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Summary: Tumor-specific Tc9 cells exhibit an excellent antitumor
potential in tumor immunotherapy. Identification of factors that
contribute to Tc9-cell differentiation may have important clinical
significance. In this study, we found that tumor necrosis factor (TNF)-
α promotes Tc9 differentiation in vitro, and the TNF-α-induced Tc9
cells display enhanced cell survival and cell proliferation. More
importantly, the TNF-α-induced tumor-specific Tc9 cells have
increased antitumor capabilities in vivo. TNF-α activates its down-
stream signaling through 2 cell surface receptors, TNFR1 and
TNFR2. In this study, we found that TNF-α promotes Tc9-cell dif-
ferentiation through TNFR2, but not TNFR1. Furthermore, we
found that TNF-α-TNFR2 activates STAT5 and nuclear factor-κB
signaling during Tc9-cell differentiation. Blocking STAT5 or nuclear
factor-κB by their specific inhibitors partially abrogates TNF-α-
induced promotion of Tc9-cell differentiation. Thus, our study dem-
onstrated TNF-α as a potent stimulator of Tc9-cell differentiation and
may have important clinical implications.
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A doptive cell therapy (ACT) using tumor-specific T cells
has shown significant clinical promises for the treatment of

patients with melanoma1; however, complete responses are
infrequent, and most other tumors are refractory to ACT.2,3

The antitumor efficacy mediated by ACT is dependent on the
cytolytic activity and the in vivo persistence of the transferred
tumor-specific effector T cells.1,4 Tumor-specific CD8+ cyto-
toxic T lymphocytes (CTLs or Tc1 cells) have direct cytolytic
activities against tumor cells and are the leading candidate used
in ACT of cancers.5 Nevertheless, CTLs display a terminally
differentiated phenotype, which leads to a short-term persis-
tence in vivo and limited clinical response in tumor therapy.6,7

Therefore, identification of new classes of effector T cells with
enhanced antitumor capability in tumor immunotherapy is
urgently needed.

Tumor-specific Tc9 cells are an attractive effector cell
candidate for adoptive therapy of cancers. Tc9 cells are a new
subset of CD8+ T cells characterized by the secretion of inter-
leukin (IL) 9.8 Similar as Th9 cells, Tc9 cells can be generated by
culturing naive CD8+ T cells with the cytokines IL-4 and
transforming growth factor (TGF)-β in vitro.8 Tc9 cells display a
less exhausted phenotype and less cytolytic capabilities in vitro
than Tc1 cells; however, Tc9 cells have a longer in vivo persis-
tence than Tc1 cells.9 In addition, Tc9 cells can differentiate into
cytolytic Tc1-like effector cells in vivo.8 Furthermore, tumor-
specific Tc9 cells can induce much higher therapeutic efficacy
than Tc1 cells in mouse tumor models.8 Therefore, identifying
factors that can stimulate Tc9 cell development may have
important clinical significance. As the Th9 and Tc9 cells have
similar polarizing conditions, factors that can stimulate Th9-cell
differentiation may also drive Tc9 differentiation.

Recent investigations showed that cytokines from the
tumor necrosis factor (TNF) family, such as OX40L, TL1A,
and GITRL, drives Th9-cell differentiation.10–13 We found
that TNF-α also promotes Th9-cell differentiation, and the
TNF-α-induced tumor-specific Th9 cells display increased
antitumor efficacy in mouse tumor models.14 TNF-α is rec-
ognized as a pleiotropic cytokine in inflammation, apoptosis,
and immune system development.15,16 It also plays a crucial
role in the antitumor immunity through promoting the pro-
liferation and differentiation of immune cells.17–20 TNF-α
exerts these functions by binding 2 cell surface receptors,
TNFR1 and TNFR2, which are both expressed by T cells.21

In this study, we showed that the addition of TNF-α
promotes Tc9-cell differentiation and the TNF-α-induced Tc9
cells show increased cell survival and cell proliferation. In
addition, the TNF-α-induced tumor-specific Tc9 cells display
increased cytotoxic activities against melanoma tumor cells
in vivo. Furthermore, our data indicated that TNF-α stim-
ulates Tc9-cell differentiation through TNFR2-dependent
signaling. Our results identify TNF-α as a powerful inducer of
Tc9 cells and may have important clinical implications.

