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Purpose: To determine the feasibility of extracting sufficiently precise estimates of 
cell radius, R, and intracellular volume fraction, fi, from DW‐MRI data in order to 
distinguish between specific microstructural changes tissue may undergo, specifi-
cally focusing on cell death in tumors.
Methods: Simulations with optimized and non‐optimized clinical acquisitions were 
performed for a range of microstructures, using a two‐compartment model. The abil-
ity to distinguish between (i) cell shrinkage with cell density constant, mimicking 
apoptosis, and (ii) cell size constant with cell density decreasing, mimicking loss of 
cells, was evaluated based on the precision of simulated parameter estimates. 
Relationships between parameter precision, SNR, and the magnitude of specific pa-
rameter changes, were used to infer SNR requirements for detecting changes.
Results: Accuracy and precision depended on microstructural properties, SNR, 
and the acquisition protocol. The main benefit of optimized acquisitions tended to 
be improved accuracy and precision of R, particularly for small cells. In most 
cases considered, higher SNR was required for detecting changes in R than for 
changes in fi.
Conclusions: Given the relative changes in R and fi due to apoptosis, simulations 
indicate that, for a range of microstructures, detecting changes in R require higher 
SNR than detecting changes in fi, and that such SNR is typically not achieved in 
clinical data. This suggests that if apoptotic cell size decreases are to be detected in 
clinical settings, improved SNR is required. Comparing measurement precision with 
the magnitude of expected biological changes should form part of the validation 
process for potential biomarkers.
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1  |   INTRODUCTION

The motivation for using microstructural models in the 
analysis of diffusion‐weighted (DW) MRI data stems from 
the potential for charactering tissue microstructure more 
specifically than with phenomenological indices. For ex-
ample, microstructural models have found applications in 
characterizing neural tissue in terms of parameters such 
as neurite diameter, packing density/volume fraction, and 
compartment diffusivities, as opposed to the mean diffu-
sivity and fractional anisotropy,1-5 and in characterizing 
tumor tissue in terms of cell size, volume fraction, and 
compartment diffusivities, as opposed to the apparent dif-
fusion coefficient (ADC).6-9

A specific application of these models for cancer research 
is in interpreting DW signal changes more specifically. For 
example, instead of simply observing an increase or decrease 
in tumor ADC, estimates of model parameters potentially 
provide information about the cellular‐level changes which 
underlie ADC changes. In particular, in cases where different 
microstructural changes result in similar changes in ADC, the 
use of biophysical models may allow these different changes 
to be distinguished. Such changes could, for example, relate 
to different ways tumors may respond to therapy. For exam-
ple, tumor cells reducing in size without an overall change in 
the number of cells, (for example, in cells undergoing apop-
totic cell shrinkage but before phagocytosis10) can cause an 
ADC increase,11 as can a situation where cell size does not 
change but the number of cells, and therefore cell density, 
decreases.12 While ADC measurements may be sensitive to 
such microstructural changes, ADC on its own cannot distin-
guish between them. However, if tissue properties such as cell 
size and volume fraction can be estimated directly using mi-
crostructural models, the two scenarios above can potentially 
by distinguished. In such a case, the utility of microstructural 
models depends upon their ability to resolve ambiguities in 
ADC interpretation.

The extent to which this can be achieved depends on the 
accuracy and precision with which model parameters can 
be estimated, as well as the magnitude of specific biologi-
cal changes. For example, if typical changes in cell size are 
smaller than the precision of cell size estimates, such changes 
will not be detected. This is especially important when con-
sidering tumor response to therapy, as different forms of cell 
death lead to different changes in cell size; cell shrinkage is 
a hallmark of apoptosis,13,14 while cell swelling is linked to 
necrosis.13 As discussed in more detail below, a change in 
cell size associated with apoptosis is ∼1–4 μm, with a cor-
responding change in volume fraction of ∼0.1–0.5. While 
biophysical models have previously been used to infer sensi-
tivity to apoptotic cell shrinkage, it should be noted that this 
was based on decreases observed in the intracellular volume 
fraction, with no significant change in cell size detected.6,15

This work uses simulations to evaluate the accuracy and 
precision of parameter estimates from a simple two‐compart-
ment model of tumor tissue, and assesses the ability to dis-
tinguish between specific microstructural changes relevant to 
tumors. This assessment uses ideas similar to the resolution 
limit recently described for axonal diameter estimates,16,17 
here focussing on the signal‐to‐noise ratio (SNR) required for 
obtaining sufficiently precise estimates such that apoptotic 
cell shrinkage can be detected. Optimized and non‐optimized 
acquisitions are considered, along with the influence of max-
imum gradient strength. The paper begins by outlining the 
general simulation methods, then describes the protocol op-
timization, and the subsequent in silico experiments address-
ing accuracy, precision, and the resolution limit.

