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We consider the detection of change in spatial distribution of fluorescent markers inside

cells imaged by single cell microscopy. Such problems are important in bioimaging

since the density of these markers can reflect the healthy or pathological state of

cells, the spatial organization of DNA, or cell cycle stage. With the new super-resolved

microscopes and associated microfluidic devices, bio-markers can be detected in

single cells individually or collectively as a texture depending on the quality of the

microscope impulse response. In this work, we propose, via numerical simulations, to

address detection of changes in spatial density or in spatial clustering with an individual

(pointillist) or collective (textural) approach by comparing their performances according

to the size of the impulse response of the microscope. Pointillist approaches show

good performances for small impulse response sizes only, while all textural approaches

are found to overcome pointillist approaches with small as well as with large impulse

response sizes. These results are validated with real fluorescence microscopy images

with conventional resolution. This, a priori non-intuitive result in the perspective of the

quest of super-resolution, demonstrates that, for difference detection tasks in single cell

microscopy, super-resolved microscopes may not be mandatory and that lower cost,

sub-resolved, microscopes can be sufficient.

Keywords: microscopy, fluorescence, classification, texture, spot detection, point spread function

1. INTRODUCTION

Over the last two decades, microscopy benefited from several scientific revolutions. For instance,
innovations in chemistry via the production of new fluorescent markers, in optics with lasers
tunable both in wavelength and impulse duration, or innovations in microfluidic bringing in vitro
samples under the microscope automatically. These revolutions enabled the advent of intermediate
to super-resolution microscopy techniques, such as lattice light sheet fluorescence microscopy
(LLSFM), structured illumination microscopy (SIM), stimulated emission depletion microscopy
(STED), or single molecule localization microscopy (PALM/STORM) techniques (Betzig et al.,
2006; Rust et al., 2006; Schermelleh et al., 2010; Stelzer, 2015; Cremer et al., 2017). It is now possible
to observe in 2D or 3D sub-cellular items inside single cells with resolutions which goes below
the Rayleigh criterion for a classical microscope (Lakadamyali and Cosma, 2015; Ryabichko et al.,
2017). These super-resolved systems are still not fully transferred in industrial applications or even
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in microscopy platforms open to users that would not be expert
in instrumentation. One reason for this translation delay is that
super-resolution comes with the price of constraints in terms
of micro-positioning which are more demanding as the size of
the point spread function of the microscope is smaller. One
way to relax such constraints consists in coupling the choice of
the optical elements, i.e., designing the point spread function,
jointly with the biological question raised and the associated
image processing pipelines. We propose such an approach in
this work.

In this article, we consider images of single cells observed
with a microscope in which fluorescent markers have been
activated (see Figure 1). We consider informative tasks that
consist in detecting differences in the spatial organization of
these fluorescent markers. Such differences could be either in
terms of density or in terms of clustering. Detecting changes
in spatial organization tasks are important issues in numerous
biological contexts. For instance, distinct epigenetic states are
associated with specific chromatin spatial modifications and
compactions. Hence, defining the 3D-organization of cancer-
associated chromatin domains could represent a new frontier
to decipher tumor heterogeneity during tumor progression
and metastasis formation (Kundu et al., 2017; Boettiger et al.,
2016; Stevens et al., 2017). In another instance, the detection
of nucleoids distribution changes is an important issue for
the study of mitochondrial defect under various stresses. For
example, disturbance in nucleoids components and mutations
in mtDNA were identified as significant in various diseases,
like carcinogenesis (Lee and Han, 2017) and neurodegenerative
diseases (Chevrollier et al., 2012). These two use-cases focused
on chromatin or on nucleoids of mitochondria are illustrated
in Figure 2. The binary classification task here corresponds to a
detection between healthy and unhealthy from the observation
of the fluorescent markers inside individual cells. The use-
cases illustrated in Figure 2 were produced with a sub-resolved

