative effect against tumors
(Cai et al. 2009; Jang et al. 2011). AQPs, which are
water and glycerol carriers, have also to shown be
crucial for malignancy of gastric cancer (Xia et al.
2017). AQP-3 (Huang et al. 2010) and AQP-5 (Huang
et al. 2013) promote migration and proliferation of
gastric adenocarcinoma cells. Inhibition of AQP-3 could
reduce colon cancer (Dorward et al. 2016) or pancreatic
cancer (Liu et al. 2012) cell migration and invasion. Since
AQP-1 could promote the rapid flow of water into the
lamellar pseudopodia at the leading edge of migrating
cells, thus promoting the change of cell morphology

Figure 1. Up-regulation of AQP-1 in gastric cancer cell lines. The
expression of AQP-1 in gastric cancer cell lines and GES-1 cells
detected by qRT-PCR. *, ** represents gastric cancer cell lines
vs. GES-1, P < .05, P < .01.
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and the forward movement of tumor cells (Saadoun
et al. 2005). AQP-1 may be a potential avenue for
pharmaceutical research in gastric cancer.

Firstly, up-regulation of AQP-1 in gastric cancer cell
lines indicated a potential role of AQP-1 in gastric
cancer. In vitro loss- of function assays revealed that
interference of AQP-1-suppressed gastric cancer prolifer-
ation, migration and invasion. Moreover, AQP-1 could
regulate cell apoptosis of osteosarcoma cells (Wu et al.
2015). The functional involvement of AQP-1 in cell apop-
tosis of gastric cancer needs to be further studied. PCNA,
critical regulator in DNA synthesis, whose expression
was closely related to poor prognosis of gastric cancer
patients (Lee et al. 2003). Up-regulation of PCNA pro-
motes tumor growth in gastric cancer (He et al. 2019).
Moreover, MCM2, responsible for DNA synthesis during
cell cycle, predicts poor prognosis in gastric cancer
(Tokuyasu et al. 2008). Inhibition of MCM2 could sup-
press the growth of gastric cancer (Li et al. 2013).
Results in the present study showed that knockdown
of AQP-1 decreased protein expression of PCNA and
MCM2 in gastric cancer cells, suggesting the anti-prolif-
erative role of AQP-1 silence in gastric cancer. Further-
more, aberrant epithelial–mesenchymal transition

promotes cell initiation, invasion, metastasis in gastric
cancer (Huang et al. 2015). The promotive role of AQP-
3 on tumor growth of gastric cancer depends on epi-
thelial–mesenchymal transition (Chen et al. 2014). The
influence of AQP-1 on epithelial–mesenchymal tran-
sition and stemness properties of gastric cancer is also
needed for further investigation.

In addition to the close involvement of AQP-1 in
cancer progression, the downstream signaling pathways
were then implicated in gastric cancer. Interaction of
AQP1 with β-catenin is involved in the migration of
mesenchymal stem cells (Meng et al. 2014). Down-regu-
lation of Rho GTPases following by AQP-1 silence-sup-
pressed tumorigenesis of osteosarcoma cells (Wu et al.
2015). This study found that knockdown of AQP-1 inhib-
ited the active of another GTPase, RAS, as well as the
phosphorylation of ERK. RAS/ERK signaling pathway is
associated with gastric cancer (Gonzalez-Hormazabal
et al. 2018). Inactivation of ERK was involved in AQP-3
silence-suppressed gastric carcinoma cells growth
(Wang et al. 2012). Therefore, AQP-1 silence could
inhibit gastric cancer progression through inactivation
of RAS/ERK pathway. Moreover, in addition to ERK,
many downstream effector signaling pathways, such as

Figure 2. Interference of AQP-1 inhibited gastric cancer proliferation. (A) Transfection efficiency of siAQP1 #1 or #2 in AGS and MKN45
cells detected by qRT-PCR. ** represents siAQP1 #1 or #2 vs. siNC, P < .01. (B) Transfection efficiency of siAQP1 #1 or #2 in AGS and
MKN45 cells detected by western blot. ** represents siAQP1 #1 or #2 vs. siNC, P < .01. (C) The effect of AQP-1 on cell proliferation of
AGS and MKN45 cells detected by CCK8. *, ** represents siAQP1 vs. siNC, P < .05, P < .01. (D) The effect of AQP-1 on protein expression
of PCNA and MCM2 in AGS and MKN45 cells detected by western blot. ** represents siAQP1 vs. siNC, P < .01.
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phosphatidylinositol 3-kinase-AKT pathway, phospho-
lipase C- protein kinase C pathway, are involved in the
regulation of RAS on tumor progression (Khan et al.
2019). Therefore, other downstream effector signaling
pathways of RAS should also be investigated in AQP-1-
mediated gastric cancer. Furthermore, AQP1 exhibits
its tumorigenic role through activation of FAK signaling
(Tomita et al. 2017), and FAK could phosphorylate GRB7
to promote tumorigenesis (Chu et al. 2009). GRB7 could
bind with RAS and promote its activation for the tumor-
igenicity of breast cancer (Chu et al. 2010). Results in this
study showed that phosphorylation of GRB7 were inhib-
ited by knockdown of AQP-1, suggesting that Aqua-
porin-1 facilitates proliferation and invasion of gastric
cancer cells via GRB7-mediated ERK and Ras activation.

In conclusion, we showed that AQP-1 demonstrated
oncogenic effects on gastric cancer via GRB7-mediated
Ras/ERK activation. The present study suggested that
AQP-1 might serve as a new potential therapeutic

option in gastric cancer treatment through gene
silence of AQP-1, AQP-1 target inhibitors or monoclonal
AQP-1 specific antibody. However, promoter of AQP1
gene contains E-box/ChoRE transcriptional element
(Hayashi et al. 2007), and HIF-1α could contribute to
transcriptional activation of AQP-1 during hypoxia-
induced AQP1 expression (Abreu-Rodríguez et al. 2011)
via E-box/ChoRE element (Tomita et al. 2017). Since
hypoxia-induced AQP-1 was reported to promote pros-
tate cancer progression (Tie et al. 2012), the possible
mechanism of AQP-1 upregulation in gastric cancer
cells might also through E-box/ChoRE element.
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