MATERIALS AND METHODS

Mice and Cell Lines
C57BL/6 (H-2b) mice and OT-I [C57BL/6-Tg (TcraTcrb)

1100Mjbn/J] mice were purchased from the Jackson Labo-
ratory and bred in-house at The First Hospital Animal Center
of Jilin University. Mice were used in experiments at 6–8
weeks of age. All animal experimental procedures were con-
ducted according to the ethical guidelines of the Animal
Ethical Committee of First Hospital of Jilin University.

B16 and B16-OVA melanoma cell lines were purchased
from ATCC (Rockville, MD) and were cultured in RPMI
1640 medium supplemented with 10% heat-inactivated fetal
bovine serum (Gibco), 100 U/mL penicillin (Invitrogen),
and 100mg/mL streptomycin (Invitrogen). Cells were grown
in standard (37°C, 5% CO2) culture incubators.
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Reagents and Antibodies
Anti-mouse CD3e and CD28 antibodies [monoclonal

antibodies (mAbs)] were purchased from eBiosciences.
Recombinant mouse IL-4, TNF-α, and human TGF-β were
purchased from R&D Systems. Anti-TNFR1 (Monoclonal
Hamster IgG Clone # 55R170) and anti-TNFR2 (Mono-
clonal Hamster IgG Clone # TR7589.29) blocking anti-
bodies and control immunoglobulin G were purchased from
R&D Systems. STAT5 inhibitor was purchased from Santa
Cruz. Nuclear factor-κB (NF-κB) inhibitors bortezomib,
CAS 213546-53-3, and JSH-23 were purchased from Sell-
eckchem. CFSE (carboxyl-fluorescein diacetate, succini-
midyl ester) was purchased from Invitrogen. The OVA
(257–264, SII NFE KL) peptide used in the OT-I mouse
model was purchased from GL Biochem (Shanghai) Ltd.

In Vitro Tc9-Cell differentiation
Mouse-naive CD8+ T cells (CD8+CD25−CD62Lhi) were

isolated from spleen cells by fluorescence activated cell sort-
ing, as described previously.8,22 Naive CD8+ T cells were
cultured at 1×105/well in the presence of plate-bound anti-
CD3 (2 μg/mL), anti-CD28 (2 μg/mL), TGF-β (3 ng/mL), and
IL-4 (10 ng/mL) with or without the addition of TNF-α
(50 ng/mL). Cells from cultures without the addition of
TGF-β and IL-4 were used as Tc0 cells. Cells were cultured
for 2 days and analyzed by flow cytometry and/or quantita-
tive polymerase chain reaction (qPCR).

To determine the role of TNFR1 and TNFR2 in TNF-
α-induced Tc9-cell differentiation, naive CD8+ T cells were
cultured under Tc9-cell polarization conditions with or
without the addition of TNF-α for 2 days. Anti-TNFR1 (50
μg/mL), anti-TNFR2 (50 μg/mL), or control immunoglo-
bulin G (50 μg/mL) were added in cell cultures. Cells were
harvested and analyzed by flow cytometry and/or qPCR.

To explore the signaling pathways involved in TNF-
α-induced Tc9-cell differentiation, naive CD8+ T cells were
cultured at Tc9 polarization condition with or without the
addition of TNF-α. STAT5 inhibitors (10 μg/mL), bortezo-
mib (5 nM), CAS 213546-53-3 (2 μg/mL), JSH-23 (30 μM),
or dimethyl sulfoxide as controls were added in the cell
cultures. Cells were cultured for 2 days and analyzed by flow
cytometry and/or qPCR.

qPCR
qPCR was performed, as described previously.23 Pri-

mer sets for Il9, Ifng, Il4, Il5, Il13, Il17a, Sfpi1, Irf4, Tbx21,
Gata3, Foxp3, Rorc, Il2, Gzmb, and Prf1 were shown in the
previous publications.23,24

Flow Cytometry
Flow cytometry was performed, as described previously.24

Cells were acquired and analyzed by a BD LSRFortessa
cytometer. Fluorescence-conjugated mAbs against murine
CD8, CD25, CD44, and CD62L were purchased from BD
Biosciences. FITC-Annexin V was purchased from BD Bio-
sciences. APC-conjugated mAb against IL-9 was purchased
from Biolegend.