2  |   METHODS

2.1  |  Simulation methods
The normalized pulsed gradient spin‐echo (PGSE) signal, 
S/S0, was modeled with an analytic expression combining 
restricted diffusion inside a sphere, Si,

18 with hindered extra-
cellular diffusion (with the diffusivity reduced by a tortuosity 
factor), Se,

19 and T2 relaxation,

Tissue microstructure was therefore characterized in 
terms of the cell radius, R, intracellular volume fraction, 
fi, intra‐ and extra‐cellular diffusivities, Di and De, and T2 
(assumed to be the same in the intra‐ and extra‐cellular 
spaces for simplicity, and taken as 125 ms, a median value 
reported by Oh et al. for meningiomas20); note that the model 
assumes no water exchange between the intra‐ and extra‐ 
cellular spaces. Acquisition protocols were characterized 
by gradient strength, G, duration, δ, separation, Δ, and echo 
time, TE. One thousand five hundred noisy synthetic signals 
were generated for each simulated microstructure and acqui-
sition protocol according to Equation 1, with noise added 
such that the signals were Rician distributed.21 SNR was 
defined based on the b = 0 s/mm2 signal at TE  = 100 ms. 
The model (Equation 1) was fitted to the 1500 noisy sig-
nals using maximum likelihood fitting, accounting for Rician 
noise.22 One hundred starting values were used for each fit, 
and the final parameter estimates were taken as those giving 
the lowest value of the objective function. A Nelder‐Mead 
simplex algorithm was used for fitting, and parameters were 
constrained to the following ranges: 0.1 ≤ R (μm) ≤ 25, 
0.01 ≤ fi ≤ 1, 0.1 ≤ Di (μm2/ms) ≤ 3.0, and 0.1 ≤ De (μm2/
ms) ≤ 3.0. Fitting was also performed with Di and De fixed 
to their ground truth values, to stabilize the fits. As fixing 
Di and De increased the fit stability, these data were used 
to calculate accuracy, precision, and resolution limits, after 

(1)
S∕S0 = exp (−TE∕T2)[fiSi(R,Di,G,Δ,δ)+ (1− fi)Se(fi,De,b)].
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excluding fits with extreme values (within 1% of the fit con-
straints). Accuracy was calculated as the mean difference be-
tween fitted values and the ground truth, and precision was 
calculated as the standard deviation of the fitted values, that 
is, the parameter’s standard error, SE (taking the fitted values 
as the parameter’s sampling distribution23). Low absolute 
values for accuracy and precision, as defined here, indicate 
good performance.

2.2  |  Protocol optimization
Optimum PGSE scan parameters (G,Δ,δ) are those that 
maximize or minimize some summary statistic of the signal 
model’s information matrix, M.24,25 Here, D‐optimum de-
signs are considered, which correspond to scan parameters 
that maximize the determinant of the information matrix, |M|, 
and can be interpreted as minimizing the volume of ellipsoi-
dal confidence regions for the model parameters.25 For non‐
linear models, M depends on the specific values of the model 
parameters, meaning here that D‐optimum designs vary with 
R, fi, Di and De. Optimum designs calculated for specific tis-
sue properties are therefore referred to as local optima. In 
practice, tissue properties are not known a priori, so it is use-
ful to consider optimum designs which do not depend on one 
given combination of R, fi, Di and De. These are referred to as 
robust optima, and can be calculated by finding the minimum 
of the objective function integrated over a distribution of tis-
sue properties. This is approximated by a summation, with 
the objective function to minimize for robust D‐optimum de-
signs given by25:

where N is the number of combinations of R, fi, Di and De. 
Equation 2 was minimized for N = 100, with tissue proper-
ties sampled from uniform distributions over the following 
ranges: 5 ≤ R (μm) ≤ 20, 0.1 ≤ fi ≤ 0.74, 0.5 ≤ Di (μm2/
ms) ≤ 3, and 0.5 ≤ De (μm2/ms) ≤ 3. The objective function 
was minimized using a genetic algorithm (ga in MATLAB), 
with {G,Δ,δ} combinations satisfying clinically‐relevant 
constraints: b ≥ 150 s/mm2 (to avoid perfusion effects), 
Δ−δ ≥ T180, and Δ + δ ≤ TE−Tc, where T180 = 12 ms is 
the time for the 180∘ refocussing pulse and crushers, and 
Tc = 13 ms is the combined time for the readout and the time 
before the first diffusion gradient. As a means of avoiding 
protocols yielding low SNR measurements, all scans were 
constrained to have a maximum TE of 100 ms and a maxi-
mum b‐value of 5000 s/mm2, along with a lower SNR limit 
of 2, calculated for an ‘average’ microstructure, taken as the 
median of each tissue property over the N = 100 combina-
tions. The effect of the maximum gradient strength, Gmax, 
was investigated by performing the optimization separately 

for three cases, Gmax = {60, 80, 300} mT/m. For each case, 
the genetic algorithm was run with a population size of 1600 
and was repeated three times with different initial popula-
tions; the final optimum design was taken from the repeat 
with the lowest value of the objective function.

In addition to these D‐optimum acquisitions, simula-
tions were also performed using non‐optimized acquisitions. 
These were designed to match the D‐optimum acquisitions 
in terms of Gmax and bmax, and consisted of four measure-
ments in the {G, Δ} parameter space, with δ fixed, as used, 
for example, in AxCaliber acquisitions.1 All protocols are 
given in Table 1, and will be referred to as D‐optG and Non‐
optG, where the subscript represents the maximum gradient 
strength. For all protocols, each synthetic signal was nor-
malized to a G = 0 mT/m signal with the same TE, as done 
experimentally.6

2.3  |  Accuracy and precision of 
microstructural properties
Initial simulations investigated how the accuracy and preci-
sion of microstructural properties vary with the properties 

