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Malaria trends in Ethiopian highlands track
the 2000 ‘slowdown’ in global warming

Xavier Rodé® 7, Pamela P. Martinez® 2, Amir Siraj® & Mercedes Pascual® 4>/

A counterargument to the importance of climate change for malaria transmission has been
that regions where an effect of warmer temperatures is expected, have experienced a marked
decrease in seasonal epidemic size since the turn of the new century. This decline has been
observed in the densely populated highlands of East Africa at the center of the earlier debate
on causes of the pronounced increase in epidemic size from the 1970s to the 1990s. The
turnaround of the incidence trend around 2000 is documented here with an extensive
temporal record for malaria cases for both Plasmodium falciparum and Plasmodium vivax in an
Ethiopian highland. With statistical analyses and a process-based transmission model, we
show that this decline was driven by the transient slowdown in global warming and asso-
ciated changes in climate variability, especially ENSO. Decadal changes in temperature and
concurrent climate variability facilitated rather than opposed the effect of interventions.
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ARTICLE

lobal warming is expected to promote malaria transmis-

sion in highlands because temperature decreases with

elevation, limiting both the abundance of mosquitoes and
the development of the parasite within these vectors!~7. At the
edge of the geographic distribution of the disease, highlands are
characterized by seasonal and intermittent large epidemics, and
are described as regions of “unstable” malaria transmission,
where both average transmission intensity and population
immunity are typically low. It is in these regions that effects of
climate conditions, control efforts, and other external drivers such
as immigration from lower endemic areas, should be most
apparent in the temporal patterns of incidence®. Despite evidence
that warmer temperatures exacerbated unstable malaria in den-
sely populated highlands of East Africa from the 1980s to the
1990s>7, the declining trends in incidence of the following decade
challenge the importance of climate forcing vs. control*>. As for
the long debate concerning increasing malaria incidence!~7,
effects of temperature cannot be simply extrapolated based on its
known effects on parameters of vectors and parasites in the
laboratory®-11. Multiple drivers other than climate ones might be
at play, and quantification of the integrated effects of temperature
is required. The turnaround from an increasing to a decreasing
trend in malaria incidence at the turn of the new century provides
an opportunity to further address the importance of climate
forcing based on epidemiological patterns. With a longer tem-
poral record from disease surveillance at hand, we can now ask
whether changes in climate preceded and facilitated the results of
extensive public health intervention.

Importantly, the turnaround in malaria incidence at the
beginning of the century could reflect a strong coupling to tem-
peratures rather than a consequence of control efforts per se.
Specifically, the transient “slowdown” in the warming trend itself
could have played an important role in driving reduced epidemics
in the background of existing control efforts and before their
enhancement. At a global scale, this slowdown was initially
termed the “global warming hiatus” on the basis of a presumed
lack of an increase in Global Mean Surface Temperature (GMST)
over the period from 1998 to 2005 (in the HadCRUT3 data
set!>13). Tt was itself the subject of controversy and debate given
its wide implications!4-28. A discrepancy between observations
and climate model projections initially suggested a potential
overestimation of climate sensitivity to anthropogenic
forcing!®17. Main areas of discussion later involved the roles of
the Pacific Ocean internal variability (in particular effects of the
El Nifio Southern Oscillation, ENSO, and the phase of the Pacific
Decadal Oscillation, PDO)!8, the land masses of North America
and Eurasia dominating land temperature trends?®, volcanic
activity!?, and the excess of heat stored in deeper ocean layers
of the Pacific Ocean, and to a minor degree, of the Atlantic
Ocean?!-23, Consensus was finally reached with the inter-
calibration of monitoring sources and models3(.

The warming slowdown was largely explained as a redis-
tribution of heat within the Earth’s system?3-3!, with enhanced
uptake of heat energy by the global ocean involving the strongest
El Nifio on record for 1998 followed also by a strong La Nifa.
The decadal and transient pattern of variation in the rate of
increase of GMST must be seen as the result of averaging at the
global scale across different regions, with dynamical contribu-
tions of the major oceanic drivers of climate variability, including
ENSO and the PDO!41820.2632 A recent review conveys the
importance of decadal climate variation of changes in the tro-
pical Eastern Pacific, where ENSO originates, and the increasing
evidence for complex inter-basin feedbacks between the tropical
Atlantic, Indian and Pacific oceans33. Irrespective of the final
causes behind it, the transient global warming slowdown took
place at the turn of the century (1998-2012) coincident with

documented decreases in seasonal malaria epidemics in East
Africa®’.

We, therefore, address here the link between the reversal in
malaria’s decadal trend in Ethiopian highlands and this con-
comitant slowdown in global warming by considering its regional
manifestation in local temperatures. We further examine the role
of main modulators of this regional climate at interannual and
decadal scales, namely ENSO and the PDO respectively. We take
advantage of extensive retrospective records on malaria cases
from 1968 to 2007 for both parasites Plasmodium falciparum (Py)
and Plasmodium vivax (P,) with different epidemiology in a
highland region of Oromia, Ethiopia, where widespread public
health interventions against malaria did not start until
2004-2005343>, We also analyze the full ensemble of weather
stations for this region. In addition to variance and trend
decompositions of local malaria, rainfall, and temperature time
series, we examine connections between malaria cases, regional
climate, and global climate variability. We use an atmospheric
model to prescribe the two major modes of variability, ENSO and
PDO, to investigate their differential effects over the region before
and after the turn of the century. These connections help establish
a consistent chain of effects and assess the consistency of
mechanisms and their associated variability across scales. In
particular, a process-based transmission model for P. falciparum
is used to predict what would have been the effect on malaria
cases of the observed change in temperatures in the absence of the
public health interventions introduced post-2004. Evidence that
malaria dynamics in highland regions did indeed closely track the
slowdown in temperatures and its associated global drivers, would
indicate strong coupling between the disease and climate. Such
coupling would have preceded and therefore facilitated public
health efforts, acting synergistically to reduce malaria risk. It
would have continued to act even after these efforts decreased
malaria risk. Implications for the considerable extents of the East
African highlands that did not experience such interventions on
malaria transmission and for future reversals of current trends
should be carefully considered.