Western Blots
Western blot analysis was performed, as described

previously.24 Anti-mouse phosphorylated STAT5 (pSTAT5),
pSTAT6, pIKKα/β, Bax, Bcl2, Caspase3, cleaved caspase3,
Bim, p50, p65, and β-actin were purchased from Cell Sig-
naling Technology (CST).

Adoptive Tumor Immunotherapy
B16-OVA cells (2×105 cells/mouse) were injected sub-

cutaneously into C57BL/6 mice. Tc9 or TNF-α-induced Tc9
cells were generated in the cultures for 2 days. On day 5 after
tumor challenge, the B16-OVA tumor-bearing mice were
randomly divided into 3 groups (5 mice/group) and treated
with Tc9 or TNF-α-induced Tc9 cells by tail vein injection
(1×106 cells/mouse). Mice treated by phosphate-buffered
saline (PBS) served as controls. Tumor growth was moni-
tored by caliper measurement. Mice were sacrificed when
the tumor diameter reached the range between 1.5 and 2 cm.
Tumor volume was calculated by the following formula:
3.14×(mean diameter)3/6.

In Vivo CTL Assay
To explore the cytotoxicity of TNF-α-induced Tc9 cells

in vivo, naive CD8+ T cells isolated from OT-I mice were
cultured under Tc9 polarization conditions in the presence
or absence of TNF-α for 2 days. Spleen cells from C57BL/6
mice were pulsed with OT-I OVA peptide in the culture for
2 hours. Cells were labeled with high concentration of CFSE
(5 μM) and used as target cells (CFSEhi). Unpulsed spleen
cells were labeled with low concentration of CFSE (0.5 μM)
and used as nontarget cells (CFSElo). CFSEhi target cells
and CFSElo nontarget cells were mixed at 1:1 ratio, and a
total of 1×107 cells per mouse were infused into C57BL/6
mice through the tail vein with Tc9 (5×106 cells/mouse) or
TNF-α-induced Tc9 (5×106 cells/mouse) cells. Each group
contained 5 mice. Six hours after cell injection, mice were
sacrificed, and splenocytes were collected and analyzed by
flow cytometry.

Statistical Analysis
The Student t test (2 groups) and analysis of variance

(≥ 3 groups) were used to compare various experimental
groups. A P-value< 0.05 was considered significant.

RESULTS

TNF-α Increases the Induction of Tc9 Cells In Vitro
To explore the role of TNF-α in Tc9-cell differ-

entiation, naive CD8+ T cells were cultured under the
Tc9-polarizing conditions with or without the addition of
TNF-α for 2 days. TNF-α treatment increased the expres-
sion of IL-9 mRNA and protein in Tc9 cells (Figs. 1A, B)
and the frequency of Tc9 cells (Fig. 1B). However, TNF-α
under Tc0 polarizing conditions could not induce IL-9
expression in T cells and Tc9-cell differentiation (Figs. 1A, B).
We also examined the expression of Tc9-cell–related tran-
scription factors. As shown in Figure 1C, the addition of TNF-α
had minor effects on the expression of Tc9-related transcription
factors Sfpi1 or Irf4 in Tc9 cells, suggesting that TNF-α
promotes Tc9-cell differentiation through other Tc9-re-
lated transcription factors. In addition, TNF-α treatment
had minor effects on the expression of other Tc-related
transcription factors and cytokines (Figs. 1C, D), but
increased the expression of Il13 and Il2 in Tc9 cells (Fig. 1D).
We next examined the expression of Il9 and Il2 in TNF-
α-induced Tc9 cells at different time points. We found that
the addition of TNF-α could not increase the expression of
either Il9 or Il2 in Tc9 cells at hour 6 or hour 12 but began
to increase the expression of both Il9 and Il2 at hour 24
(Fig. 1E). Together, these results demonstrated that TNF-α
promotes Tc9-cell differentiation in vitro.
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TNF-α Promotes Tc9-Cell Survival and
Proliferation In Vitro