FIGURE 1 | (A) Real 2D image of a C2C12 cancerous cell immunostained using Alexa Fluor 488 antibodies and acquired with a N-SIM super-resolution microscope

system (Nikon Instruments) equipped with CFI Apo TIRF 100× 1.49 N.A oil immersion objective. (B) Synthetic image, generated to mimic image of (A), with an

heterogeneous Poisson distribution of markers and convolved by a gaussian kernel of σpsf = 0.8 simulating the PSF.

microscope in panel A where markers appear as a texture
and are not distinguishable from one another while it was
produced with a super-resolved microscope in panel B where
markers can all be located individually. However, to achieve
the global characterization of a cell, it might not be necessary
to locate individually each of these markers and thus, there
is no guaranty that super-resolution is indeed mandatory.
Such considerations are very important in practice because
super-resolved microscopes are much more costly than sub-
resolved microscopes in terms of optics, acquisition procedure,
or numerical memory load. It would therefore be very useful to
be able to determine a priori what would be the best resolution for
a given task in order to choose the most appropriated microscope
or design an optimal point spread function (PSF). In practice, for
experimental optical acquisition, several acquisition conditions
could be tested offering various PSF sizes. In simulation, a
continuous set of PSF can be tested freely offering a complete
view of how the cell detection would behave and enable
to envision what would be the good range of PSF before
real implementation.

Two main families of approaches are proposed in the
literature to address the characterization of cells in sub-resolved
microscopy (Kleppe et al., 2018; Paunovic et al., 2019) and super-
resolved microscopy Griffié et al. (2016), Xu and Liu (2019). For
the sub-resolved case, where cells are determined by more or less
organized global patterns, one can use a textural approach. While
for the super-resolved case, fluorescent markers distributions
are classically studied with a pointillist approach. We propose
to compare, for the first time to the best of our knowledge,
the performances of algorithms based on the identification of
each markers (pointillist approach) or the characterization of
the texture created by these markers (textural approach). We
compare the performances of these algorithms for different
sizes of point spread function of a microscope and specially
focus on the situations where the optical systems passes from
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FIGURE 2 | Real 2D images of healthy and unhealthy nuclei of cells from different microscopy techniques. (A) Nuclei of breast cells images acquired by an Aurox

Clarity structured illumination/spinning disk laser-free confocal microscopy system. The lens used was a 63× 1.4NA Oil objective, with for a 583 nm excitation and

631 nm emission wavelengths, and looking at mCherry labeled histone-H2B. (B) Nucleoids of skin fibroblast mitochondria stained with fluorescein isothiocyanate

(FITC) and acquired with super-resolved stochastic optical reconstruction microscopy technique.

super-resolved to sub-resolved. Such an experiment would be
very time consuming to be undertaken with real microscopes
and can benefit from a simulation scheme as proposed here and
also as current practice in the literature (Lehmussola et al., 2007;
Rubin-Delanchy et al., 2015; Gazagnes et al., 2017; Samacoits
et al., 2018; Ma et al., 2019). Simulated images are produced with
the help of simulated point spread functions which realistically
mimics real fluorescent images as shown in Figure 1B. An
example of real images is also provided to validate the result
obtained on simulation.

The article is organized in the following way. The process for
the simulation of the images is first given. Then tools used for
the characterization with textural or pointillist approaches are
described. The comparison of these feature spaces reduced to
the same dimension and applied to the same classifier is then
produced before discussion and conclusion.

2. SIMULATING FLUORESCENCE
MICROSCOPY IMAGES OF SINGLE CELLS

Two simulations were realized to investigate two distinct binary
classifications with a difference in fluorescent markers density
or a difference in spatial clustering of fluorescent markers.
This corresponds to the practical situation of cases illustrated
in Figure 2.