Results

The Debre Zeit study area within the Oromia region borders the
East African Rift Valley and includes parts of the Central High-
lands of Ethiopia. Its altitude ranges from 1600 to 2500 meters
above sea level from the South East to the North West respec-
tively (Fig. 1A). The temporal evolution of minimum temperature
(Tiin) is shown in Fig. 1B for the interval 1968-2007 together
with its long-term mean (“Methods” section). For the regional
climate data, we extended the previous composited time series” by
averaging eleven instead of the four meteorological stations clo-
sest to the study site in Debre Zeit, to obtain monthly minimum
(Tmin) and maximum (T,,,,) temperatures, and precipitation
(“Methods” section, Fig. 1B, C and Supplementary Figs. 1, 2). We
refer hereafter to this new composite regional time series as DZ.q
and to the earlier one as DZ. For comparison, for the interval
from 1993 onwards, average time series for the climate variables
were also generated from the entire set of 24 local climate ground
stations in Oromia (hereafter ORO, Supplementary Fig. 2A). Both
resulting regional time series, from the 11 and 24 stations
respectively, co-evolved in high synchrony with the DZ T.,;, and
Timax records (Supplementary Figs. 1 and 2). Differences appear
minor and are localized with the timing of the movement up in
elevation of one of the DZ stations’ (“Methods” section). The
area is epidemic-prone and characterized by unstable malaria
transmission with marked variation in the number of cases
among years. The main transmission season follows the
(June-August) long rains and takes place from the beginning of
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Fig. 1 Geographical setting of the Oromia region (Ethiopia) and epidemiological evolution of malaria incidence since 1968. Elevation of the region
ranges from 1600 to 2500 m above sea level from the South East to the North West respectively. A The map shows the respective locations of Oromia in
Africa, the 24 weather stations used in this study (“Methods” and Supplementary Information), and the malaria surveillance region in Debre Zeit (red
contour). B Evolution in minimum temperature (T, yellow) and the long-term mean obtained by SSA (Trin L red line) for the interval 1968-2007 (this
reconstructed component was significant at p < 0.001 against a red-noise null model; see “Methods” for technical details). € The malaria time series for
both Plasmodium vivax (P,, blue line) and Plasmodium falciparum (P;, green line) correspond to confirmed malaria cases starting in January 1968. These data
are shown together with the long-term composite minimum temperatures shown in B, an average from the 11 meteorological stations closest to the malaria
surveillance area (“Methods” and Supplementary Information). There are two transmission seasons following the short (February-May) and long
(June-August) rains. The main transmission season takes place from the beginning of September. (The regional map was produced with the ArcGIS
software package, with an overlay of the GTOP30 digital elevation layer at 1Tkm x 1km resolution obtained from USGS86).

September. The malaria time series for both parasites correspond
to confirmed monthly cases starting in January 1968 from sur-
veillance efforts in the entire Debre Zeit sector (“Methods” sec-
tion, Fig. 1C). Outbreaks become evident at the end of the 1970s,
increase in size towards the end of the 1990s, and are followed by
an overall decrease in cases, with interannual variability overlaid
on these general trends (Fig. 1C). The long-term variability for
Tmin from Fig. 1B (red line) is overlaid with the evolution of
malaria cases for comparison (Fig. 1C).

The concordant long-term patterns of variation between tem-
perature and malaria suggest an important role of this climate
factor in the turnaround of epidemic size at the beginning of the
2000s (Fig. 1; correlations r > 0.95, p < 0.01, Supplementary Table
I). To address this role, we separated the P; time series into
“training” and “prediction” sets including the reported cases pre
and post 2000, respectively (Fig. 2 and “Methods” section). The
training set was used to fit a dynamical model for the transmis-
sion of the disease by likelihood maximization; the prediction set,
to compare the observed cases to the predicted ones generated
with the best model driven solely on the basis of temperature
(Fig. 2B, Supplementary Fig. 3 and “Methods” section). Specifi-
cally, we asked with the fitted model what would have been the
post 2000 dynamics of the malaria system based solely on tem-
perature changes and with no consideration of the strong inter-
ventions introduced in the mid-2000s. We are not assuming that
malaria transmission occurred in the complete absence of inter-
ventions until this time. We are asking what would have been the
effect of the observed variation in temperature if everything else

had remained the same than in the 1980s-1990s, including pre-
vious levels of intervention. The estimated value of the trans-
mission rate (B(f) in “Methods”) including dynamical noise
necessarily incorporates implicitly any effect of these earlier but
limited control measures.

In the model, mean monthly temperature is used as an explicit,
standalone input of the transmission rate at interannual time
scales. We constructed the temperature covariate based on a clear
empirical relationship between the total cases in each of the two
transmission seasons and the average monthly temperatures over
the respective rainy season that precedes each of these (see
“Methods” and associated Supplementary Fig. 4 for details). The
Maximum Likelihood Estimates (MLE) for the parameters with
their well-defined confidence intervals are given in Supplemen-
tary Fig. 3 and Table included therein. Among these, the two
temperature coefficients (b, and bre) indicate a positive effect of
this climate factor on the transmission for both seasons, sig-
nificant and stronger for the second peak which is also the main
malaria season. Figure 2B then shows results from an ensemble of
predicted trajectories from numerical simulations of the model
with the MLE parameters and for initial conditions sampled from
the estimated state of the system for January 2000 (“Methods”
section). The predicted size of seasonal epidemics reverses its
trend at the beginning of this new decade, and mean monthly
cases closely follow the observations up to 2004. Thus, the
changes in temperature forcing in the context of existing, low,
levels of control, have influenced the slowdown in reported cases
at the beginning of the decade. Predictions and observations
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Fig. 2 Stochastic transmission model. A Diagram of the compartmental structure of the model. The model divides the human population into classes, for
susceptible (S), exposed (E), infected, and infectious (I) individuals. An additional class is introduced, Q, for asymptomatic individuals that still carry the
parasite after the initial infection but transmit it to the mosquito vector at a lower rate’”.78, A second part of the model represents in a phenomenological
way the mosquito component. As previously described®®7, a chain of compartments (A;...A,) effectively implements a distributed time delay between
infections in humans and the force of infection (the per-capita rate of infection) experienced by a susceptible individual. This phenomenological delay
represents the joint effect of the development of the parasite within the mosquito vector and the survival of this vector. The compartment chain generates
a time delay in the form of a gamma distribution, a flexible form which by contrast to the more typical exponential distribution allows for the consideration
of a mode or characteristic timescale. The effect of temperature is included in the transition rate representing transmission psg. The system of stochastic
differential equations is given in the “Methods" together with the description of the measurement model (for cases reported with an error) and the way the
temperature covariate enters in the transmission rate. B Comparison of predicted and observed falciparum malaria cases. The reported cases are shown in
red. Median simulated cases (hindcasts) with the best model for the MLE (Maximum Likelihood Estimate) parameters are shown in blue for the time
period of the training set data together with their uncertainty (shaded, for the 10% and 90% quantiles). Median predictions for the “out-of-fit" period are
shown in green, also with their corresponding uncertainty. The Maximum Likelihood Estimates (MLE) for the parameters with their well-defined confidence

intervals are given in Supplementary Fig. 3 and Supplementary Table included therein.

started diverging in 2004, as expected from the timing of the
enhanced malaria interventions in the region’ (“Methods”
section).