(2)f =

N∑

i

− log (|Mi|),

T A B L E  1   Parameters for optimized and non‐optimized 
acquisitions

D‐opt300

G (mT/m) 56.4 38.9 297 109

Δ (ms) 23.2 62.2 16.3 82.7

δ (ms) 10.6 24.8 4.28 4.22

D‐opt80

G (mT/m) 43.1 44.9 80.0 80.0

Δ (ms) 65.2 77.3 26.1 19.3

δ (ms) 21.7 9.72 14.1 7.25

D‐opt60

G (mT/m) 35.9 36.2 60.0 60.0

Δ (ms) 59.4 27.3 79.2 29.6

δ (ms) 27.6 15.3 7.85 17.6

Non‐opt300

G (mT/m) 150 150 300 300

Δ (ms) 80.0 20.0 80.0 20.0

δ (ms) 2.65 2.65 2.65 2.65

Non‐opt80

G (mT/m) 40.0 40.0 80.0 80.0

Δ (ms) 80.0 20.0 80.0 20.0

δ (ms) 10.2 10.2 10.2 10.2

Non‐opt60

G (mT/m) 30.0 30.0 60.0 60.0

Δ (ms) 80.0 20.0 80.0 20.0

δ (ms) 13.5 13.5 13.5 13.5



      |  2291McHugh et al.

themselves. Here, simulations were performed for 25 micro-
structures with all combinations of R = 4, 7, 10, 13, 16 μm 
and fi = 0.12, 0.24, 0.36, 0.48, 0.60; in each case, Di = 1 μm2/
ms, De = 2 μm2/ms, and T2 = 125 ms, representing a range 
of plausible tumor microstructures.8,20,26 Each simulation 
was run with SNR  =  20 and 80, for D‐opt80 and Non‐opt80, 
with the accuracy and precision of R and fi evaluated as de-
scribed above.

2.4  |  Microstructural changes and 
resolution limit
Simulations were then performed to assess the extent 
to which specific changes can be detected, in particular 
looking at the SNR requirements for achieving sensi-
tivity to changes in R and fi. This analysis starts with a 
‘baseline’ microstructure with R = r, fi = f, Di = di, and 
De = de. Two possible microstructural changes were 
then considered: (i) a simple mimic of apoptotic cell 

shrinkage, with a decrease in cell volume of 60%,14 de-
creasing R to (0.41/3)r with an associated decrease in fi to 
0.4f, with cell density, ρ = 3fi/(4πR3) (that is, the number 
of cells per unit volume) remaining constant; and (ii) a 
simple mimic of complete cell death, where fi decreases 
to 0.4f but R remains constant, giving a decrease in ρ. A 
specific example is shown in Figure 1A, with a baseline of 
R = 10 μm, fi = 0.60, Di = 1 μm2/ms, and De = 2 μm2/ms, 
representing a plausible model of tumor tissue.8,26 In this 
case, change (i) results in R decreasing to 7.37 μm with an 
associated decrease in fi to 0.24, and change (ii) results in 
fi decreasing to 0.24, with R unchanged. Here, changes (i) 
and (ii) would both result in an ADC increase (see Figure 
1A), as measured with a typical multi‐b‐value clinical 
protocol (b = 150, 300, 500, 800 s/mm2 with G = 13.2, 
18.6, 24.0, 30.4 mT/m, Δ = 32.0 ms and δ = 22.2 ms), 
but ADC alone cannot distinguish between (i) and (ii). 
As above, T2 was taken as 125 ms, and Di and De were 
assumed to not change from baseline values. In addition 

F I G U R E  1   (A) Schematic of microstructural changes. Starting from a ‘baseline’ with R = 10 μm and fi = 0.60, two changes are considered: 
(i) a 60% decrease in cell volume (R → 7.37 μm), mimicking apoptotic cell shrinkage, with corresponding decrease in volume fraction, keeping cell 
density (number of cells per unit volume) constant; (ii) a decrease in volume fraction with no change in cell size, decreasing cell density, mimicking 
a loss of cells. Both changes result in an ADC increase, as measured with a typical multi‐b‐value clinical acquisition (see text for sequence details). 
(B) Theoretical Gaussian PDFs illustrating changes in R and fi for changes (i) and (ii), on the left and right, respectively. PDF widths represent 
the maximum width possible (that is, the precision limit) for successfully detecting the changes, based on a z‐test with α = 0.05, assuming equal 
precision for the ‘baseline’ and ‘change’ estimates; as there is no R change in case (ii), the PDF width here is arbitrary. In this example, Di = 1 μm2/
ms and De = 2 μm2/ms, for ‘baseline and ‘change’ microstructures [Colour figure can be viewed at wileyonlinelibrary.com]

(A)

(B)

www.wileyonlinelibrary.com
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to the specific example in Figure 1, a range of baseline 
microstructures were investigated, with values within 
relevant biological ranges: R = 7–16 μm, fi = 0.30–0.60, 
Di, De = 1–2 μm2/ms.

Similar to the resolution limit for axonal diameter esti-
mates,16 we define the ability to detect a change in a parame-
ter, p, in terms of a two sample z‐test, with α = 0.05:

where SEpn
 is the standard error on the nth estimate of param-

eter p, and Δp = |p2−p1| is the magnitude of the parameter 
change; p = {R, fi}, n = {1, 2}. This is illustrated in Figure 
1B, which shows the theoretical broadest Gaussian proba-
bility density functions (PDFs) consistent with resolving the 
changes. Note that this approach differs from Nilsson et al.,16 
where the statistical test is based on the change in signal it-
self. The effect of SNR on SEpn

 was evaluated using simula-
tions as described above, with SNR  =  20, 50, 80 and 110. 
Results were extended to a wider range of SNRs by fitting the 
expression m/SNR + c (where m and c are fitted variables) to 
the calculated resolution limits (left hand side of Equation 3); 
fits were stabilized by including a point reflecting the expecta-
tion that SEp→0 as SNR→∞. The intersection of these fitted 
curves with the relevant detection threshold (right hand side of 
Equation 3) allowed inference of the SNR required for detect-
ing a given change.

