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Sudden unexpected death in epilepsy (SUDEP) claims the lives of one in every thousand

epileptic patients each year. Autonomic, cardiac, and respiratory pieces to a mechanistic

puzzle have not yet been completely assembled. We propose a single sequence

of causes and effects that unifies disparate and competitive concepts into a single

algorithm centered on ictal obstructive apnea. Based on detailed animal studies that

are sometimes impossible in humans, and striking parallels with a growing body of

clinical examples, this framework (1) accounts for the autonomic, cardiac, and respiratory

data to date by showing the causal relationships between specific elements, and (2)

highlights specific kinds of data that can be used to precisely classify various patient

outcomes. The framework also justifies a “near miss” designation to be applied to any

cases with evidence of obstructive apnea even, and perhaps especially, in individuals

that do not require resuscitation. Lastly, the rationale for preventative oxygen therapy is

demonstrated. With better mechanistic understanding of SUDEP, we suggest changes

for detection and classification to increase survival rates and improve risk stratification.
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INTRODUCTION: PHYSIOLOGICAL BACKGROUND AND KEY
CONCEPTS

Reviews of preclinical and clinical data on autonomic, cardiovascular, and respiratory contributions
to sudden unexpected death in epilepsy (SUDEP) have captured the progress made toward
understanding this important aspect of epilepsy (1–7). Whereas, the mechanisms for SUDEP
remain unknown, the main categories of potential mechanism are (1) autonomic derangements,
as these are the critical link between seizure activity and the rest of the body (2) lethal cardiac
events, which can link epileptogenesis and cardiac risk among the channelopathies, and (3) apnea,
which may result from seizure spread to brainstem or a catastrophic failure of brainstem circuits.
The key challenge has been to demonstrate which of these is/are responsible for SUDEP given the
“unexpected” nature of cases and the limitations on physiological monitoring during events.
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Humans and animals have extensive pathways involving
insular cortex, subiculum, and amygdala that permit seizure
spread to reach hypothalamus and brainstem autonomic
preganglionic and premotor neurons and thus impact all body
systems with autonomic innervation (8). Changes in cardiac,
respiratory, gastrointestinal, and genitourinary function before,
during and after a seizure are well-known from clinical and
preclinical data (2, 9–15). Significant autonomic effects of
seizures occur more commonly in association with generalized
tonic-clonic seizures or partial seizures originating in the
temporal lobe (16–18).

In contrast to the direct ictal activation of the autonomic
nervous system (ANS), there can be autonomic activity that
is secondary to other ictal phenomena (e.g., hypoxemia from
obstructive apnea) (13, 19, 20). Such autonomic activity is
a “normal” response to protect core blood flow during a
survival threat.

Repeated organ stress caused by recurring seizures or parallel
pathophysiological processes as in the heritable channelopathies
can lead to sustained autonomic abnormalities that impact the
direct or indirect responses to seizure activity. Some have argued
that an abnormal autonomic baseline is essential for the extreme
physiological events leading to sudden death (21–26).

Pathways exist for seizure activity to impact respiratory
rhythm generation and motor output (27–30). Reports of ictal
tachypnea, bradypnea, and apnea all point to an impact of seizure
activity on respiratory physiology (3, 31–35) and thereby a role in
ictal oxygen desaturation (36–39).

Ictal airway obstruction has been reported in humans (40–44),
and our group demonstrated laryngospasm as the basis for ictal
obstructive apnea (defined as periods of no airflow with evidence
of inspiratory effort) using continuous laryngoscopy, recurrent
laryngeal nerve recordings, plethysmography, ECG, and EEG
in a rat model (34). Obstructive apnea (OA) was accompanied
by pronounced hypoxemia, followed by bradycardia, respiratory
arrest, and eventually death (34, 45). Further evidence of airway
obstruction as part of the SUDEP mechanism is the fact
that pulmonary edema is often found at autopsy in SUDEP
cases (46–50).