We also fitted a nested model in which the incubation period in
the human host is now fixed (to 12 days, a duration that is longer
than our estimate, and closer to what is known about Plasmodium
falciparum infections). Although we already know from the
profile likelihood of this parameter (Supplementary Fig. 3) that its
MLE value is shorter than 12 days, we address here whether our
results are robust to fix this parameter at this longer value.
Numerical simulations of the model with the fixed incubation
period exhibit similar temporal behavior in the predictions driven
by temperature (compare Fig. 2 with Supplementary Fig. 5).
Thus, this parameter value is not critical to the conclusion that
changes in temperatures predict the observed decline in the
epidemic size of the early 2000s. An explanation for the shorter
incubation period is that the model relies on this parameter
together with the distributed delay in the force of infection
(representing the vector implicitly) to generate an effective
dynamical delay between the estimated seasonal transmission rate
and the exact timing of epidemic growth and peak cases. Similar
general results on predictions are obtained for a model whose
covariates are based on minimum temperatures (Tp,;,) (Supple-
mentary Figs. 7 and 8).

To further investigate the coherency between malaria and
temperatures, and to do so as a function of timescale, we
decomposed the respective time series into separate (orthogonal)
temporal components with Singular Spectrum Analysis (SSA36-38,
a method especially well-suited for this purpose in nonlinear
systems). SSA reveals the existence of variability components at
seasonal “high” frequency (hereafter, HF), interannual (IA), and
interdecadal low-frequency (LF) scales, rather than a real trend

(“Methods” section; Figs. 1C, 3, and 4). The reconstructed com-
ponents correspond to respective periodicities shorter than (or
equal to) one year for HF, between 1 and 10 years for IA, and
longer than (or equal to) 10 years for LF.

High-frequency, seasonal, variability is of particular relevance
to transmission since the seasonal cycle of both rainfall and
temperature influences the abundance of the mosquito vector.
Both variability components, HF and LF, exhibit highly con-
comitant changes among temperature and malaria cases for both
parasites, especially for T, but also rainfall (Figs. 1C, 3A-C;
correlations shown in Supplementary Table I). In particular, the
reconstructed LF component for Ty, strongly covaries with
those for both P, and P¢ malaria (Fig. 3A; see also Supplementary
Table I). Moreover, from 1998 onwards there is a significant
decrease in reported malaria cases for both parasites, with a
concordant dip around the year 2000, despite their different
epidemiology which includes the occurrence of relapses in P,. A
pronounced minimum in the 2000s is also apparent for the high-
frequency seasonal components of P, and Py, as well as for sea-
sonal T,,;, and precipitation (Fig. 3C, b). Moreover, the seasonal
variability of incidence for both parasites (Fig. 3C) exhibits a low-
frequency modulation (the envelope of the seasonal cycles) that
tracks closely the trend in T, (Fig. 3A). In other words, the
amplitude of the seasonality in incidence increases throughout
the 1990s and decreases at the turn of the century. This time also
coincides with a decrease in the amplitude of climate seasonality
(Fig. 3C; time window shaded in blue, Fig. 3).

Analyses so far focused on regional climate. To develop a more
comprehensive view beyond seasonality, we considered next
connections to inter-hemispheric climate variability, to both the
El Nifio Southern Oscillation (ENSO) and the Pacific Decadal
Oscillation (PDO). As mentioned before, changes in these climate
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Fig. 3 Comparison of the temporal coevolution of malaria cases, regional temperatures and rainfall, and remote climate drivers, for different

components (low-frequency and seasonal). A Low-frequency changes in Ps cases, P, cases, and T, (the composite time series from 11 stations, DZ,g),
show concomitant variation and the existence of a slowdown in both malaria and temperatures. B The respective seasonal components of rainfall (R) and
minimum temperature (Trin DZeg) covary. Note the dip in both variables around the turn of the century and the concordance of the multi-annual envelope.
C The respective seasonal components of P, and P cases also covary, including the reduction in amplitude for both variables around the turn of the century.
Note the long-term envelope of the seasonal cycles and its concordance with the trend of T,;, in A. The time period indicated by the black box corresponds
to the years at the turn of the century, the focus of our investigation. All components shown were significant at p < 0.005 against both white noise and a

red-noise null model (see “Methods"” for technical details).

phenomena were implicated in the heat redistribution of the
oceans underlying the apparent slowdown in global
warming?®-32:33, Moreover, both ENSO and the PDO are known
to influence the seasonal migration of the Intertropical Con-
vergence Zone (ITCZ), and wultimately the seasonal-to-
interannual variability in rainfall and the variation in tempera-
tures in eastern Africa3®. We specifically addressed here whether
these large-scale climate controls known to operate over the East
Africa region are also associated with disease patterns and with
regional temperatures.