The cell survival and proliferation of tumor-specific
T cells is crucial for their persistence in vivo and their
antitumor efficacy. We next examined genes related to T-cell
survival and proliferation in TNF-α-induced Tc9 cells. We
found that both the mRNA and protein expression levels of
CD44 were significantly increased in TNF-α-induced Tc9
cells as compared with regular Tc9 cells (Figs. 2A, B). CD44
is a marker of effector and memory T cells that may con-
tribute to T-cell survival and proliferation.25 Indeed,
Annexin V staining detected less cell apoptosis of Tc9 cells
than of Tc0 cells (Fig. 2C), and TNF-α treatment further
reduced the apoptosis of Tc9 cells (Fig. 2C). Ki67 is a
marker for cell proliferation.26 We also found that the
frequency of Ki67+CD8+ T cells increased in TNF-
α-induced Tc9 cells, as compared with regular Tc9 cells
(Fig. 2D). We next examined the effects of TNF-α treatment
on the cell apoptotic signaling in Tc9 cells. As shown in
Figure 2E, TNF-α treatment increased the protein level of
Bcl-2 but decreased the protein levels of Bax and cleaved
caspase3 in Tc cells cultured under Tc9-polarizing con-
ditions, indicating that TNF-α inhibited the cell apoptotic
signaling in Tc9 cells. Together, these results demonstrated
that TNF-α increases Tc9-cell survival and proliferation.

TNF-α-induced Tc9 Cells Exhibit Increased
Antitumor Efficacy In Vivo

To examine the antitumor efficacy of TNF-α-induced
Tc9 cells, we used Tc9 cells generated from OT-I mice. We
first examined the OT-I Tc9 cells. Similarly, TNF-α-induced

OT-I Tc9 cells expressed higher levels of IL-9 mRNA and
protein than regular OT-I Tc9 cells (Figs. 3A, B). We next
used OT-I Tc9 cells and TNF-α-induced OT-I Tc9 cells to
treat B16-OVA-bearing C57BL/6 mice. Tc9 cell treatment
exhibited greater inhibition on melanoma tumor growth than
PBS controls (Fig. 3C), and TNF-α-induced Tc9 cells further
inhibited melanoma tumor growth, as compared with regular
Tc9 cells (Fig. 3C). These results demonstrated that TNF-α-
induced Tc9 cells have increased antitumor efficacy in vivo.

The infiltration of effector T cells into tumor sites is
associated with their antitumor effects. We next examined the
tumor-infiltrating capability of TNF-α-induced Tc9 cells. OT-
I Tc9 cells and TNF-α-induced OT-I Tc9 cells were transfused
to B16-OVA-bearing C57BL/6 mice. CD8+ T cells from the
lung tumor tissues were collected and analyzed. Cells from
mice receiving TNF-α-induced Tc9 cells expressed higher
levels of Il9 (Fig. 3D) and contained higher percentages of IL-
9-expressing Tc cells than cells from mice transfused with Tc9
cells or PBS controls (Fig. 3E), indicating the increased
tumor-infiltrating capability of TNF-α-induced Tc9 cells. In
addition, TNF-α-induced OT-I Tc9 cells exhibited higher
CTL activity than regular OT-I Tc9 cell in vivo (Fig. 3F).
Together, these results demonstrated that TNF-α-induced Tc9
cells have increased antitumor capacity in vivo.

