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Targeted deep sequencing of
CD341 cells from peripheral
blood can reproduce bone
marrow molecular profile in
myelodysplastic syndromes

To the Editor:

Myelodysplastic syndromes (MDS) are clonal stem cell diseases of the

bone marrow (BM). Acquired somatic mutations account for MDS

development and constitute important diagnostic and prognostic

markers. Currently, BM aspirates are used for genetic analysis in MDS

patients. In this study, we aimed to investigate whether the high sensi-

tivity of targeted deep sequencing (TDS) allows the detection of

genetic alterations in peripheral blood (PB) of MDS patients. PB can be

obtained by minimally invasive venipuncture and would be ideal for a

comprehensive sequential monitoring of MDS over time.

This study includes 48 patients which were analyzed by TDS using

either a hybridization probe-based (Supporting Information Table S1)

or an amplicon-based TDS sequencing panel (Supporting Information

Table S2). We analyzed bone marrow cells (BMC), PB mononuclear

cells (PB-MC), and immunomagnetically enriched CD341 PB cells (PB-

CD34) (Supporting Information Figure S1).

To identify molecular markers of clinical relevance, we screened

genes previously reported to be frequently mutated in MDS and other

myeloid malignancies.1,2 The somatic origin of the variants was validated

by comparison of the concurrent samples (BMC, PB-CD34, and PB-MC)

with a paired germline sample, peripheral CD31 cells (PB-CD3).

TDS allowed the detection of potential MDS-related aberrations in

41/48 patients (85%). This was a significant increase of informative cases

compared to the results of the classical cytogenetic approaches, chromo-

some banding analysis (CBA), and fluorescence in situ hybridization

(FISH), which yielded an altered karyotype in 17/48 (35%) cases. The

application of single nucleotide polymorphism arrays (SNP-A) allowed the

detection of aberrations (submicroscopic copy number changes or copy

number neutral loss of heterozygosity) in seven additional patients with

normal karyotype (Supporting Information Tables S3 and S4).

Overall, the combined application of classical cytogenetics, molecular

karyotyping, and TDS identified genetic alterations in 43/48 (90%) patients.

TDS allowed the identification of 105 mutations in 24 genes. The

highest mutation frequencies were observed for TET2 (n513, 27%),

SF3B1 (n510, 21%), SRSF2 (n510, 21%), ASXL1 (n57, 16%), EZH2

(n56, 13%), ZRSR2 (n56, 13%), RUNX1 (n55, 10%), U2AF1 (n55,

10%), and TP53 (n54, 8%) (Supporting Information Figure S2).

As previously reported we detected an increased number of genetic

lesions in high-risk WHO subtypes (Supporting Information Figure S3A)

and found a correlation between the average number of genetic aberra-

tions and the IPSS-R prognostic risk score (Supporting Information Fig-

ure S3B).1,2 Interestingly, low risk patients displayed an increased

number of somatic mutations compared to the number of lesions

detected by CBA or SNP-A. This observation is consistent with data

published by Tefferi et al. indicating that TDS can significantly improve

prognostication and risk stratification in lower risk MDS patients.3

Comparison of the TDS results from BM and PB revealed that

TDS allows detection of somatic mutations also in PB samples (Figure

1A). For non-enriched PB, this was previously shown,4 while in the cur-

rent study we have added PB-CD34. We were able to detect 93/105

mutations (89%) in all sample types (BMC, PB-CD34, and PB-MC) (Sup-

porting Information Table S5). In BMC, we found 100/105 (95%), in

PB-CD34 102/105 (97%), and in PB-MC 95/105 (90%). Thus, enrich-

ment of CD341 cells increased the detection rate of mutations in PB.

Besides the qualitative detection of somatic mutations, TDS allows

the quantification of the mutation burden by the variant allele fre-

quency (VAF) and the estimation of the tumor clone size.

The measured VAF values were significantly lower for PB-MC

(median525.1%) compared to BMC (median536.4%, P5 .002)

(Figure 1B,C). Decreased VAF values in PB were also reported by

Mohamedali et al.4 However, the differences were not statistically sig-

nificant. The significant deviation that we observed potentially resulted

from a more stringent removal of SNPs in our dataset due to the analy-

sis of the germline sample (CD31).

The decreased VAF values measured in PB-MC are consistent

with the lower detection rates in PB-MC samples since low frequency

mutations drop below the detection limit of the applied TDS analysis

(5%) in PB (Supporting Information Table S5 and Figure S4). Including

mutations below the detection threshold of 5% VAF allowed the recov-

ery of nearly all mutations (102/105) in BMC, PB-CD34 as well as PB-

MC and resulted in the discovery of two additional mutations that

might have clinical relevance (data not shown). The currently ongoing

optimization of NGS sample preparation kits will facilitate the detection

of mutations with VAF values below 5%, improving the reliability of

the method especially for challenging sample types such as PB.