At the interannual timescale, the reconstructed orthogonal
components obtained with SSA (“Methods” section) for both Py,
P, and T,,;, show clear covariation, with a temporary amplifi-
cation of their magnitude in the late eighties and nineties, fol-
lowed by a contraction afterward (Fig. 4A). Similarly, covariation

is seen for the reconstructed interannual component of the PDO
(Fig. 4B). Thus, all interannual components in these panels
concerning both disease and climate exhibit an increase in
intensity after the 1980s and until the turn of the twenty-first
century (Fig. 4). The impact of the large El Nifo events of 1997/8,
2002, and 2006 on both regional climate and malaria cases in DZ
is evident at both seasonal and interannual time scales (Figs. 3B,
C and 4A, B shaded areas). In addition, the interannual com-
ponent of the PDO appears to strongly covary also with those of
the two malaria time series, even though it is not highly correlated
with that of ENSO for the analyzed interval of 1968-2007 (cor-
relation r = 0.388; p > 0.05). Taken together, these results suggest
that large-scale climate variability exerts strong control over the
region, in agreement with the more general literature on climate
modulators of East Africa®0:41,
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Fig. 4 Interannual coevolution of malaria cases and remote climate drivers. A The interannual components of Py, P, cases, and T, (DZ,g) are shown to
covary in amplitude at these multi-annual temporal scales. B Similarly, the variability of P; cases and P, cases covaries with that of the PDO (Pacific Decadal
Oscillation) index. Black boxes denote the three strongest El Nifio episodes covered (1997,/98, 2002, and 2006). In all cases, the variability for the entire
interval 1968-2008 was decomposed by means of Singular Spectrum Analysis (SSA36-38) under the same analytical conditions. See “Methods” for details
on both index construction and analyses. All shown components were significant against both white noise and a red-noise null model (p <0.007).

The global modulators of regional climate and ultimately of
malaria incidence in Oromia can be further confirmed by tracing
spatially their association with the strong 1997/1998 malaria
epidemics (Fig. 1A). To this end, we applied scale-dependent
correlation analysis (SDC*>43, “Methods” section) to the rela-
tionship between reported cases of Py and P, malaria and global
sea surface temperature anomalies (SSTa). This statistical method
is specifically formulated to analyze transient correlations
between time series. Its spatial version considers these transient
temporal associations between the time series for a given variable
and those for a second variable at different locations in space
(“Methods” section). Here, we specifically identify for which
locations of a global grid, SSTa exhibit significant correlations
with the disease time series in the given window of time (the
1997/1998 years). These local correlations highlight grid points in
space of high and significant association in time. In particular,
when an ensemble of the grid points with high and significant
correlations to malaria cases constitute a coherent, contiguous,
spatial area, its correspondence with an ocean region known to
drive global climate variability supports an influence of the
associated climate phenomena on disease dynamics (e.g., regions
of the Pacific Ocean associated with ENSO or the PDO).
Figure 5A-D shows the identified SSTa regions associated with
the strong 1997/1998 malaria epidemics for different lead times of
up to 4 months before the malaria peak. The significant positive
correlations clearly identify regions of the Pacific Ocean

indicative of both a strong warm PDO phase and warm EN
conditions. Both climatic anomalies have large positive phases in
1997/98 producing synergistic effects and extreme impacts on the
regional climate of Ethiopia, and therefore on local malaria epi-
demiology. Specifically, an anomaly of over 2.5-3 °C in regional
SST over the Ethiopian coast occurred under the strongest EN on
record in 1997, concomitant to a positive PDO phase (Fig. 5).
Similar correlation patterns to those of Prand SSTa were obtained
for this same EN episode when considering for the climate grid,
surface air temperatures at two meters height (or T,) with
anomalies reaching 3 °C (Supplementary Fig. 10). The similarity
in the spatial correlation patterns further supports the link
between the dynamics in the Pacific Ocean and climate in East
Africa, as no pre-determined ENSO frequency is inherent in the
air temperature except following strong EN events.

The effect of EN can vary however across events, with only
particular events exerting a clear influence on the region of
interest and others not (Supplementary Figs. 9 and 11). SDC
maps between the Niflo3.4 time series and the global SSTa grid
show this nonlinear relationship between El Nifio conditions and
ocean temperatures, especially for the western Indian Ocean
(WIO). Of the 11 EN events within the study interval, only the
EN events of 1997, 1972, 1982, and 1968 are associated with large
anomalies in the WIO and Ethiopia (Supplementary Fig 11).

We left out of this study the more local and higher-frequency
roles of Indian Ocean modes of variability such as the Indian
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Fig. 5 Correlation maps showing the signature of Plasmodium falciparum malaria in Oromia (Ethiopia) onto values of Sea Surface Temperatures for the
Pacific regions of El Nifio (EN) and the Pacific Decadal Oscillation (PDO). SDC7>7¢ spatial analyses are shown for the main malaria peak in the record in
1997/98, coinciding with the strongest EN event. Correlations are computed between the malaria time series and the SSTa time series at each point of the
global ocean. Grid points with a significant correlation (p < 0.01) are colored. Regions of significant correlation are found within the boxes that delimit the
PDO and EN regions of the Pacific, as well as the Indian Ocean (I0). The panels correspond to different months leading (—) or lagging (4) the malaria peak
month in 1997/98, and show the developing and significant SST anomalies in the global ocean that are correlated with malaria incidence. SSTa,
respectively, leads the malaria peak by 4 months in A and two months in B; they exhibit no lag in € and lag behind the peak by two months in D.

Dipole Mode (IDM)*, as they are for this time interval tightly
linked to ENSO control and do not exert a comparable mod-
ulation over the interannual or decadal time scales (Supplemen-
tary Fig. 12). A clear covariation between the IDM and the
Nifi03.4 indices is evident (Supplementary Fig. 12A), with higher-
frequency components being characteristic of the IDM and no
relevant decadal variability structure (Supplementary Fig. 12B, C).

At interannual time scales, changes in global mean surface
temperatures should reflect variability in ENSO and the PDO,
given the control exerted by these phenomena on the world’s
largest ocean basin. Indeed, this relationship between global and
regional variability is clearly apparent when the LF trend com-
ponent is removed from the GMST (HadCRUT4 anomaly in
Supplementary Fig. 13A). The remaining variability in the GMST
after removing the trend exhibits close covariation with the PDO
(Supplementary Fig. 13B) and mostly ENSO (Supplementary
Fig. 13C).