First, we generated two populations of cells (C1) and (C2)
with a difference of marker density. The coordinates (x, y) of
each fluorescent marker were picked randomly according to
independent and identically distributed Gaussian distributions
on horizontal and vertical dimensions of an image of M × N
pixels, respectively, where x ∈ {1, 2, 3, ...,M = 256} and y ∈

{1, 2, 3, ...,N = 256}. The two classes of cells, mimicking healthy
(C1) and pathological (C2), were generated with a difference
of standard deviation in their distributions (Figures 3A,B). The
parameters were empirically adjusted to mimic observations
on the real cells of Figure 1A, with for healthy cells (C1) :
Nx(126, 100), Ny(126, 100), a total amount of markers of 3, 000,
the area of the cell is 100 × 100 = 10, 000 pixels, and a resulting

density of markers number of markers
area of the cell

= 0.3. For the pathological

cells (C2) we have Nx(126, 100), Ny(126, 90), a total number
of markers of 3, 000, an area of 100 × 90 = 9, 000 pixels,
and a resulting density of markers of 0.33. The difference of
marker density between classes is of 0.03. We used here this
difference between (C1) and (C2) to compare the pointillist and
textural approaches.

Second, we generated populations of cells with same density
of markers but with different spatial organization.We considered
the task to detect the difference between cells with heterogeneous
Poisson processes markers like (C1) and cells with clustered
markers that we coined (C3). Clustered fluorescent markers
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FIGURE 3 | Visual abstract. (A) The processing pipeline to simulate cell and classify them with distinct fluorescent marker densities or organizations. The image

acquired by the microscope is simulated by the convolution of the distribution of markers with the PSF. To classify the cell types, two approaches are studied for

different values of PSF: pointillist and textural. (B,C) Examples of synthetic microscopic images [(C1) or (C2) in (B) and (C3) in (C)] for different values of σpsf and the

corresponding k ratio according to Equation (1).

were generated with a two steps process (i) 300 seeds were,
independently from each other, distributed uniformly on
horizontal and vertical space of the image then (ii) around each
generated seed s ∈ {1, 2, 3, ..., 300}, 10 markers were generated
with a distance to the seed which follows an exponential
distribution Ds (0, λD = 1

µD
), where λD is the rate parameter of

this distribution andµD is themean of the distribution which was
set to 35 (Diggle, 1983). The overall number of markers generated
in each image was 3, 000. An instance of this cell classC3 is shown
in Figures 3A,C. Clustered (C3) and heterogeneous Poisson
processes markers (C1) organization was used to compare the
pointillist and textural approach. A crop inside the simulated cells
is performed to avoid any issue concerning on the boundary of
the simulated cells.

The PSF of the microscope was modeled by a convolving
kernel here taken for illustration as a Gaussian kernel with size

σpsf . The simulated images were then simply the convolution
of the randomly and clustered positioned fluorescent dots with
the PSF (see Figure 3). Each image was 256 × 256 pixels and
the realism can visually be appreciated in Figures 1A,B. The
performance of the classification between two types of cells ((C1)
(C2)) or ((C1) (C3)) was investigated as a function of the size
of the PSF governed by σpsf . This situation corresponds to the
practical use-case in instrumentation where ones seeks to design
the PSF of a microscope for a given informative task. Here, the
objective was to find the condition of PSF which enables to obtain
the best binary classification performance.

The range of exploration of the size of the PSF σpsf , was
adimensioned by the distance between markers

k =

(

dminC1C2

σpsf

)

(1)
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where dminC1C2 is the smallest value of the minimal distances
between markers calculated for C1 and C2. This distance
computed for the simulated data set is dminC1C2 = 1.02. We
have explored the values of σpsf around k = 1 which intuitively
corresponds to the switch between the super-resolved regime
(k > 1) to the sub-resolved (k < 1) as shown in Figure 3C.

As a complement to simulation, the same approach was
applied to a real data set consisting of healthy and unhealthy
(cancerous) breast single cells. These reals images shown in
Figure 2A can be considered to be in the sub-resolved regime due
to the estimated large experimental PSF of the microscope. The
total amount of the real data set is 907 cancerous cell images and
1, 007 healthy cell images.