TNF-α Enhances Tc9-Cell Differentiation Through
TNFR2

TNF-α has 2 cell surface receptors, TNFR1 and TNFR2.15

CD8+ T cells express both TNFR1 and TNFR2.27,28 We next
explored the role of TNFR1 and TNFR2 in TNF-α-induced
Tc9-cell differentiation. Naive CD8+ T cells were cultured under
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FIGURE 1. TNF-α promotes the induction of Tc9 cells. A–D, Mouse-naive CD8+ T cells were cultured under Tc9-polarizing conditions with
or without the addition of TNF-α for 2 days. Cells cultured without the addition of TGF-β and IL-4 (Tc0) were used as controls. A,
Quantitative polymerase chain reaction analysis of Il9 expression in CD8+ T cells. Expression was normalized to Gapdh and set at 1 in cells
treated with TGF-β plus IL-4 (Tc9 cells). B, Flow cytometry analysis of IL-9-expressing CD8+ (IL-9+CD8+) T cells. Numbers in the dot plots
represent the percentages of IL-9+CD8+ T cells. Right, summarized results of 3 independent experiments obtained as at left. Quantitative
polymerase chain reaction analysis of the indicated transcription factors (C), cytokines, and effector molecules (D) in T cells. Expression
was normalized to Gapdh and set at 1 in Tc9 cells. E, Mouse-naive CD8+ T cells were cultured under Tc9-polarizing conditions with or
without the addition of TNF-α. Cells were collected at the indicated time points, and quantitative polymerase chain reaction analyzed the
expression of Il9 and Il2 in Tc cells. Expression was normalized to Gapdh and set at 1 in Tc cells without the addition of TNF-α. Data are
representative of 3 (B) independent experiments or presented as mean± SD of 3 (A–E) independent experiments. *P<0.05; **P<0.01. IL
indicates interleukin; TGF, transforming growth factor; TNF, tumor necrosis factor.
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Tc9-polarizing conditions in the presence of anti-TNFR1 (αR1)
or anti-TNFR2 (αR2)-blocking antibodies with or without the
addition of TNF-α. The addition of αR2 largely abrogated
TNF-α-induced upregulation of IL-9 expression in Tc9 cells
(Figs. 4A, B), while the addition of αR1 exhibited minor effects
on TNF-α-induced Tc9-cell differentiation (Figs. 4A, B), indi-
cating that TNF-α drives Tc9-cell differentiation via TNFR2 but
not TNFR1. In addition, the addition of αR2 but not αR1
inhibited TNF-α-induced Tc9 survival (Fig. 4C) and pro-
liferation (Fig. 4D). Together, these results indicated that TNF-α
stimulates Tc9-cell differentiation through TNFR2-mediated
signaling.

TNF-α Enhances Tc9-Cell Differentiation Through
STAT5 and NF-κB Pathways

We previously found that TNF-α/TNFR2 induces
Th9-cell differentiation through STAT5 and NF-κB signaling
pathways.14 We hypothesized that TNF-α also stimulates
Tc9-cell differentiation through STAT5 and NF-κB pathways.
To address these issues, we first examined the role of STAT5 in
TNF-α-induced Tc9-cell differentiation. Naive CD8+ T cells
were cultured under Tc9-polarizing conditions with or without
the addition of TNF-α, phosphorylated STAT5 (pSTAT5) in
T cells was examined. TNF-α increased the protein levels of
pSTAT5 in Tc cells, as compared with untreated controls
(Fig. 5A), indicating that TNF-α increases the activation of
STAT5 signaling during Tc9-cell differentiation. IL-4 activates
STAT6 in T cells.29,30 To examine the role of STAT6 signaling