2.5  |  Influence of percentage cell 
volume decrease
Simulations were also performed to assess the influence of 
the percentage cell volume decrease used to mimic apoptosis. 
The 60% decrease described above was taken from the largest 
observed volume change in an in vitro study where cells were 
exposed to the chemotherapy drug cisplatin for 96 hours,14 
providing a ‘best case’ scenario for detecting ΔR. As smaller 
decreases may be more realistic, a subset of simulations con-
sidered changes of 40% and 20%. These simulations were 
performed for R = 10, 16 μm, fi = 0.60, Di, De = 1–2 μm2/
ms, using D‐opt80.

2.6  |  Modeling asynchronous apoptosis
All of the simulations described above model apoptosis by 
assuming that all cells shrink; that is, assuming apoptosis 
is synchronous. To investigate the effect of asynchronous 
apoptosis, simulations were also performed in which a 
fraction of cells shrink, with the rest remaining the same 
size. These simulations are described in the Supporting 
Information.

3  |   RESULTS

3.1  |  Accuracy and precision of 
microstructural properties
The dependence of parameter accuracy and precision on mi-
crostructural properties is illustrated in Figure 2, where the 
accuracy and precision of R and fi are plotted for different 
ground truth combinations, using D‐opt80 at SNR  =  20 and 
80. Black points represent excluded cases where more than 
50% of the fits resulted in extreme values (within 1% of the fit 
constraints) for at least one parameter; note that this occurs for 
large cells with low volume fraction, where signal attenuation 
is greatest and measurements are therefore most affected by 
the noise floor. At SNR  =  20, R and fi can be under‐ or over‐
estimated, depending on the ground truth (Figure 2A). Both R 
and fi tend to be underestimated at high R, and overestimated 
at low R, with the highest accuracy tending to occur when 
R = 10 μm. For a given R, accuracy in R tends to increase 
(that is, the magnitude of the difference from the ground truth 
tends to decrease) as fi increases, and the largest overestima-
tion occurs for low R and low fi, that is, small cells with low 
volume fraction. Accuracy improves at SNR  =  80, and is 
typically better than 1% for both parameters, except at low fi 
with small and large cells, where accuracy is poorer (<15% 
for R and <5% for fi, Figure 2B). R tends to be estimated 
more precisely (that is, SER is lower) at higher fi, while esti-
mates of fi tend to be more precise at lower fi. For a given fi, 
precision in R tends to worsen as R increases. Similar trends 
in precision are observed at SNR  =  20 and 80, but precision 
is better at the higher SNR as expected. The equivalent fig-
ure for Non‐opt80 is shown in Supporting Information Figure 
S1 (see Supporting Information), which exhibits very similar 
trends to those for D‐opt80. Similar trends were also observed 
for D‐opt60, but accuracy and precision tended to be slightly 
worse than for D‐opt80 for the majority of the R and fi com-
binations at SNR  =  20, with smaller differences between 
the two gradient strengths at SNR  =  80 (data not shown). 
For D‐opt300, the dependence of accuracy and precision on 
the ground truth exhibited similar trends to those observed at 
the lower gradient strengths. Accuracy and precision tended 
to be better with D‐opt300 than with D‐opt80, except for large 
cells (R = 13, 16 μm), where D‐opt80 tended to perform bet-
ter, most notably in terms of precision in R.

The difference in accuracy and precision between D‐opt80 
and Non‐opt80, as a function of the ground truth R and fi, is 
shown for SNR  =  20 (Figure 3) and SNR  =  80 (Figure 4); 
differences in absolute values are used for comparing accu-
racies, as the accuracy metric can be positive or negative. In 
addition, the rightmost column in Figures 3 and 4 plots the 
difference in the percentage of valid fits (those not within 1% 

(3)
√

SE2
p1
+ SE2

p2
≤

Δp

1.96
,
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of the constraints) between the two acquisitions. In all panels, 
differences are defined such that positive regions (blue) cor-
respond to parts of the parameter space where D‐opt80 per-
forms better than Non‐opt80. At SNR  =  20, D‐opt80 tends to 
yield better accuracy and precision in R at low ground truth 
R, and generally has a higher percentage of valid fits (blue 
regions in Figure 3). However, Non‐opt80 offers better fi pre-
cision at higher R (red regions in fi precision panel in Figure 
3). At SNR  =  80, the two acquisitions tend to perform more 
similarly, as shown by the white regions throughout Figure 
4. Here, D‐opt80 offers better precision in R and fi at low R, 
while there is still a tendency for Non‐opt80 to yield better fi 
precision at higher R.

Similar trends to those described above were also found 
when comparing D‐opt60 and Non‐opt60. Again, the main 

benefit of the optimized acquisition was improved accuracy 
and precision of R at low ground truth R, with the non‐ 
optimized acquisition providing better fi precision at higher 
R. In contrast to the comparison for Gmax = 80 mT/m,  
Non‐opt60 also provided slightly better precision in R for 
large cells.