3. POINTILLIST FEATURE SPACES

A first step before studying fluorescent markers spatial
distribution, is to localize them. In the literature, several
algorithms for the localization of fluorescent markers have been
developed (Holden et al., 2011; Ovesný et al., 2014; Gazagnes
et al., 2017). For our study, we used UNLOC (Unsupervised
particle localization), the state of the art method recently
introduced in Mailfert et al. (2018).

UNLOC is a fast algorithm free of parameter that provides a
list of coordinates and associated parameters for each detected
particle for a posteriori quantification and image reconstruction.
The algorithm is based on the decision theory without the need
of initialization of any parameters relative to the data (SNR,

particle density, background level). Only parameters relative to
the optical setup must be provided like the PSF size (σpsf ) of the
microscope to perform a PSF-deconvolution step. UNLOC has
been shown in Mailfert et al. (2018) to approach the Cramér-
Rao bound for the detection of particles in high density and
without prior knowledge of their intensity. We applied UNLOC
to the simulated images in sub-resolved and super-resolved
regimes. Markers detection performance is presented in Figure 4.
A uniform increase of detection performance for both randomly
distributed markers with heterogeneous Poisson processes and
clustered markers organization occurs for a k = [0.5 1.3]
which corresponds to a PSF size σpsf < 2. A maximum
performance of around 80% of detected markers occurs for k =

1.3 corresponding to σpsf = 0.8 the range where UNLOC achieve
a maximum performance of detection as found in Mailfert et al.
(2018) where the minimum inter-marker distance is > 1.23σpsf
(dminC1C2 = 1.02 > 1.23σpsf ).

After extracting the markers, it is necessary to characterize
their spatial organization statistically. In the following section,
we describe the proposed statistical descriptors computed in
the pointillist approach and introduced to detect density and
organization differences of fluorescent markers.

3.1. Distribution Analysis
This method was applied for marker density detection problem.
We analyzed statistically the markers detected by UNLOC by
computing the distance betweenmarkers, the distance of markers
to the mean markers position and the distance between each

FIGURE 4 | Performance of markers localization using UNLOC in randomly and clustered distribution as a function of parameter k of Equation (1). UNLOC is more

efficient in the range k = [1.3 2].
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marker and its nearest neighbor. From these distances, a large
set of 16 common distributions of the literature were tested as
proposed in Aminov (2019). As a tradeoff between the quality of
the fit and the number of parameters in the distribution, the best
distribution among all the one tested, was selected to minimize
the bayesian inference criterion (BIC) (Schwarz, 1978; Neath and
Cavanaugh, 2012) expressed as

BIC = −2ln(L)+ p.ln(nb) (2)

where L is the likelihood of the model, nb the number of
observations in the sample and p the number of parameters in
the model. In our study, the selected model for each calculated
distance according to BIC was found to be Rayleigh R(0, scale σR)
for the distance between markers, exponential exp(0, rate λE)
for the distance to the mean and generalized extreme
value GEV(shape ξG, scale σG,mean µG) for the distance of
markers to the closest neighbor. Illustration of quality of these
fits for the distribution parameters are given in Figure 5. These
five statistical parameters (σR, λE, ξG, σG,µG) of the distance
distributions were then used as features for the classification
between cells.

3.2. Spatial Pattern Analysis
In this work, we are interested in detecting the differences
between classes of cells based on the change in spatial
organization of fluorescent markers. For this aim, we work
with Ripley’s K-function that is classically used in microscopy
(Hansson et al., 2013; Amgad et al., 2015; Samacoits et al.,
2018) to summarize completely spatial randomness or
clustering behavior of fluorescent markers and estimate markers
organization parameters. But, in our work, we used this function
as a descriptor to detect change between heterogeneous Poisson

processes and clustered distributed markers. By definition,
Ripley’s K-function is a spatial analysis to describe how point
patterns occur over a given area of interest (circle of radius r)
and whose standard expression is

K(r, n) =
|�|

n(n− 1)