In order to overcome the limitations of PB in the quantification of

somatic mutations, we additionally tested CD341, which were immu-

nomagnetically enriched from PB. Although the yield and purity of

CD341 cells depends on physiological conditions such as disease state

or therapy and technical challenges, we were able to obtain sufficient
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DNA from PB-CD34 for TDS in all cases (see Supporting Information

Methods). Regarding the total dataset, we did not observe differences

in the VAF distribution between BMC (median536.4%) and PB-CD34

(median534.7%, P5 .954) (Figure 1B,D).

A similar experimental setup was previously used by Braulke et al.5

The authors applied FISH analysis on CD341 cells from PB and BM and

observed a slight but not significant difference. It is likely that we did not

observe such differences due to the analysis of unselected BMC.

It is noteworthy that we also observed apparent variations of the

VAF values in PB-MC compared to BMC or PB-CD34 for some muta-

tions. However, in most cases only individual mutations of the patient

were affected and in just two cases the differences would have

resulted in a changed assessment of the clonal hierarchy that was esti-

mated by the VAF (Supporting Information Table S5).

Taken together, our data indicate that TDS allows the adequate

detection of somatic mutations from BM, circulating CD341 cells and

PB-MC. However, the malignant cell population is less abundant in the

PB-MC fraction and therefore the detection and especially the quantifi-

cation of clonal somatic mutations is more challenging in this sample

type. Immunomagnetic enrichment of circulating CD341 cells from PB

allowed to obtain TDS data that are well comparable to the results

from BMC. Therefore, we recommend to use CD341 cells from PB in

diagnostic TDS testing to reduce invasive BM aspirates especially

regarding patient monitoring.

CONFLICT OF INTEREST

Nothing to report.

FIGURE 1 Recovery ofmutations in BM and PB samples by TDS. A,Most mutationswere detectable in samples fromBM and PB. Overall, 105muta-
tions were found. A total of 93 aberrationswere recovered in BMC, CD341 cells enriched from PB (PB-CD34) as well as inmononuclear PB cells (PB-
MC). Tenmutationswere not recovered in PB-MC samples. Fivemutations were not detected in BMC samples. Three additional aberrationswere
exclusively found in BMC. Inconsistent recovery was apparentmostly formutationswith lowVAF values below 5%. Numbers in parentheses were
obtained by including variants detected at<5%VAF values after reanalysis. B, Distribution of themeasured VAFs for the samples fromBMC, PB-CD34,
andPB-MC. The VAF values of the second and third quartiles are between 15% and45% for all sample types. Themedian VAF (black horizontal lines in
the boxes) for BMC and PB-CD34 is 36.4% and 34.7%, respectively. The value for PB-MC is significantly lower (25.1%, P5 .001 and P5 .002). P-values
were determined according toMann–Whitney–Wilcoxon test. C,D,Mutual correlation of theVAF for the individual mutations identified in BMC, PB-
CD34, and PB-MC.Dots denote the VAF of individual mutations, bisecting lines aremarked in black, and regression lines are shown as dashed red lines.
R denotes the SpearmanCorrelation Coefficient. P denotes the Spearman Correlation P-value. C, Values of PB-MCare lower compared to themeasured
VAF fromBMC. Individual mutations with values above 50% indicate potential copy number variations. D, In contrast, concordance between the VAF of
BMC andPB-CD34 is apparent asmost values cluster near the bisecting line
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Hemoglobin response to
ferric citrate in patients with
nondialysis-dependent chronic
kidney disease and iron
deficiency anemia

To the Editor:

Anemia is a common complication in patients with chronic kidney dis-

ease (CKD) and often occurs due to iron deficiency. Causes of iron

deficiency in CKD include upregulation of hepcidin (a peptide hormone

that reduces iron transport across enterocytes) leading to decreased

dietary iron absorption, impaired iron release from body stores associ-

ated with heightened inflammation, and gastrointestinal blood loss. All

result in insufficient bone marrow iron availability and inefficient eryth-

ropoiesis, leading to iron deficiency anemia.1

Recent clinical practice guidelines from Kidney Disease: Improving

Global Outcomes recommend using oral or intravenous iron before

erythropoietin-stimulating agents for the treatment of iron deficiency

anemia in patients with nondialysis-dependent (NDD)-CKD.1 Oral iron

preparations are typically ineffective and/or poorly tolerated due to

gastrointestinal side effects.1 Intravenous iron is used infrequently in

nephrology offices as it requires intravenous infusion in a monitored

setting with facilities for resuscitation because of risks of serious

adverse drug events, including hypersensitivity reactions.1

In a randomized placebo-controlled trial of ferric citrate in 234

patients with NDD-CKD and iron deficiency anemia,2 ferric citrate-

treated patients were significantly more likely to achieve a �1.0 g/dL

increase in hemoglobin (52.1% vs. 19.1% with placebo; P< .001) during

the 16-week randomized phase; the least-squares mean (LSM) relative

change in hemoglobin was 0.84 g/dL (95% confidence interval [CI],

0.58-1.10).2
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