3.2  |  Microstructural changes and 
resolution limit
Figure 5 plots R and fi histograms from simulations for the 
microstructural changes illustrated in Figure 1, using D‐opt80. 
At SNR  =  20, precision depends on the microstructure, in-
dicating that the assumption of equal precision for ‘baseline’ 
and ‘change’ estimates used in Figure 1B does not always 

F I G U R E  2   Accuracy and precision 
of radius and intracellular volume fraction, 
using D‐opt80, plotted as a function of 
ground truth R and fi, for (A) SNR  =  20, 
and (B) SNR  =  80. For (A), color scales 
in each panel are based on the maximum 
absolute value plotted, and the same 
color scales are used for the equivalent 
panels in (B). Black points represent cases 
where more than 50% of the fits resulted 
in extreme values (within 1% of the fit 
constraints) for at least one parameter

(A)

(B)



2294  |      McHugh et al.

hold. This is most apparent for the R = 10 μm, fi = 0.60 mi-
crostructure (blue histograms), where fi precision is poorer 
and R precision is better than the other microstructures. This 
is consistent with the trends in absolute precision discussed 

above, and is also reflected in Figure 6A (right column), 
where precision is plotted against SNR for the three micro-
structures. Accuracy is plotted in Figure 6A (left column), 
where error bars have been omitted due to the large overlap 

F I G U R E  3   Comparing accuracy and precision of R and fi estimates from D‐opt80 and Non‐opt80. Differences in accuracy and precision 
between the two acquisitions are plotted as a function of ground truth R and fi, for SNR  =  20. For each panel, black points represent cases 
where more than 50% of the fits resulted in extreme values (within 1% of the fit constraints) for at least one parameter, for either acquisition. The 
rightmost column plots the difference in the percentage of valid fits between the two acquisitions. In all cases, the definitions of differences are such 
that positive regions (blue) correspond to parts of the parameter space where D‐opt80 performs better than Non‐opt80 [Colour figure can be viewed 
at wileyonlinelibrary.com]

F I G U R E  4   As Figure 3 but for SNR  =  80. The color scales used here match those of the equivalent panels in Figure 3 [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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for different microstructures; note that the error bars would 
reflect the precision values in Figure 6A (right column). 
Qualitatively, the overlap in R histograms for (i) at SNR  =  
20 suggests that precision is insufficient to detect this change, 
implying that changes (i) and (ii) cannot be distinguished. 
As SNR increases, the variation in precision between micro-
structures tends to decrease, and the histograms indicate that 
at SNR  =  80 the two radii for change (i) are better resolved. 

This is quantified in Figure 6B, where the ‘resolution limit’ 
(black crosses, left hand side of Equation 3) is plotted against 
SNR, along with the threshold for detection (red dashed lines, 
right hand side of Equation 3). As expected from the histo-
grams, the resolution limit for R at SNR  =  20 exceeds the 
threshold, while at SNR  =  80 it is sufficient to detect the 
change. For changes (i) and (ii), SNR  =  20 is sufficient to 
detect the changes in fi.

F I G U R E  5   Parameter histograms from simulations using D‐opt80, for the microstructures in Figure 1, at SNRs of 20 and 80 [Colour figure 
can be viewed at wileyonlinelibrary.com]

F I G U R E  6   (A) R and fi accuracy (left, dashed lines indicate ground truth) and precision (right) as a function of SNR, for the three 
microstructures. (B) ‘Resolution limit’ (left hand side of Equation 3) for R and fi, as a function of SNR, for changes (i) and (ii). Black lines show 
1/SNR fit to the simulation‐derived resolution limits, and red dashed lines show the threshold for detecting change, calculated from the right 
hand side of Equation 3. Note that there is no change in R for (ii), so there is no threshold for detecting change [Colour figure can be viewed at 
wileyonlinelibrary.com]

(A) (B)

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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The resolution limits are well‐described by the 1/SNR re-
lationship (Figure 6B, black lines), with R2 > 0.997 in each 
case. This fit was performed based on the three resolution 
limits above SNR  =  20, as including this point in some 
cases resulted in very poor fits. This was hypothesized to be 
due to unstable estimates of SER and SEfi

 at low SNR, where a 
larger proportion of fits can return extreme values (within 1% 
of the fit constraints). While this was not the case for all mi-
crostructures, for consistency, the resolution limit for SNR  =  
20 was excluded from the 1/SNR fit throughout. Using this fit 
to interpolate between and extrapolate beyond the four SNRs 
simulated suggests that SNRs of 51 and 15 are needed for 
detecting the changes in R and fi, respectively (see intersec-
tions of black solid lines with red dashed lines in Figure 6B). 
Taken together, this suggests that given the relative changes 
in R and fi due to apoptosis, sensitivity to ΔR requires ∼3‐fold 
higher SNR than sensitivity to fi. Note that this result comes 
from considering the single baseline microstructure and spe-
cific changes illustrated in Figure 1.

To determine how this sensitivity‐SNR relationship de-
pends on the microstructural properties themselves, the 
above analysis was conducted for a range of baseline cell 
sizes, R = 7, 10, 13, 16 μm, in each case considering three 
combinations of diffusivities, with Di less than, equal to, or 
greater than De: Di, De = {1,2}, {1,1}, {2,1}μm2/ms. For 
each case, the resolution limit for changes (i) and (ii) were 
obtained from simulations using all acquisitions (Table 1), 
allowing the effect of protocol to be investigated. As above, 