∑

x 6=y

L{|x−y|≤r}f (x, y) (3)

where n is the total number of events within the given field of
view |�|, L{|x−y|≤r} is an indicator function equal to 1 if the
distance between markers located in x and y is smaller than
the radius r, and equal to 0 otherwise. f (x, y) is a boundary
correction term that prevents a bias in K(r, n) at large values of
r due to the finite size of |�|. Indeed, some pairs of markers
closer than r can fall outside the observation window |�|, leading
to an underestimation of K. Multiple edge correction methods
have been devised for Ripley’s K-function. The most widely
used boundary correction is the Ripley’s correction f (x, y) =
1
2 (P(x, y) + P(y, x)), where P(x, y) =

|∂b(x,|x−y|)|
|∂b(x,|x−y|)∩�|

. It consists

of dividing the number of events at a certain distance from the
central event by the proportion of the circumference of a circle
∂b(x, |x−y|) that is included within the field of view |�| (Lagache
et al., 2013). So with this boundary correction and under
the hypothesis of completely random process, the expectation
E[K(r, n)] = πr2 (Ripley, 1991, page 39). One problem with
the original Ripely’s K-function is that it is not centered and
normalized which complicates its quantitative interpretation. In
our work, we used the estimation version proposed by Besag
(1977) given as

K̂(r, n) =

√

K(r, n)

π
− r . (4)

FIGURE 5 | Fit of distances with distributions selected from BIC criterion among a large set of common distributions as in Neath and Cavanaugh (2012). Blue stands

for histogram and red for the fit. Upper line for a cell (C1) and a cell (C2) on the second line.
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In this work, we exploited K̂ curve differences between the
studied cases (see Figure 6) for the detection tasks between
class of cells with markers density differences (C1 and C2)
and spatial distribution differences (C1 and C3). We extracted
from the K̂ curves five features: the maximum K̂ value, the
maximum gradient [0, max], the minimum gradient [max, end],
the radius corresponding to themaximum K̂ value and Spearman
correlation between K̂ and the radius r similarly to what was
proposed in Samacoits et al. (2018).

4. TEXTURAL FEATURE SPACES

In this section, we describe the textural methods used to detect
a difference of fluorescent markers density or a difference of
spatial clustering of fluorescent markers. There is a wide range
of methods (Mirmehdi, 2008) and there is no proof of optimality
for any tool. We do not intend to be exhaustive and pick
up a selection of classical methods. For a fair comparison of
all tested textural and pointillist methods, the feature spaces
produced by each textural method was reduced to the dimension
of the method with the smallest feature space with a principal
component analysis.

4.1. Auto-Correlation
A standard tool to characterize the second-order statistics of
a texture consists in analyzing the spatial Fourier transform
of the auto-correlation of an image. This was for instance

used to characterize the arrangement of fluorescent markers in
microscopy (Kolin and Wiseman, 2007; Robertson and George,
2012). By definition, auto-correlation is equivalent to comparing
all possible pixel pairs and reporting the likelihood that both
will be bright as a function of the distance and direction of
separation. Mathematically, auto-correlation is the convolution
of a function with itself. For a microscopy image I of size
M × N, auto-correlation function G(a, b) is calculated by the
following equation

G(a, b) =
M
∑

x

N
∑

y

i(x, y) ∗ i(x− a, y− b) (5)

where i(x, y) is the image intensity at position (x, y) and a and b
represent the shift from the initial position x and y. Practically,
auto-correlations is calculated more efficiently and in a quicker
way via fast Fourier transforms using the Wiener-Khinchin
theorem stating that the auto correlation of an image is equal to
the Fourier transform (F) of the power spectrum of this image. In
our study, the used auto-correlation computation method was as
the following

G(i) = F−1[PS(i)] (6)

where PS(i) = |F[i(x, y)]|2 is the power spectrum of the image.
The shape of the auto-correlation can be summarized with
various features. In our study we computed five features for our

FIGURE 6 | K̂(r, n) curve for raw markers (i.e., non-convolved with a PSF) distribution according to radius r.