Ictal central apnea (defined as periods of no airflow and
no evidence of respiratory effort) has been demonstrated
with recordings that can distinguish central apnea from
OA or respiratory arrest (34, 51–53). During ictal central
apnea, the central respiratory rhythm generation continues
and the respiratory motor output is inhibited in the same
manner as during the apnea that occurs with voluntary
breath holding or the diving response, a complex reflex
that includes apnea and co-activation of the divisions of
the ANS (51, 54–56). A remarkable example is the “central”
apnea associated with amygdala stimulation (57, 58). The
absence of “stress” during amygdala-evoked apnea and the
minimal oxygen desaturation is consistent with spontaneous
ictal central apnea events having resemblance to the diving
response. Mouse deaths from audiogenic seizures have been
suspected to involve central apnea or respiratory arrest due to
brainstem disruption, particularly brainstem circuits involving
serotonergic neurons (27, 29, 32, 59–64), but we showed

deaths to include obstructive apnea leading to respiratory
arrest (65).

Lethal arrhythmias appear to be less common. Cases of
ventricular fibrillation (VF) arising from seizure activity (66, 67)
or seizure-induced takotsubo cardiomyopathy (68) have been
reported. Whereas, the most common cause of VF in humans is
regional cardiac ischemia in the setting of myocardial infarction,
global hypoxemia, such as may occur during asystole or apnea,
has also been implicated in severe tachyarrhythmias (69, 70). We
have shown in rats that entry into ventricular tachycardia and
ventricular fibrillation could occur spontaneously under narrow
conditions of moderate, but not severe hypoxia, sympathetic
overdrive, and minimal vagal activity (71, 72). Whereas, VF is
certainly one path to SUDEP, the existing literature indicates that
it is uncommon.

PROPOSED SUDEP MECHANISM
ACCOUNTS FOR CAUSES AND EFFECTS

Two recent lines of research enable us to propose a
comprehensive mechanistic sequence for the majority of
SUDEP cases (Figure 1). The first was the report of results from
the MORTEMUS study (1), which summarized the range of
autonomic, cardiac, and respiratory data between seizure onset
and death from the rare human SUDEP cases that could be
clearly identified as such and at the same time were accompanied
by recordings of vital signs. This critical consensus established
the sequence of clinical “landmarks” in SUDEP cases. The second
was extensive work with invasive and non-invasive monitoring
in rodents that showed how OA occurs during seizures, how OA
serves as the link between a seizure and respiratory arrest (RA),
and how non-invasive measures can be used to interpret human
data. Demonstrations that ictal OA can be due to laryngospasm
(34), that inspiratory effort can be detected with EMG (45) or
inductance plethysmography (73), and even that a surrogate
airway protects against death in a widely-studied mouse model
of SUDEP (65) collectively argue that OA is part of a common
mechanism for SUDEP. These data permit events associated with
a seizure to be defined as causes or effects.

In our opinion, the sequence begins with a generalized seizure.
Seizure generalization to brainstem autonomic and respiratory
areas is the cause of “first level” autonomic co-activation,
irregular ventilation, and laryngospasm producing partial airway
occlusion. Autonomic co-activation is a source of physiological
variance. Heart rate, for example, will be altered and the observed
increase or decrease in ictal rate depends upon the relative levels
of the autonomic components [as well as the baseline heart
rate (74)]. Laryngomotor neurons are driven by seizure spread
(34) and the resulting “convulsive” movement of the vocal folds
(laryngospasm) occurs throughout the seizure, but an adequate
airway is usually maintained. As the seizure ends spontaneously,
the drive to alter autonomic and respiratory activity is eliminated
(12, 74).

Occasionally laryngospasm is sufficient to cause OA (34,
52). OA is associated with intense effort to inspire, rapid
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FIGURE 1 | Proposed cascade of autonomic, cardiac, and respiratory causes and effects leading to sudden death following a seizure with points of prevention,

detection, and intervention. Seizure spread to brainstem laryngomotor neurons causes laryngospasm, which can be sufficient in a minority of cases for obstructive

apnea (OA). OA drives additional autonomic co-activation and is associated with a rapid oxygen desaturation. Desaturation leads to respiratory arrest (RA), respiratory

failure (RF), and ultimately cardiac arrest (CA). The best-established form of prevention is seizure control. An alternative prevention is to provide oxygen at the

beginning of the seizure or earlier. Oxygen can delay the time to RA long enough to permit the seizure to end spontaneously even if the airway is transiently occluded

by ictal laryngospasm. In the detection period, EMG or inductance plethysmography can provide evidence of inspiratory exertion during obstructive apnea. EEG can

show that the seizure was aborted. Pre- and post-mortem evidence of airway occlusion is variable because consequences such as pulmonary edema will depend

upon the amount of time the airway was obstructed and the frequency and amplitude of inspiratory attempts. ANS, autonomic nervous system.