the SNR required for detecting the changes was estimated 
from the intersection of the detection threshold and the curve 
fitted to the resolution limits. R2 values for these fits ranged 
from 0.843 to >0.999. Figure 7 plots the SNR required for 
detecting ΔR and Δfi in change (i) as a function of baseline 
R, for the three diffusivity combinations, for all acquisitions. 
As the SNR required for detecting Δfi in change (ii) was sim-
ilar to that for change (i), these points were omitted from the 
plots for clarity. In all scenarios a higher SNR is required for 
detecting ΔR than for Δfi, consistent with the initial observa-
tions made above, although there is variation depending on 
specific cell sizes and diffusivities. For ΔR, the dependence 
on baseline cell size is a result of two effects: first, as base-
line R increases, the absolute value of ΔR increases, which 
lowers SNR requirements; but second, there is a tendency for 
precision in R to worsen as R increases, thereby increasing 
SNR requirements. For Di, De = 1, 2 μm2/ms, SNRs for de-
tecting Δfi show little variation with baseline cell size, while 
for the other diffusivities the required SNR tends to increase 
with cell size; this is most apparent for Di, De = 1, 1 μm2/ms. 
The required SNRs for detecting the two parameter changes 
become similar when Di, De = 2, 1 μm2/ms and cell sizes are 
relatively large (Figure 7, right column). The main benefit 
of using optimized over non‐optimized acquisitions tends to 
occur for detecting ΔR when cells are small, with the D‐opt 
protocols yielding lower required SNRs. For ΔR with larger 
cells, and for sensitivity to fi generally, there are not clear 
benefits in using D‐opt protocols, and in some cases the 

F I G U R E  7   SNR required for detecting ΔR (crosses) and Δfi (circles) for change (i), as a function of ‘baseline’ cell size. Results are shown 
for three combinations of Di and De (columns, units: μm2/ms), for D‐opt and Non‐opt acquisitions (rows). In each plot, different colors represent 
acquisitions with different Gmax [Colour figure can be viewed at wileyonlinelibrary.com]
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non‐optimized protocol yields lower required SNRs. For op-
timized and non‐optimized protocols, using Gmax = 80 mT/m 
offers negligible benefit over Gmax = 60 mT/m for detect-
ing Δfi, while for ΔR there are slight advantages, which are 
generally greater when baseline R is lower. The advantage 
of Gmax = 300 mT/m tends to be with the optimized protocol 
for small cell sizes. Note that D‐opt300 gives the measurement 
with the shortest TE (compared with D‐opt60 and D‐opt80), 
suggesting an SNR benefit from higher Gmax.

To investigate the effect of baseline fi, the D‐opt80 simula-
tions above were run with a baseline fi = 0.30, with changes 
(i) and (ii) leading to fi = 0.12. Figure 8 plots the SNR re-
quired for detecting ΔR and Δfi in change (i) as a function of 
baseline R, for the three diffusivity combinations, for base-
line fi values of 0.30 (black lines) and 0.60 (blue lines). As 
above, the SNR required for detecting Δfi in changes (i) and 
(ii) were similar, so the latter points were omitted from the 
plots. For detecting Δfi, two competing factors determine the 
dependence on baseline fi: first, the absolute difference in in-
tracellular volume fractions between ‘baseline’ and ‘change’ 
cases is lower when baseline fi is lower (0.30−0.12 = 0.18 

compared with 0.60–0.24 = 0.36), which increases SNR re-
quirements; second, fi precision tends to be better at lower 
fi, which decreases SNR requirements. Higher SNRs are 
needed for fi = 0.30 than for fi = 0.60 (black lines in Figure 8 
are above the corresponding blue lines), suggesting that the 
former factor dominates, for the cell sizes and diffusivities 
considered. Higher SNRs are also needed for detecting ΔR 
when fi = 0.30 than when fi = 0.60, due to the tendency for R 
precision to worsen at lower fi. Overall, these results suggest 
that achieving sensitivity to the microstructural changes con-
sidered is more difficult for tumor tissue with a lower fi than 
for a higher fi.

3.3  |  Influence of percentage cell 
volume decrease
Figure 9 plots the ratio of SNRs required for detecting ΔR and 
Δfi, from changes (i) and (ii) respectively, as a function of the 
simulated percentage cell volume decrease, for different mi-
crostructures. As the magnitude of Δfi decreases as this per-
centage decreases, the SNR required to detect Δfi increases; 

F I G U R E  8   SNR required for detecting ΔR (crosses) and Δfi (circles) for change (i), as a function of ‘baseline’ cell size and intracellular 
volume fraction. Results are shown for three combinations of Di and De (columns, units: μm2/ms), for baseline fi values of 0.30 (black lines) and 
0.60 (blue lines). The D‐opt80 protocol was used in all cases, with the blue lines identical to those in the top row of Figure 7 [Colour figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  9   Ratio of SNRs required for detecting ΔR and Δfi, from changes (i) and (ii) respectively, as a function of the simulated percentage 
cell volume decrease. Results are shown for three combinations of Di and De (colors), for two baseline microstructures (left and right). The D‐opt80 
protocol was used in all cases [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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that is, a higher SNR is needed to detect Δfi when there is 
a 20% cell volume decrease than when there is a 60% cell 
volume decrease. However, this does not significantly affect 
the relative thresholds for ΔR and Δfi, because a higher SNR 
is also needed to detect the correspondingly smaller change 
in cell size. As such, the tendency is for the SNR thresholds 
for both parameters to increase as the percentage cell volume 
decrease gets smaller.

3.4  |  Modeling asynchronous apoptosis
As asynchronous apoptosis was modeled with a bimodal cell 
radius distribution, while a single radius model (Equation 
1) was fitted to the signals, R estimates are biased (Figure 
S2B). The total restricted volume fraction is estimated ac-
curately (Supporting Information Figure S2B), and the SNR 
required for detecting ΔR can be lower than for Δfi, when 
a high proportion of cells remain the same size (Supporting 
Information Figure S3). These results are described in more 
detail in the Supporting Information.