in TNF-α-induced Tc9-cell differentiation, we also examined
pSTAT6 in TNF-α-treated Tc cells. The addition of TNF-α
exerted minor effects on the protein levels of pSTAT6 in Tc
cells under Tc9-polarizing conditions (Fig. 5A), indicating that
TNF-α cannot further increase the activation of STAT6 during
Tc9-cell differentiation. To examine the role of STAT5 in
TNF-α-induced Tc9-cell differentiation, a STAT5-specific
inhibitor (STAT5i) was used during Tc9-cell differentiation.
STAT5i exerted minor effects on the differentiation of regular
Tc9 cells, as demonstrated by the similar expression levels of
IL-9 mRNA and protein in Tc9 cells with or without the
addition of STAT5i (Figs. 5C, D). However, the addition of
STAT5i partially abrogated TNF-α-induced promotion of
Tc9-cell differentiation, as demonstrated by the lower expres-
sion of IL-9 mRNA and protein in TNF-α-induced Tc9 cells
with the addition of STAT5i compared with the dimethyl
sulfoxide controls (Figs. 5C, D). These results demonstrated
that TNF-α induces Tc9-cell differentiation through STAT5
signaling pathway.

We next examined the role of NF-κB signaling in TNF-
α-induced Tc9-cell differentiation. Western blots were used to
examine the protein levels of NF-κB signaling molecules. TNF-
α treatment increased the protein levels of pIKKα/β (Fig. 5A)
and promoted p65 and p50 nuclear translocation (Fig. 5B) in
Tc cells under Tc9-polarizing conditions, indicating that TNF-
α upregulates NF-κB signaling during Tc9-cell differentiation.

To explore the role of NF-κB signaling in TNF-
α-induced Tc9-cell differentiation, bortezomib, an inhibitor
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of NF-κB pathway, was used during Tc9-cell differentiation.
Bortezomib exerted minor effects on the differentiation of
regular Tc9 cells, as demonstrated by the similar expression
levels of IL-9 mRNA and protein in Tc9 cells, with or
without the addition of bortezomib (Figs. 5C, D). However,
the addition of bortezomib partially abrogated the upregu-
lation of the expression levels of IL-9 mRNA and protein in
TNF-α-induced Tc9 cells (Figs. 5C, D). To further confirm
the role of NF-κB in TNF-α-induced Tc9-cell differ-
entiation, other 2 NF-κB inhibitors (CAS 213546-53-3 and
JSH-23) were used. Both CAS 213546-53-3 and JSH-23
were found to abolish the upregulation of IL-9 expression in

TNF-α-induced Tc9 cells (Figs. 5E, F). These results dem-
onstrated that TNF-α stimulates Tc9-cell differentiation
through NF-κB pathway.

Together, these results demonstrated that TNF-
α stimulates Tc9-cell differentiation through STAT5 and
NF-κB signaling pathways.

DISCUSSION
We recently identified tumor-specific Tc9 cells as a potent

antitumor effector Tc-cell subset in tumor immunotherapy,
better than Tc1 cells.8,9 Therefore, strategies of more efficient
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mice were injected subcutaneously with 2×105 B16-OVA cells. On day 5 after tumor challenge, the B16-OVA tumor-bearing mice were
randomly divided into 3 groups with 5 mice per group. Naive CD8+ T cells from OT-I mice were cultured under Tc9-polarizing conditions
in the presence or absence of TNF-α for 2 days. Tc9 or TNFα-treated Tc9 cells were injected intravenously into the B16-OVA tumor-
bearing mice (1×106 cells/mouse). Mice treated by PBS served as controls. Experiments were repeated twice. Shown are the tumor
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analysis of IL-9+CD8+ T cells. Numbers in the dot plots represent the percentages of IL-9+CD8+ T cells. F, In vivo CTL assay. CFSEhi target
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succinimidyl ester; IL, interleukin; PBS, phosphate-buffered saline; TNF, tumor necrosis factor.
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induction of Tc9 cells may have important clinical significance.
In this study, we found that TNF-α treatment promotes
Tc9-cell differentiation, and Tc-cell proliferation and survival.
More importantly, TNF-α-induced Tc9 cells induce more
potent antitumor efficacy than regular Tc9 cells in adoptive
immunotherapy in mouse tumor models. Multiple mecha-
nisms may be involved in the increased antitumor efficacy of
TNF-α-induced Tc9 cells. Generally, the antitumor efficacy of
Tc cells depends on their in vivo persistence and tumor-specific
cytotoxicity. TNF-α-induced Tc9 cells exhibit higher tumor-
specific cytotoxicity than regular Tc9 cells in vivo. TNF-α
increases the expression of IL-9 and IL-2 in Tc9 cells. Both IL-
9 and IL-2 promote T-cell proliferation and survival,8,31,32

which may contribute to the in vivo persistence and antitumor
efficacy of TNF-α-induced Tc9 cells. CD44 is a marker of
effector T cells.25 Thus, our data demonstrated that TNF-α is
a potent inducer of Tc9 cells.