As good station coverage is far from optimal in Africa for the
time interval of interest, and in particular, for the earlier part of it,
we relied on an atmospheric climate model to properly
simulate the effects of ENSO and the PDO on regional
climate. We examined the consensus atmospheric model simula-
tions for the region with the Community Atmosphere
Model version 5 (CAM5%%). CAM5 includes recent physical
parameterization  enhancements to realistically simulate

full aerosol-cloud interactions, (http://www.cesm.ucar.edu/models/
cesm1.0/cam/docs/description/cam5_desc.pdf). We wused the
atmospheric model intercomparison project (AMIP) simulations
with settings selected so that the generated SST's retain interannual
and short-term decadal variability. For this purpose, the long-term
trend was not included, and therefore cannot interfere with the
temporal scales we wish to investigate. Correlations of the sea and
land surface temperatures with Nifio3.4 in the two-time intervals of
interest (1979-2000 and 2001-2016), before and after the slow-
down respectively, support a strong dynamical role of both ENSO
(Supplementary Fig. 14) and the PDO (Supplementary Fig. 15) in
modulating climate over East Africa and the nearby Indian Ocean,
which changes at the turn of the century. The influence of ENSO
appears to weaken, whereas that of the PDO strengthens,
around the turn of the century, in close correspondence to the
association patterns obtained in the previous time-series analyses
of the data.

Discussion

Decadal variability in malaria cases for both parasites, P. falci-
parum and P. vivax, tracks the trends in regional temperatures
closely. We have shown that changes in local temperatures can
explain what we could also call the “slowdown” in malaria epi-
demics. For the region of Debra Zeit in Ethiopia, a transmission
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model driven by changes in temperature and under counter-
factual conditions of no enhanced public health intervention,
accurately predicts the observed decline in epidemic size post
2000. Notably, this decline precedes the known timing of
enhanced control efforts. Thus, changes in temperature have
facilitated the effect of control, working synergistically with it, in
the sense of precluding the large epidemics of the 1990s. This
conclusion is further supported by the statistical analyses of time
series, showing the coincident patterns of variation of both fal-
ciparum and vivax cases with temperature (as well as rainfall) at
the multiple temporal scales considered, from seasonal to inter-
annual to decadal.

Thus, the results of our transmission model indicate that
changes in temperature could have driven, fully or in part, the
reversal from an increasing to a decreasing trend in seasonal
epidemic size. Malaria dynamics and their response to climate
change worldwide are of course complex phenomena involving
many other drivers, including land-use, migration, and socio-
economic conditions’”. As designed, our modeling analysis iso-
lates the effect of temperature, all else remaining constant. An
alternative hypothesis other than the temperature would involve
changes in the frequency of drug resistance®. The co-occurrence
of both parasites in Ethiopia already allowed us to dismiss this
explanation, as only P. falciparum and not P. vivax exhibited
resistance to chloroquine in the 1980s and 1990s”. The fact that in
this region incidence by both parasites covaries in similar ways to
temperature (Fig. 3) thus rules out drug resistance as the causative
factor behind the trends. In addition, drug resistance would need
to first increase and then decrease in frequency exactly at the
same time than both incidence and temperature. Increases in the
number of reporting clinics are another possible confounding
factor. These would imply however a change in the total popu-
lation covered, which was taken into account by incorporating
observed population size explicitly in the transmission model.

Our modeling approach does not imply that control efforts
were completely absent before the turn of the century. Effects of
control can be implicit in the estimated transmission rate and
dynamical noise. We are asking what would have been the pre-
dicted trajectory of cases if the control level had not changed. In
fact, during the pre-2005 years leading to the large epidemic in
2003, which affected more than 200 districts*’, malaria control
measures had been weak overall with diagnostics facilities only
available in few government-owned malaria sectors. Starting with
the policy change to use ACT for treatment of P. falciparum®,
the beginning of health extension workers assigned at sub-district
level providing diagnostic and treatment services*’, as well as the
large-scale distributions of LLINs and IRS across all regions®,
represented a significant shift both in the local and national
responses toward the control of the disease in 2005. The Debre
Zeit malaria diagnosis and treatment facility and four other
facilities in the larger East Shoa zone were the most recognized
one-window centers, solely providing malaria examination and
treatment services in the area®l.

Although the results of the time-series analyses are similar for
both parasites, the transmission model was developed and para-
meterized for P. falciparum to avoid the complexity of relapsing
infections characteristic of P. vivax. Extensions could consider a
similar analysis with a model for vivax malaria®?. We modeled
spatially aggregated malaria cases. Our process-based transmis-
sion model could be improved further by explicitly considering
space, here elevation. Interestingly, predictions from the fitted
temporal model reproduce the data extremely well after the large
epidemics of 1997-1998, coincident with a large El Nifio. Pre-
vious work has shown that during the El Nifo events of the
1990s, the transmission of the disease expanded upwards in ele-
vation, and did not contract after 1997/19987. This observation

suggests that a purely temporal model is best able to capture
transmission dynamics once this altitudinal distribution has
expanded.

To consider large-scale, global, drivers of climate and their role
in the region of interest, including malaria dynamics, we con-
centrated here on ENSO and the PDO, two major phenomena in
the climate variability of the Pacific Ocean. As mentioned earlier,
this choice stems not only from the important role of the oceans
in the dynamics of global warming but also from the evidence
involving the large El Nifo event of 1997/98 and the La Nifa of
1999/2000 in the so-called slowdown in warming at the turn of
the century3!l. As pointed out in the IPCC ARS5 report, 90% of the
heat resulting from global warming during the last four decades
has been accumulated in the oceans, and the periodic occurrence
of El Nifio can act as a vent to exchange this heat from the ocean
to the atmosphere®3. Partially transferred to the Indian Ocean via
the Indonesian throughflow and a modified Walker atmospheric
circulation, this heat is reflected in the warming trend over that
region3!. As the IPCC ARS also remarks, the warming trend over
the Indian Ocean is a major contributor to, and largely in phase
with, the overall trend in the global mean SST?3->4.

We did not analyze here direct associations between a time
series of global temperatures and malaria (or regional climate) in
Ethiopia, as global trends measured in that way reflect an
emergent average from variation at multiple temporal and spatial
scales, rather than a tangible driver related to the dynamic pro-
cesses that influence the region of interest. We provided instead
evidence for a chain of effects from global drivers of climate
variability to regional climate variability in East Africa to local
malaria in Ethiopia. A weakening of the atmospheric forcing by
El Nifo is evident post 2000, and further research is needed to
interpret the enhanced appearance of La Nifa events in the fol-
lowing decade. Conversely, the opposite is observed for the PDO,
with a reversal towards a stronger association, even though the
length of the time span considered limits conclusions on
this mode.