desaturation, and a significant “second level” autonomic co-
activation to protect core blood flow. EMG evidence of the
unproductive inspiratory effort can appear in ECG and EEG
records (1, 45). This measure has been used in studies
of obstructive sleep apnea (75–77) and can been seen in
recordings from elite apneists (e.g., breath-holding divers) (78),
where stertorous breathing is not a confound. Inductance
plethysmography in epilepsy patients also shows the inspiratory
effort (73).

Seizures can end in two different ways after a period of
OA has started. In the first, most common way, seizures end
spontaneously, i.e., on their own. The stimulus for laryngospasm
ends as the seizure ends. Alternatively, the hypoxemia and
decreased cardiac output associated with the autonomic changes
can abort the ongoing seizure activity (34, 45, 79, 80) by starving
it of blood flow and oxygen. Seizure termination by asystole
has been specifically noted in the clinical literature (81–83).
Once aborted, recovery of baseline autonomic, cardiac, and
respiratory function occurs because the seizure stimulus was
removed. The full set of outcomes is illustrated in Figure 2.
Based on our experience with verified OA (34), controlled
airway occlusion (45), or asystole (80), the EEG can differentiate
between seizures that end spontaneously and those that are
aborted [see (84) for a mechanistic example in a different
context]. Aborted seizure activity ends with a decrease in
EEG amplitude and modest increase in EEG frequency, not

the typical increase in amplitude and associated decrease
in frequency.

In the second, rarer, but more dangerous way, seizure
activity can persist and thus OA can last to the point of
respiratory arrest (RA), defined as the point at which attempts
to inspire cease (45, 53). This is a critical concept because it
is the point at which spontaneous recovery is in jeopardy, and
intervention by personnel other than the person experiencing
the seizure may be necessary. Based on our work, the point of
RA corresponds to the onset of “terminal apnea” as described
in the MORTEMUS data (1). RA is distinct from respiratory
failure (RF), which is defined as the point at which attempts
to inspire are no longer possible. If the airway opens after the
point of RA, but before RF, spontaneous recovery of respiration
can sometimes occur (53). Apneic oxygenation is possible once
the airway re-opens due to glottic relaxation (85), and this may
account for the spontaneous recovery of respiration. Postural or
positional factors can contribute to a compromised airway and
block spontaneous recovery (86, 87). Based on this conceptual
framework, we suggest that any case involving OA should be
identified as a near-miss case, irrespective of whether the seizure
ended spontaneously or was aborted, or whether the individual
required resuscitation for recovery (Figure 2).

Cardiopulmonary resuscitation is known to be effective within
a short time after the onset of terminal apnea/respiratory arrest
(1). In our experience, a majority of cases that reach the point
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FIGURE 2 | Possible outcomes following generalized tonic clonic seizure activity with major “landmarks.” The vast majority of seizures are associated with a

spontaneous end of the seizure, no evidence of obstructive apnea, and a rapid return of autonomic, cardiac, and respiratory function to baseline levels (track 1).

Obstructive apnea (OA) can occur, resulting in three types of near miss outcome (tracks 2, 3, 4) or sudden death (track 5). If the seizure ends spontaneously during OA

(track 2) there may be evidence of inspiratory effort, but the EEG will show a normal pattern of decreasing frequency/increasing amplitude associated with the seizure

ending on its own. Preventative oxygen treatment will successfully move any case to track 2. Seizure activity will be aborted in tracks 3 and 4 evidenced by EEG

frequency increase/amplitude decrease due to a lack of brain blood flow and oxygen. The difference between tracks 3 and 4 is whether resuscitation is necessary

(track 4) because of the inability to spontaneously recover breathing, i.e., respiratory failure (RF). SUDEP results from the events in tracks 5 and 6 where cardiac arrest

(CA) is the endpoint. Track 5 is the sequence described in the text and shown in greater detail in Figure 1. CA is hypoxic cardiac failure in track 5. Track 6 is the

outcome of seizure-induced ventricular fibrillation and a global hypoxemia trigger due to OA or asystole with or without OA.

of RA, without resuscitation attempts, progress to respiratory
failure and death (34). Cases progressing to respiratory failure
will show hypoxic cardiac failure as the final sign of life.