TNF-α has 2 receptors, TNFR1 and TNFR2.16 In this
study, we found that TNF-α drives Tc9-cell differentiation
through TNFR2 signaling. It is interesting to note that
TNFR2 is the main TNF receptor on CD8+ T cells and
maintains CD8+ T cells at memory and effector stages.33,34

We found that TNF-α/TNFR2 signaling further activates
STAT5 and NF-κB pathways, which are required for TNF-
α-induced Tc9-cell differentiation. STAT5 signaling is crit-
ical for CD8+ T-cell development and function,35,36 and the

activation of NF-κB pathway can inhibit CD8+ T cells from
exhaustive Tc-cell differentiation.37 Therefore, our data
demonstrated that TNF-α promotes Tc9-cell differentiation
through TNFR2-induced STAT5 and NF-κB signal
pathways.

TNF-α stimulates the expression of IL-2 in Tc9 cells. IL-2
was shown to signal through STAT5 and promote T-cell
proliferation and survival, suggesting the potential of indirect
induction of Tc9 cells by TNF-α. However, TNF-α activates
STAT5 at the early stage (at hour 3) of Tc9-cell differentiation.
In addition, TNF-α begins to stimulate the expression of IL-2
and IL-9 in Tc9 cells at hour 24, and the expression of IL-2
and IL-9 follows the same temporal patterns in TNF-α-
induced Tc9 cells. These observations indicate that TNF-α can
promote Tc9-cell differentiation by directly activating STAT5
signaling.

In this study, we found that TNF-α-induced Tc9 cells
express increased IL-13, which is a cytokine expressed in
Tc2 cells, suggesting that the addition of TNF-α during Tc9
differentiation may result in the induction of Tc2-like cells.
However, TNF-α-induced Tc9 cells did not have increased
expression of Gata3, the major transcription factor of Tc2
cells, and the activation of STAT5 and NF-κB can also
stimulate the expression of IL-13 in T cells.38,39 On the basis
of these observations, we believe that TNF-α stimulates the
expression of IL-13 in Tc9 cells.
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FIGURE 4. TNF-α drives Tc9-cell differentiation through TNFR2. A–C, CD8+ naive T cells were cultured under Tc9-polarizing conditions in
the presence of TNFR1 (αR1) or TNFR2 (αR2)-blocking antibodies or an isotype control IgG with or without (−) the addition of TNF-α for
2 days. A, Quantitative polymerase chain reaction analysis of Il9 expression in CD8+ T cells. Expression was normalized to Gapdh and set
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cytometry analyzed CFSE-stained T cells. Numbers in the histograms represent the percentage of CFSE-stained T cells. Right, summarized
results of 3 independent experiments obtained as the left. Data are representative of 3 (B–D) independent experiments or presented as
mean± SD of 3 (A–D) independent experiments. **P<0.01. CFSE indicates carboxyl-fluorescein diacetate, succinimidyl ester; Ig,
immunoglobulin; IL, interleukin; NS, nonsignificant; TNF, tumor necrosis factor.
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In conclusion, our study demonstrates that TNF-
α potently promotes Tc9-cell differentiation. Moreover,
TNF-α-induced Tc9 cells induce potent antitumor efficacy
in adoptive immunotherapy in mouse tumor models.
Moreover, TNF-α promotes Tc9-cell differentiation
through TNFR2-mediated STAT5 and NF-κB pathways
during Tc9 differentiation. Thus, our study demonstrated
TNF-α as a potent stimulator of Tc9-cell differentiation and
may have important clinical implications.
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