Previous studies have reported significant correlations between
Pacific SSTs and Ethiopian climate, with the mechanisms behind
the role of ENSO still poorly understood (but see Diro et al.>>).
The main focus has been on rainfall rather than temperatures, on
drought conditions during El Nifio years, and a downward trend
in the Long Rains over parts of the Great Horn of Africa starting
at the end of the 1990s°>-%1. Our complementary attention to
temperature stems from its dominant role as the limiting climate
factor of malaria transmission in highlands, with rainfall influ-
encing mostly the timing of the seasons.

A large body of climate literature has also addressed linkages at
longer time scales between the Pacific Ocean and the East Africa
region, including the Western Indian Ocean (WIO). For example,
Hoell et al.®2 suggested that human-induced changes in tropical
SST directly exacerbated the effects of natural Pacific interannual
and decadal variability, enhancing both warming and drying in
the Great Horn of Africa. Roxy et al.>* provided evidence for the
direct influence of greenhouse warming on the region of interest.
They proposed that the long-term warming trend over the wes-
tern Indian Ocean is highly dependent on the asymmetry of the
ENSO teleconnection, with El Nifio leading to warming but La
Nifia not inducing the opposite cooling. They further suggested
an increase in the frequency of El Nifios in the interval of
1950-2012, which would have impacted the WIO, and noted an
intensification of La Ninas following strong El Nifo events (e.g.,
EN in 1997/98 and LN in 1999/2000). Interestingly, the more
recent cool conditions over the eastern Pacific might be due to
feedback from a warmer Indian Ocean® bringing the sequence of
cause and effects into a complex and vicious cycle that requires
further research. Several other studies have also noted that
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warming trends over the Indian and Atlantic Oceans lead to La
Nifia-like conditions over the Pacific®3-%>. The interconnected-
ness of the different ocean basins in the tropics is increasingly
appreciated, including negative feedbacks from warmer Atlantic
and Indian oceans to the eastern Pacific, that may have played a
role in the warming hiatus and remain to be further elucicated?!.

Our results should motivate similar analyses for other high-
lands in East Africa, including those in Kenya where long-term
surveillance programs at two tea plantations have been the subject
of a number of studies on increasing trends in incidence from the
1980s to the 1990s (reviewed in refs. 48:66). These extensions will
require the identification and collation of long-term epidemio-
logical records where they exist, and of information on the
implementation of control measures over time as well. A previous
study®® already raised the question of whether factors other than
heightened intervention in the form of large-scale bed net dis-
tribution and improved case management, might explain
observed decreases in reported infections and mosquito abun-
dances in sub-Saharan Africa. The study reports mosquito data in
two endemic low-altitude locations of NE Tanzania for two
respective periods of time, from 1998 to 2001 and from 2003 to
2009. The role of climate factors in these very different epide-
miological conditions cannot be extrapolated from our study, and
cannot yet be fully addressed with such short periods, especially
for questions on trends and their changes. Consideration of
longer data sets on mosquitoes and infections in endemic regions
is warranted, including the role of factors other than climate such
as urbanization and land-use change.

The evidence for the slowdown in warming influencing malaria
transmission demonstrates the strength of the coupling between
the disease and climate. This temporary slowdown acting syner-
gistically with the enhanced control efforts emphasizes the rele-
vance of considering climate conditions when evaluating and
planning public health intervention in epidemic regions in gen-
eral. An apparently persistent role of climate conditions in 2006,
after strong control had already been initiated, further under-
scores this point. The manifestation of climate effects at multiple
temporal scales should be expected. Relatively short multi-annual
trends in improved health are not sufficient to conclude persistent
effects of intervention, which would entail the danger of com-
placency and relaxation of these efforts®’. Although considerable
progress has been made in regions of low malaria transmission
including the highlands of Ethiopia®’, consideration of under-
lying and predicted climate conditions should inform changes
and investment in public health plans. In the absence of regional
elimination, an enhanced dialog between climate science and
public health should allow better consideration of the environ-
mental context in which the fight against the disease is being
conducted. These conclusions are especially relevant under the
current targets of malaria elimination, the successes of the last ten
to fifteen years mainly in epidemic, low transmission, regions,
and the increased realization of P. vivax infections as a neglected
public health problem in Ethiopia®®>!, and beyond 20152,

Methods

The malaria study region is described in detail elsewhere’. The reported cases for
both Pfand P, were confirmed through microscopy examination of blood slides
from clinical (febrile) cases seeking diagnosis and treatment. They were provided
by the government malaria center in Debre Zeit, established in the late 1960s to aid
Ethiopia’s eradication efforts. For consistency, cases diagnosed in government
clinics outside the original reporting sector between 1993 and 2007 were not
included, and cases from four new clinics opened after 1993 in Debre Zeit town,
Mojo, and Chefe Donsa were added. The malaria cases post 1993 are originally
reported spatially for 159 administrative units known as kebeles in Debre Zeit” and
aggregated here to obtain monthly totals and construct a time series from 1968 for
a consistent area. Systematic control efforts were applied in the region starting in
September 2005, including the introduction of the new drug treatment (ACTs) for
Py, and a significant increase in vector control (indoor residual spraying, IRS) and

prevention (Insecticide Treated Bednets, ITNs) after the epidemic seasons of
2002-2003. While we cannot control for some variation in the coverage of the
surveillance system up to 2004, there was no structural change in terms of health
care policy or access to health care that could lead to significant inconsistencies or
trends over this period of time. Changes to the treatment policy for P. falciparum
(from SP to ACT) only took effect beginning in the fourth quarter of 2005%%, and
could not, therefore, have an effect on the time period we used to inform our
dynamical model. Inclusion of cases from other neighboring malaria treatment
facilities (four in the East Shoaled Zone) which treated patients traveling from the
Debre Zeit sector, ensures that we captured all cases regardless of which facility
they happened to visit.

Monthly averages of daily minimum and maximum temperature data and
precipitation for stations of the Oromia region were obtained from the Ethiopian
National Meteorological Agency (NMA). We generated average time series for
these variables from the 11 stations closest to the study site (Supplementary
Note 1). Compositing several time series provides a more robust estimate and
eliminates local inconsistencies. In particular, the Debra Zeit station which is the
closest to the region of malaria surveillance exhibits a pronounced dip for Ty, in
2004, coincident with the movement of the station to a higher elevation. This
particular station was therefore excluded from the chosen ensemble of 11. To
validate the use of the resulting average time series, these were compared in both
the frequency and time domains with the corresponding composite average of all
the 24 weather stations in the Oromia region, as well as to the previous four-station
average’ (Supplementary Note 1 and Supplementary Figs. 1 and 2).