4  |   DISCUSSION

These results suggest that using DW‐MRI to detect the subtle 
changes in cell size which distinguish apoptotic cell shrink-
age from simply a reduction in the number of cells is practi-
cally challenging in a clinical setting. This is a result of the 
relatively small absolute change in cell radius during apop-
tosis, compared with the precision of cell radius estimates at 
typical SNRs. Initial simulations showed that R and fi preci-
sion varies with microstructural properties, suggesting that it 
may be more feasible to detect changes in tissues with certain 
characteristics. For example, as R precision tends to be better 
when fi is high, it may be easier to detect a change in cell size 
in tumors with a high fi compared to those with a low fi. This 
could be practically important in longitudinal studies; for ex-
ample, if tumor fi is relatively high at the start of a study, but 
decreases over time in response to treatment, sensitivity to 
changes in R will decrease over time.

As described above, the 60% decrease in cell volume used 
here to model apoptosis was taken from the largest observed 
volume change in an in vitro study14; the changes considered 
in the present study may therefore represent a best‐case sce-
nario, as smaller, and perhaps more realistic changes, will 
be more difficult to detect. Simulations with 40% and 20% 
decreases confirmed this, with SNRs for detecting ΔR and 
Δfi both increasing as the changes become smaller. While 
the SNRs required for ΔR and Δfi were most similar for mi-
crostructures with Di, De = 2, 1 μm2/ms, a higher SNR was 
needed for ΔR in most cases considered. This is qualitatively 
consistent with microstructural modeling in preclinical ex-
periments (utilizing Gmax = 360 mT/m), where decreases in 

intracellular volume fraction were detected in tumors under-
going apoptosis, while significant changes in cell size were 
not.6 Although cell shrinkage is a hallmark of apoptosis,13 
the modeling considered in the present work clearly oversim-
plifies the apoptotic process, as other morphological changes 
such as cell shape alterations27 have not been considered. 
Subsequent events such as phagocytosis and tumor cell re-
population have also not been considered, though they would 
influence the microenvironment; indeed, post‐apoptotic re-
population has been proposed as a potential explanation for 
an observed lack of ADC change in tumors undergoing apop-
tosis.28 Moreover, apoptosis is known to be asynchronous,27 
suggesting that even if apoptotic volume decreases can be de-
tected, imaging at a single time point will not reflect the over-
all level of apoptosis in a tumor. Also, simulations modeling 
asynchronous apoptosis indicate that R estimates are gener-
ally biased when using a single radius model, suggesting that 
relevant cell radii decreases will not be estimated accurately 
in this setting (see Supporting Information).

The results here also reflect an idealized scenario in 
terms of fitting DW‐MRI data, as Di and De are assumed to 
be known, which will generally not be the case in experi-
mental settings, and unchanging, which may not be a valid 
assumption. The problems with placing constraints on com-
partmental diffusivities, discussed widely in the context of 
neural tissue modeling,29,30 are equally applicable to tumor 
tissue. The fixing of diffusivities in the current work there-
fore suggests the results should be interpreted as a best‐case 
situation, with accuracy and precision likely to be worse in 
experimental settings, at least where the scanner constraints 
match those considered here.

Preclinical studies utilizing different models have found 
different relationships between intra‐ and extra‐cellular dif-
fusivities, with the long‐time limit of the extracellular dif-
fusivity found to be greater8 and lower than the intracellular 
diffusivity.9 Different diffusivities have also been found for 
tumors from different cell lines,9 and different fixed values 
have been used in different studies.6,7 The three diffusivity 
combinations considered here represent plausible scenarios, 
and highlight how Di and De influence the ability to detect 
apoptotic cell shrinkage. The lowest required SNR for de-
tecting ΔR occurred for large cells where Di, De = 2, 1 μm2/
ms. As such, for a given acquisition protocol and baseline R, 
sensitivity to apoptotic cell shrinkage may be more feasible 
for a tumor with these characteristics, while it would be less 
feasible if, for example, Di, De = 1, 1  μm2/ms. This high-
lights the importance of diffusivities in determining sensitiv-
ity to changes which are of interest in characterizing tumor 
response to treatment. Although not considered here, this 
sensitivity would also be influenced by changes in, and dif-
ferences between, compartmental T2 values. While a single 
T2 was used here for simplicity, evidence for different T2 val-
ues within and outside axons has recently been presented,31 
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which may also be the case in tumor tissue. Incorporating 
T2 estimation in diffusion models may also aid tumor micro-
structural estimates.32

Recent work by Reynaud has also used simulations to in-
vestigate the accuracy and precision of microstructural es-
timates, comparing ground truth microstructures for three 
preclinical tumor types, using different acquisitions incorpo-
rating both PGSE and oscillating gradient spin‐echo (OGSE) 
measurements.15 Diffusivities were estimated along with cell 
size and volume fraction, which is beneficial practically, as 
Di and De do not have to be fixed to assumed values which 
may bias R and fi. Moreover, Di and De may be useful bio-
markers themselves, providing information about intra‐ and 
extra‐cellular structures, such as cell nuclear size and colla-
gen fiber density/alignment. Three factors may contribute to 
the improved fitting in15: (a) the use of OGSE measurements, 
which increase sensitivity to intracellular diffusion9; (b) the 
use of a higher Gmax; (c) the use of a relatively high SNR 
of 120, which was chosen on the basis of preclinical data.15 
For similar microstructural parameters to those considered in 
Ref. 15, an SNR of 120 using D‐opt80 and the model consid-
ered here, with fitting performed without fixing Di and De, 
yields estimates of R and fi with precision at least as good as 
those reported previously15; diffusivity estimates, however, 
tend to be poorer, with many values reaching the upper con-
straint. This suggests that using OGSE measurements, and/
or high gradient strengths, may benefit Di and De estimates. 
This comparison initialized fits to the ground truth, for con-
sistency with Ref. 15, whereas this was not done for the other 
simulations in the present work. In addition to the protocol 
differences due to hardware used in the two settings, substan-
tially different SNRs of ∼120 and ∼14 have been reported 
for preclinical15 and clinical7 studies, respectively. As such, 
further work is needed to comprehensively compare preclini-
cal and clinical experiments, as well as to compare PGSE and 
OGSE sequences with the same hardware constraints, similar 
to the sensitivity analysis performed for axon diameters.33