Postictal EEG suppression (PGES) or brain shutdown,
suggested as a cause of brainstem dysfunction and death (26,
88, 89) is not a cessation of brain activity (90, 91). Rather, it
reflects the termination of seizure activity by hypoxemia and
decreased cardiac output (12, 34, 80). The work on brainstem
depolarization (92) demonstrates that this form of spreading
depression likely accounts for the development of respiratory
failure after reaching the point of respiratory arrest. The time
to develop, the time of occurrence, and the time that would be
necessary for resolution all point to brainstem depolarization
occurring as a result of hypoxemia and after the point of
respiratory arrest (52, 93).

Lastly, any seizure-driven cascade of events is further
complicated by the possibility that (and predictive opportunity
that arises when) seizures impact an abnormal background

physiology due to repeated seizures, genetic variation (30, 94–
97), pharmacotherapy, or other causes. None of our proposed
sequence of events from seizure onset to death depends upon an
abnormal background physiology.

DISCUSSION: APPLICATION IN
PREVENTION, INTERVENTION, AND
CLASSIFICATION

Two forms of prevention have been discussed in the literature.
The most straightforward prevention is seizure control, which
avoids the sequence of life-threatening events (98). A second
strategy is to expose the individual to oxygen as early as possible.
Oxygen, even for a short time prior to the onset of OA, delays
the time to RA (53, 99, 100) and thus permits spontaneous
seizure termination even if OA is present. Based on our data and
proposed sequence of events, a critical preventative intervention
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is to enrich the inspired oxygen as near the onset of a seizure
as possible, without waiting for evidence of obstructive apnea
(oxygen will NOT prevent obstructive apnea, but will help the
individual to survive an episode of OA). This should delay RA
and prevent SUDEP (Figure 2). Oxygen would also minimize
the potential for VF. We propose that any case with evidence
of OA should be counted as a near miss so that in these
higher risk patients, oxygen will be applied earlier, potentially
preventing SUDEP.

CPR has been shown to be an effective for resuscitation
within an adequate time window (1). During OA, artificial
ventilation will be possible only after the laryngospasm relaxes
to permit airflow. Chest compressions are important because
cardiac contractility is minimal after the point of respiratory
arrest (34). There is a vital race to start CPR before irreversible
respiratory failure.

Risk stratification and prediction of life-threatening events
remain a challenge. Post convulsive central apnea (PCCA) (70,
101) has been suggested as a predictive biomarker to stratify
risk of SUDEP among epilepsy patients (102). PCCA in our
framework would describe the period of time from respiratory
arrest to spontaneous or assisted recovery of respiration. Prior
to RA, OA accounts for the absence of airflow. PCCA is clear
evidence of near miss status and this explains its predictive value.

Still missing is an answer to the question of why only some
seizures have laryngospasm sufficient to cause OA. Fortunately,
indicators of OA exist (e.g., our biomarker or inductance
plethysmography) and can be used for risk stratification even if

oxygen is delivered at the start of every seizure to prevent RA.
Further complicating the classification of cases and prediction,
but not complicating our mechanistic sequence, is whether the
individual experiencing the seizure that causes sudden death is
considered epileptic (103), i.e., what if the first seizure you have
is the one that causes sudden death?

In summary, (1) we propose that obstructive apnea is the
critical mechanistic link between seizure activity and respiratory
and cardiac failure in the majority of SUDEP cases, (2) we
recommend modifying the “near SUDEP” definition (104) to
include any individuals with a near miss event because these
indicate that the patient is prone to seizure-induced obstructive
apnea and thus at increased risk for SUDEP, and (3) we argue
that early oxygen exposure is a rational preventative step that
can significantly reduce SUDEP rates. Based on our improved
mechanistic understanding, we suggest changes for detection and
classification of SUDEP patients to increase their survival and
enhance their risk stratification.
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