To compute both global and regional correlations, reanalysis data sets were used
for global land surface temperature and sea surface temperature (Climate Research
Unit TS4.01, at 0.5-degree spatial resolution®; NCEP/NCAR reanalysis®®7%). Cli-
mate reanalysis combines past observations with models to generate consistent
time series of multiple climate variables. Reanalysis products are used extensively in
climate research and services, including for monitoring and comparing current
climate conditions with those of the past, identifying the causes of climate varia-
tions and change, and preparing climate predictions.

To further investigate linkages between East African climate and the Pacific
Ocean basin dynamics, we used both the El Nifio index (Nifio 3.4, defined as the
temperature time series within the box 5_N-5_S, 170_W-120_W from NOAA-
ERSST-V3 and NOAA-OISST-V2, www.esrl.noaa.gov/psd/), and the Pacific Dec-
adal Oscillation index (PDO, defined as the leading principal component of North
Pacific monthly sea surface temperature variability, poleward of 20N71).

Singular spectrum analysis (SSA36-38) was applied to separate different ortho-
gonal components in both the malaria time series and the regional climate ones.
SSA involves the spectral decomposition (eigenvalues and corresponding eigen-
vectors) of a covariance matrix obtained by lagging the time series data for a
prescribed number of lags M called the embedding dimension. There are two
crucial steps in this analysis for which there are no formal results but useful rules of
thumb: one is the choice of M; the other is the grouping of the eigenvectors to
define the specific major components and reconstruct them. Typically, the
grouping of the eigencomponents is based on the similarity and magnitudes of the
eigenvalues, their power (variance of the data they account for), and the peak
frequency of resulting reconstructed components (RC). For the selection of the
embedding dimension one general strategy is to choose it so that at least one period
of the lowest frequency component of interest can be identified, that is M > fs/fr,
where fs is the sampling rate and fr is the minimum frequency. Another strategy is
that M be large enough so that the M-lagged vector incorporates the temporal scale
of the time series that is of interest. The larger the M, the more detailed the
resulting decomposition of the signal. In particular, the most detailed decom-
position is achieved when the embedding dimension is approximately equal to half
of the total signal length. A compromise must be reached, however, as a large M
implies increased computation, and too large a value may produce a mixing of
components.

Specifically, it is well-known that to characterize interannual variability (in
between seasonality and low-frequency components), as in the case of ENSO, it is
convenient to use filters that allow to properly characterize -and separate- com-
ponents at the quasi-biennial and the quasi-quadrennial interannual ENSO
scales*2. Following customary approaches in climate research, and to achieve
proper separation, we used a scale M = 40, in between these two main
periodicities#243.

Once the main reconstructed components were generated with SSA, we applied
spectral analysis with both the Maximum Entropy Method (MEM) and the Multi-
Taper method (MTM), to identify the dominant frequencies in their power spec-
trum’2-74, MEM is especially aimed at short and noisy time series, and MTM is a
flexible nonparametric method that reduces the variance of spectral estimates by
using a small set of tapers. In this way, we extracted the different variability
components of each time series and compared data sets (e.g., IDM and ENSO, with
only the latter exhibiting a clear period in the decadal range, namely 12.5 years;
Supplementary Fig. 12).

To analyze correlations that are local in both time and space, we relied on the
SDC Map methodology, which includes consideration of different time lags and
implements significance tests based on permutations*>7>76. The correlation maps
resulting from this method allow the identification of regions of the global ocean
whose Sea Surface Temperatures exhibit significant correlations with malaria in
Ethiopia at a given lead time.
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A stochastic transmission model for malaria was developed that follows pre-
vious”’~7? extensions of the compartmental SEIR model. The diagram illustrating
its compartmental structure for the human population and for the phenomen-
ological representation of the mosquito is shown in Fig. 2A. Alternative formula-
tions consider two susceptible classes, rather than a single one, to differentiate
individuals who have acquired immunity from the previous infection and are
asymptomatic upon secondary infection’-8!. Here, consideration of a single class
provides a simplification by not tracking explicitly the infection process in the
partially immune individuals. For low transmission regions, this simplification
precludes problems with parameter identifiability and captures the role of a
reservoir of transmission played in the dynamics by asymptomatic individuals. We
adopt here this simplification and assume that individuals in class Q are asymp-
tomatic and not reported in the surveillance system. Such individuals should not
make an important contribution to the force of infection in unstable regions; we
include it here for completeness and let the data determine their importance and
associated parameters. Previous work has indicated that a model that includes
them better fits the data than a traditional SIRS formulation, even when their
contribution to the overall force of infection is small’8. The corresponding system
of stochastic differential equations is given by:

%: <8P+%) + gl + pgsQ — pgyS — 88 O
% = pgyS — pp,E — OE. @)

% =y E — ] — pl — 01 ®3)

(117? = ol — HgsQ — 0Q @

The different parameters pxy denote transition rates between the classes X and
Y. In particular, g5 and g denote recovery from symptomatic infection, with and
without the acquisition of immunity respectively, and pqs denotes both recovery
from asymptomatic infection and loss of protection against clinical disease (i.e., a
return to full susceptibility). Rate yg; corresponds to the transition from exposed to
infectious, and therefore -Lis the average time of development of the parasite
within the human host, or'the average time from a host receiving an infectious bite
to the parasite producing the blood stages transmissible to a biting vector. We
consider that the influx of new susceptible individuals equals the human death rate
8 plus the observed demographic growth of the population 9 estimated from data.
That is, we incorporate an influx of new susceptible individuals with the rate
(6P + %) to match the observed population from which the reported data comes
from and its growth in the region.