Frontiers in Robotics and AI | www.frontiersin.org 7 May 2020 | Volume 7 | Article 39

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ahmad et al. Textural vs. Pointillist

classification tasks: maximum auto-correlation value, full width
at half maximum (FWHM), maximum and minimum gradient
and the variance the remaining portion of the autocorrelation
functions profile after removing the central peaks.

4.2. Gray Level Co-occurrence Matrix
(GLCM)
Another classical statistical approach that can well-describe
second-order statistics of a texture image is provided by the
so-called gray level co-occurrence matrix (GLCM). GLCM was
firstly introduced by Haralick et al. (1973) and is essentially a
two-dimensional histogram in which the (i, j)th element is the
frequency of pixel intensity i co-occurring with pixel intensity
j. A co-occurrence matrix is specified by the relative frequencies
C(i, j, d, θ) in which two pixels, separated by a distance d, occurs
in a direction specified by the angle θ , one with gray level i
and the other with gray level j. A set of 14 Haralick coefficients
summarizing the GLCM is then computed. In our study, since
we expected no specific orientation a priori, and, as a trade
off to respect this isotropy and limit the computation time,
we included four directions for θ : 0, 45, 90, and 135◦. The
size of the neighborhood was chosen to be a multiple of the
maximum value of σpsf , and found optimal at 72 × 72 pixels
(see Supplementary Material section 2). A principal component
analysis was then applied to select only the five first significant
components from the 14 Haralick coefficients. The five most
significant features for the whole range of tested PSF size were
found to be contrast, variance, sum variance, difference variance,
and sum average.

4.3. Local Binary Patterns (LBP)
Local binary patterns are also among the most used texture
descriptors in classification tasks (Ojala et al., 2002). In our study,
the LBP was computed by dividing each original microscopy
image in regions of 72 × 72 pixels similarly to the scale chosen
with the GLCM. For each central pixel position coordinate (x, y)
of these regions, local binary pattern (LBP) indicates a sequential
set of the binary comparison of its value with the eight neighbors.
So that the LBP assign to each neighbor the value 0 or 1, if its
value is smaller or greater than the pixel placed at the center,
respectively. The resulting decimal value of the generated binary
number replaces the central pixel value and can be expressed
as follows

LBP(x, y) =
7
∑

n=0

2nb (in − ix,y) (7)

where ix,y is the gray value of the central pixel and in denotes
the nth neighboring one. Besides, the function b(z) is defined
as follows

b(z) =

{

1, if z ≥ 0

0, if z < 0 .
(8)

The frequency of occurrences of each decimal code was then
calculated over each region and used as a texture descriptor.
A principal component analysis was finally applied to reduce
the total number of descriptors per image to 5 as in the
GLCM approach.

5. CLASSIFICATION

Classification tasks were addressed to discriminate between
cells populations ((C1) and (C2)) with a small difference
of fluorescence marker density and between cells ((C1) and
(C3)) with different spatial marker organizations. For fair
comparison all features spaces either pointillist and textural
was set to 5. These features spaces were applied to the same
simple support vector machine with linear kernel. Comparison
with other classical classifiers (decision tree, logistic regression
classifier, and K-nearest neighbors) are also provided in the
Supplementary Material. The classification performance was
tested for 11 different values of σpsf ranging from sub-resolved
to super-resolved regimes. For each value of σpsf the simulated
data set was composed of 4, 000 images for training, with 2, 000
for each class, and 500 images for test (respectively 250 images
for each class). Classification was also performed on the real
data set of Figure 2A. Standard deviation of performances were
computed using 10-folds cross-validation method.