The aim of using optimized acquisitions is to ensure ro-
bust parameter estimates, and their importance has been em-
phasized in a number of quantitative MR applications.24,34-36 
As optimum design frameworks aim to yield estimates with 
low variance, this is consistent with focussing on parameter 
precision, which may be more important than accuracy if the 
goal is to detect changes (with the caveat that the magnitude 
and direction of any bias is constant across, for example, 
baseline and post‐therapy measurements). The simulations 
performed in the present work suggest that while such proto-
cols do offer benefits in a number of cases, they do not always 
yield estimates that are better than non‐optimized protocols. 
This may be due to the fact that the optimization has to be 
performed to cover a range of possible microstructures, as the 
properties are not known a priori. As such, there will be par-
ticular microstructures for which the acquisition is not ideal, 

with non‐optimized protocols performing better, suggesting 
that protocol optimization is not guaranteed to be beneficial, 
at least for a given choice of optimality criteria. Similar ob-
servations have been made previously with other MR signal 
models, with optimized and non‐optimized protocols per-
forming similarly,3 and where non‐optimized protocols out‐
perform optimized ones in certain regions of the parameter 
space.37 Another important consideration is the optimality 
criterion used, and it should be noted that many different cri-
teria can be chosen, based on different summary statistics of 
the information matrix. D‐optimality was chosen here as it is 
widely used and generates designs which do not depend on 
the model parameters’ units, unlike other criteria.25 However, 
as it seeks to minimize the total volume of ellipsoidal confi-
dence regions, it can result in small confidence intervals for 
some parameters but larger ones for others. This may underlie 
the observation here that the D‐optimum designs tended to 
benefit R estimates more than fi estimates, and further work 
could explore the effect of different optimality criteria.

The resolution limit outlined here essentially relies on a 
comparison of voxel‐wise parameter estimates, which is not 
generally reflective of how, for example, baseline and post‐
treatment scans would be analyzed in a longitudinal study. 
Unless an approach similar to the functional diffusion maps 
developed for ADC11 is adopted to directly compare voxels, 
the test would need to be adapted to include estimates from 
multiple voxels. This has the potential to reduce voxel‐level 
SNR requirements, but may, as with all whole‐tumor sum-
mary statistics, be confounded by intra‐tumor heterogeneity. 
Also, the z‐test used to the define the resolution limit as-
sumes a Gaussian distribution of parameter values, which, 
especially at low SNR, is not always valid. As such, further 
work could look to adapt the approach presented here to a 
non‐parametric statistical test.

A further limitation in the practical use of these results 
concerns the applicability of the model (Equation 1) to actual 
tumor tissue. The model necessarily simplifies the tumor mi-
croenvironment, and does not include important features such 
as cell nuclei, immune cells, collagen fibers, and vasculature. 
Nevertheless, similar models have been successfully applied 
in a number of preclinical6,8,9 and clinical7,32 in vivo settings, 
suggesting that microstructural information beyond ADC can 
be obtained. In general, further experimental work is needed 
to validate38 microstructural models, and to understand the 
influence of different microstructural properties on the DW‐
MRI signal.

5  |   CONCLUSIONS

The accuracy and precision of DW‐MRI microstructure es-
timates depends on specific microstructural properties as 
well as SNR and the acquisition protocol used. Given the 
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relative changes in R and fi as a result of apoptosis, simula-
tions indicate that, for PGSE acquisitions and a wide range 
of microstructures, detecting changes in R require higher 
SNR than detecting changes in fi, and that such SNR is 
typically not achieved in clinical data. This suggests that if 
apoptotic cell size decreases are to be detected in clinical 
settings, improved SNR is required. Understanding the SNR 
requirements for detecting specific microstructural changes 
should be considered before planning experimental studies, 
and, more generally, comparing the magnitude of expected 
biological changes with the accuracy and precision of meas-
urements should form part of the validation process38 for po-
tential biomarkers.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Accuracy and precision of radius and intracel-
lular volume fraction, using Non‐opt80, plotted as a function 
of ground truth R and fi, for (A) SNR  =  20, and (B) SNR  =  
80. Black points represent cases where more than 50% of 
the fits resulted in extreme values (within 1% of the fit con-
straints) for at least one parameter. Color scales match those 
in Figure 2 in main text
FIGURE S2 Effects of having a bimodal cell radius distribu-
tion. (A) Schematic of baseline microstructure and changes, 
where a fraction, p, of cells remain the same size, and the 
rest, 1−p, shrink. A specific example with p = 0.50 is used 
in the schematic, with the equations governing the changes 
shown at the bottom. The case of p = 0 corresponds to the 
simulations in the main text; that is, where all cells shrink. 
(B) Accuracy of R (top row) and fi (bottom row) for three 
microstructures (colors), for p = 0, 0.25, 0.50, 0.75; dashed 
lines indicate ground truth, with the gold lines for R and fi 
representing Rb and fib, respectively
FIGURE S3 SNR required for detecting ΔR (crosses) and 
Δfi (circles), from changes (i) and (ii), respectively, as a func-
tion of p, the fraction of cells remaining the same size
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