To phenomenologically represent the effect of the vector, we numerically
implement a distributed time delay in the force of infection as a gamma dis-
tribution (with mean 7 and variance 72/m, m = 2). Technically, this is done with a
set of sequential transitions through a chain of identical m stages between the
“latent” force of infection A and its actual value pgg experienced by susceptible
individuals. For m =2,
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As in refs. ©2 and %4, we chose to consider only two stages in the chain, which is
sufficient to generate a unimodal distribution. To complete the model and intro-
duce the effects of climate covariates, we need to specify the latent force of infection

A(t)
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where the transmission rate f5(¢) incorporates seasonality, interannual effects of
temperature in two critical windows of time preceding the two transmission sea-
sons, and environmental noise. We write

6
B(t) = exp [ bysi + br,s, TEMP, + bTﬁsﬁTEMPZ} % (8)
k=1
where the sum implements a flexible (nonparametric) seasonality through the
coefficients (bx) of an orthogonal basis of periodic b-splines, si(f) k=1..., 6 (see
Supplementary Fig. 6 for the shape of these functions). The two following terms
overlay the interannual effects of temperature (via covariates TEMP; and TEMP,)
on this seasonal pattern by localizing these effects in two specific windows of time
given by the 4th and 6th b-spline, respectively. The final term in the expression for
the transmission rate denotes environmental noise, modeled with a Gamma dis-
tribution T to represent unaccounted variation beyond seasonality and interannual
temperature forcing. Supplementary Fig. 3 also illustrates the deterministic part of
the transmission rate (f) obtained from fitting the model to the time series of

cases, for the estimated coefficients by (determining its seasonality) and bT4 and by,
(determining its interannual variation).

The covariates TEMP; and TEMP, are obtained by averaging monthly tem-
peratures over the windows of time (February to May for TEMP, and June to
September for TEMP,) preceding the two transmission seasons and corresponding
to the short and long rains, respectively’. We further subtract a threshold value of
17 °C and make the covariates equal to zero below this threshold. This functional
form was selected following the observation that accumulated cases during each of
the respective transmission seasons is nil below, and increases with the temperature
above, a clear threshold value of 17 °C (Supplementary Fig. 4). This threshold is
consistent with the empirical range for the lower thermal limit of the basic
reproductive number (Ro) of falciparum malaria, established from physiological
measurements of the parasite in Anopheles mosquitoes in the laboratory®.

To consider that cases are under-reported and measured with error, we intro-
duce a measurement model given by a negative binomial distribution so that
cases~Negbin (pC;,k;) with overdispersion k; and reporting rate p. The variable C;
denotes the accumulated new infections (or incidence) sampled in our simulations
from the transitions from E to I during a given interval of time (here, a month).

The model is fitted to the time series data for malaria cases between 1980 and
1999, with a sequential Monte Carlo method based on particle filtering known as
MIF for Likelihood Maximization by Iterated Filtering implemented in the R-
Package pomp®%:81. This method allows consideration of both process and mea-
surement noise, as well as the partial observation of the system. It is now widely
applied to the study of population dynamics in infectious diseases with epide-
miological models informed by time series.

Predictions from January 2000 forward were then generated by simulation of the
“best” model (with the Maximum Likelihood Estimate, MLE, parameters). To
specify the initial conditions, we also need an estimate of the full state of the system
at the end of the training period (December 1999). These estimates (including their
uncertainty intervals) are provided by the filtering algorithm and are used to
initialize the simulations for the predictions. Because the model is stochastic, we
generated 1000 simulations and obtained the median and 10-90% percentiles for
the monthly cases from 2000 to 2008.

Climate records in Africa are sparse, often discontinuous with multiple gaps and
inconsistencies. This is particularly the case for Ethiopia, where meteorological
time series tend to be short and not properly curated. Climate models provide an
alternative to address connections between distant regions, including atmospheric
mechanisms behind these teleconnections. Our climate analyses were reinforced
with atmospheric simulations from the atmospheric intercomparison project
(AMIP) with the ESRL (NOAA/Earth System Research Laboratory)—Community
Atmosphere Model version 5 (CAMS5). CAMS5 provides recent physical para-
meterization enhancements to better simulate full aerosol-cloud interactions?’,
such as cloud-aerosol indirect radiative effects

(http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf).

To compare potential changes in the forcing by ENSO and the PDO of regional
temperatures before and after the hiatus in 2000 (both SST and air temperatures),
we used AMIP simulations with 1880s Radiative Forcing that include conditions in
which SST has been detrended and adjusted to the 1880 equivalent mean condi-
tions®? (but retain interannual and decadal variability). Sea ice is set to a repeating
seasonal cycle of roughly 1979-1990 (i.e., pre-emergence of the melt out)3>. The
greenhouse gases (GHG) and ozone concentrations are adjusted to their 1880
values. The applied Greenhouse Gases (GHG) are those of the CMIP5 recom-
mendations (for annual average and global mean concentrations®?), ozone from
the AC&C/SPARC ozone database848°, and aerosols from CAM5 ECHAMS5 (time-
varying aerosol content, and volcano aerosols from 1979 to 2005). After 2005,
RCP6 aerosols (with no volcanoes) are used. CAM5.0 incorporates a number of
enhancements to the physics package (e.g., several adjustments to the deep con-
vection algorithm), and collectively these improvements yield a significantly
improved atmospheric modeling capability. The simulated temperature and SST
fields were then correlated with the Nifno3.4 and PDO indices for the periods of
1979-2000 and 2001-2016 separately. (Although the temporal span of the two-
time intervals compared could impose a limitation, the results we obtained were
aligned with those from the time series analyses based on data).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The input data for the atmospheric simulations are part of the customized initial and
boundary conditions used in the simulations specified in the “Methods” section, and are
all accessible from http://www.pa.op.dlr.de/ CCMVal/
AC&CSPARC_O3Database_CMIP5.html. Monthly averages of daily minimum and
maximum temperature and precipitation for stations of the Oromia region were obtained
from the Ethiopian National Meteorological Agency (NMA). These data can be found at
https://github.com/pascualgroup/Malaria-highlands. The El Nifio index (Nifio 3.4) and
the PDO index were obtained from www.esrl.noaa.gov/psd/. The reanalysis data can be
found at https://crudata.uea.ac.uk/cru/data/hrg/. The epidemiological data are available
from the authors upon request.
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Code availability

The code developed to fit the transmission model via iterated particle filtering (MIF) and
to produce predictions with this model, using the R-package Pomp, is available at https://
github.com/pascualgroup/Malaria-highlands. The code in Python for Scale-Dependent
Correlation Analysis (SDC) developed by X.R. can be found at https://github.com/
AlFontal/sdcpy.
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