6. RESULTS

6.1. Difference of Density
Classification performances between populations of cells with
a small fluorescent marker density differences ((C1),(C2)) as a
function of σpsf are presented in Figure 7. The performance of
the textural approach overpasses everywhere the pointillist ones
either in sub-resolved and also super-resolved regimes. Among
the textural features spaces, auto-correlation textural approach
shows the most stable classification performance for all PSF sizes.
Distance distribution among the pointillist approaches shows
good performances for the detection of difference in the super-
resolved regime only. Since we did not test all existing methods
for the pointillist and the textural approaches, comparison is not
exhaustive. Nevertheless, one should here recall and underline
the specific choices for the tested methods (Haralick coefficient,
Local binary pattern and Auto-correlation) which all constitute
very basic methods for the textural approach. Therefore, other
textural approaches could surely provide even better results while
the UNLOC method for dense detection of fluorescence has
been shown to be the current reference for the state of the art
(Mailfert et al., 2018). We can thus conclude that, globally, for
the considered classification task, feature spaces based on textural
approaches outperform a pointillist-based feature space and this
in both sub-resolved and super-resolved regimes.

It should be noticed that there is not only a difference in
density between (C1) and (C2) but also in spatial organization
because of the different standard deviations used for the
simulation. This is why a differences between cell classes C1

and (C2) was found in Ripely’s K-function (see Figure 6). If
the only difference between classes were in the density, then
theoretically they would be no difference in K-function. It is
indeed a basic design property of this descriptor to capture
only second-order characteristics of a point process, and to be
invariant to changes in density. A variant of the simulation of
classes (C1) and (C2) with differences only based on density
without the diffraction effect of the microscope were conducted
in the Supplementary Material. As expected the detection of
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FIGURE 7 | Performance of binary classification for marker density difference between cell classes C1 and C2 as a function of parameter k of Equation (1) for both

textural and pointillist approaches. The higher k the smaller the PSF size. Standard deviation of performances are computed using 10-folds cross-validation method.

In red, methods following the textural approach, and in black, methods following a pointillist approach.

difference of density with Ripley’s k- function is pointless for
the super-resolved cases. However, due to the convolution
process and to the instability of the UNLOCK detection which
strongly depends on σpsf some discriminant effect can occur
between cell classes (C1) and (C2) in the sub-resolved cases. The
simulation details and results for this experiment are described in
Supplementary Material, section 3.

6.2. Difference of Spatial Organization
Classification performances between populations of cells with a
difference of fluorescent marker spatial distribution ((C1),(C3))
as a function of σpsf are presented in Figure 8. The performance
of the textural and pointillist classification approaches are found
to be very high and very close to each other almost everywhere
in terms of σpsf and, remarkably in the sub-resolved regimes.
The sub-resolved regime, not surprisingly, is the place where
the performance of the pointillist approach drops. Some markers
are detected as artifacts but the spatial organization of the two
populations of cells becomes very close so that the discrimination
between them drops. This is illustrated in Figure 9 with the
global evolution of the Ripley’s K-functions when plotted for
various σpsf .

6.3. Test on Real Data
Classification performances between populations of healthy
and cancerous cells of real data set from sub-resolved
microscopy technique of Figure 2A are presented in Table 1.
As a global comparison with the results of synthetic data,
performances behaviors are globally similar. Auto correlation

approach of textural feature space shows the best classification
performance with an important gap with other proposed
textural and pointillist feature spaces. By contrast with what
was found in simulation, LBP performance is less than the
GLCM performance. This may come from the fact that
LBP is sensitive to the noise, such as the thermal noise
of the camera. Such noise was not taken into account in
the simulation. Other derivative of LBP were proposed in
the literature like median binary pattern (MBP) (Hafiane
et al., 2007), local ternary patterns (LTP) (Tan and Triggs,
2010), and improved LTP (ILTP) (Kylberg and Sintorn, 2013).
These could be tested to circumvent this noise sensitivity
problem. Another important point to assess the value of
a feature space lay in its computational time. They are
presented in Table 2. A tradeoff between performances and
computational time is found with the correlation based textural
feature space.

7. CONCLUSION

In this study, we have simulated two classes of images of
cells (healthy and pathological) with fluorescent markers
having either a weak difference of density or a difference of
spatial organization. We have then simulated different size of
microscope PSF around the switch of regime between super-
resolved and sub-resolved of the markers. These synthetic
data sets served to compare the detection performance
both with a textural and a pointillist approaches. We found
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FIGURE 8 | Performance of binary classification for markers spatial organization difference for cell classes C1 andC3 as a function of parameter k of Equation (1) for

both textural and pointillist approach. The higher k the smaller the PSF size. Standard deviation of performances are computed using 10-folds cross-validation

method. In blue, methods following the textural approach, and in pink, methods following a pointillist approach.

FIGURE 9 | Influence of PSF size (ratio k) on Ripley’s K-functions K̂(r, n) of localized markers using UNLOC. (A) Visualization of localized markers in random

distribution case. (B) Visualization of localized markers in clustered distribution case. (C) K̂(r, n) curves. Spatial organization of fluorescent markers changes according

to the PSF size. Globally, for small PSF sizes (super-resolution images), markers organizations shows a similar organization as the raw data (Figure 6). Switching to

sub-resolution images (large PSF size), spatial organization of detected markers changes due to miss detection caused by UNLOC sensitivity drop.

that the textural approach reaches better performances
in all regimes sub-resolved as well as super-resolved.
We also tested a real data set acquired with sub resolved

microscopy. In accordance with the result on synthetic data,
results from this real data set showed that the classification
performance when using auto correlation textural approach

Frontiers in Robotics and AI | www.frontiersin.org 10 May 2020 | Volume 7 | Article 39

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ahmad et al. Textural vs. Pointillist

TABLE 1 | Classification results of the studied methods applied to real data set of

Figure 2A.

Feature spaces Real data

Auto-correlation 94.5± 0.18 %

GLCM 70± 1.4 %

LBP 64± 1.4 %

Distance distribution 78.8± 0.7 %

Ripley’s K̂-function 69± 1.7 %

TABLE 2 | Features space computational time averaged on 100 real images.

Feature

spaces

Auto-

correlation

GLCM LBP Distance

distribution

Ripley’s

K̂-function

Computation

time (ms)

0.66 0.12 6.3 340 68, 790

overcome GLCM and LBP textural approaches as well as
pointillist approaches.

Somehow counter-intuitive when considering the current
quest for super-resolution, this strong and practically
important results demonstrates that it may not be necessary to
systematically search for expansive super-resolution techniques
or perform time-consuming deconvolution when gazing at
collective spatial organization of fluorescent markers in single-
cell microscopy. This result is more common in signal processing.
Indeed, an analogy is found in kernel-based density estimation
methods where the kernel (the PSF in the case studied here)
spread the information contained in discrete points to a larger
area and thus contribute to create its continuous representation.
This representation is easier to handle than the discrete one.
Back in microscopy, when detection or classification is targeted
sub-resolved images can carry sufficient information to enable
high performances. This was obtained here with simulated
images where the ground truth was established automatically
and with one real data set. This exactly corresponds to the
situation where cells can be sorted automatically based on a
biological experimental plan or using standard flow cytometry.
If such ground truth cannot be established, it might be the case
that, similarly to what happens in histology, only a visual human
inspection of the cell can enable to constitute a reference on
which supervised learning can be trained. In this case, even for
classification tasks, super-resolution coupled with sub-resolution
may be necessary. However, if such pairs are constituted during
the training, then only sub-resolution images can be used for
classification during the testing as shown in this work.

Further investigations could be undertaken in at least two
directions. First, in this article the PSF of the microscope was
purposely naïve under the form of a simple Gaussian 2D kernel.
The proposed methodology could easily be translated without
any difficulty to any type of more realistic PSF and can even
be extended in 3D. The global methodology could thus be
used in instrumentation to validate the quality of a PSF for a
given informative task. The realism of the simulator could also
be enhanced to account for non-spatial invariance of the PSF
due to the sample (Cuplov et al., 2014) or the non-uniformity
of fluorescence intensity of the markers. Second, only binary
classification tasks were considered in this article and it could
be interesting to consider if other informative tasks, such as
regression could benefit from the proposed approach.
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