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Abstract: Peritubular capillary (PTC) rarefaction is commonly detected in chronic kidney disease
(CKD) such as hypertensive nephrosclerosis and diabetic nephropathy. Moreover, PTC rarefaction
prominently correlates with impaired kidney function and predicts the future development of
end-stage renal disease in patients with CKD. However, it is still underappreciated that PTC
rarefaction is a pivotal regulator of CKD progression, primarily because the molecular mechanisms of
PTC rarefaction have not been well-elucidated. In addition to the established mechanisms (reduced
proangiogenic factors and increased anti-angiogenic factors), recent studies discovered significant
contribution of the following elements to PTC loss: (1) prompt susceptibility of PTC to injury,
(2) impaired proliferation of PTC, (3) apoptosis/senescence of PTC, and (4) pericyte detachment
from PTC. Mainly based on the recent and novel findings in basic research and clinical study, this
review describes the roles of the above-mentioned elements in PTC loss and focuses on the major
factors regulating PTC angiogenesis, the assessment of PTC rarefaction and its surrogate markers,
and an overview of the possible therapeutic agents to mitigate PTC rarefaction during CKD progression.
PTC rarefaction is not only a prominent histological characteristic of CKD but also a central driving
force of CKD progression.
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1. Background

Chronic kidney disease (CKD) affects one in every seven adults in the USA, suggesting that
30 million of American adults have CKD [1]. The number of patients with CKD is still growing with
the increased prevalence of CKD risk factors such as aging, diabetes, hypertension, and obesity. There
is no effective therapy to halt CKD progression to end-stage renal disease (ESRD, the most severe form
of CKD). The mortality of patients with ESRD is approximately 15% per year [1]. Moreover, CKD is
a major cause of death owing to increasing cardiovascular morbidity [2,3]. One reason for the lack
of effective therapies is an incomplete understanding of pathogenesis of CKD. Regardless of initial
insults, chronic injuries to the kidney frequently induce tubular atrophy, fibrosis, inflammation and
peritubular capillary (PTC) rarefaction (Figure 1). PTC rarefaction is identified not only in diabetic
nephropathy and hypertensive kidney diseases, two major causes of CKD [4–6], but also in advanced
IgA nephropathy [7], congenital nephrotic syndrome [8], lupus nephritis [9], polycystic kidney
disease [10,11], and allograft nephropathy [12,13], suggesting that PTC loss is a very common event
in patients with CKD. Interestingly, the aging process itself accelerates PTC rarefaction [14]. Although
many studies have investigated PTC rarefaction (reviewed in [15–18]), the molecular mechanisms
of PTC rarefaction still remain incompletely elucidated. Recent studies have made major progress
in understanding the process of PTC rarefaction. Therefore, based on those new findings, this review
describes (1) the novel mechanisms of PTC rarefaction, (2) the major factors regulating PTC angiogenesis,
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(3) the assessment of PTC rarefaction and its surrogate markers, and (4) possible therapeutic agents to
retard PTC rarefaction during CKD progression.
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Figure 1. Peritubular capillary rarefaction in the kidney cortex. (A) Peritubular capillaries surround 
tubules in the normal kidneys. (B) Peritubular capillaries rarefy after kidney injury, leading to 
capillary regression. Peritubular capillary endothelial cells are visualized with immunofluorescence 
staining for CD31 (red). Note that many of peritubular capillaries lose their lumina in the injured 
kidney whereas the capillary lumen is clearly maintained in the normal kidney. Kidney injury is 
induced by unilateral ureteral obstruction (UUO) in the mouse. T indicates a tubular epithelial 
compartment. Blue represents nuclei. Scale bar, 50 μm. 

2. Anatomy of PTC 

Arteriolar blood is delivered to the cortex via a series of large branches of the renal arteries such 
as interlobar arteries, arcuate arteries (approximate luminal diameter: 70–100 μm in rats [19]), and 
interlobular arteries (approximate luminal diameter: 40–50 μm in rats [19]). Cortical glomeruli (90% 
of total glomeruli) and juxtamedullary glomeruli (10% of total glomeruli) branch from interlobular 
arteries via afferent arterioles (approximate luminal diameter: 21–25 μm in rats [20]). The majority of 
blood flow reaches the medulla through efferent arterioles (approximate luminal diameter: 19–23 μm 
in rats [20]) whereas some circumvent glomeruli by a periglomerular shunt (Figure 2). Afferent 
arterioles are usually larger in diameter than efferent arterioles to increase blood pressure in 
glomeruli for ultrafiltration to take place. A bundle of glomerular capillaries (approximate luminal 
diameter: 6–10 μm in rats [21]) forms the efferent arteriole. Efferent arterioles follow one of the two 
pathways. First, efferent arterioles arise from glomeruli in the mid and outer cortex construct PTC 
network (approximate luminal diameter: 5–10 μm in rats [22]) running alongside the proximal and 
distal tubules (cortical nephron) (Figure 2). Second, efferent arterioles arise from juxtamedullary 
glomeruli construct vasa recta running along the loops of Henle and collecting tubules 
(juxtamedullary nephron) (Figure 2). Descending vasa recta (DVR, approximate luminal diameter: 
13–17 μm in rats [23]) branches into several vessels, penetrating the inner medulla, which construct 
the sparse inner capillary network (sparse capillary plexus). Venous blood returns to the cortex via 
ascending vasa recta (AVR, approximate luminal diameter: 18–22 μm in rats [23]) (more details of 
renal vasculature anatomy are reviewed in [24,25]). Osmotically active solutes (NaCl and urea) move 
from AVR to medullary interstitium to DVR. This system traps solutes in the interstitium by recycling 
between AVR and DVR to create the countercurrent exchange for efficient urine concentration. 
Kidneys lacking AVR do not process the capacity to concentrate urine [26]. A trade-off of 

Figure 1. Peritubular capillary rarefaction in the kidney cortex. (A) Peritubular capillaries surround
tubules in the normal kidneys. (B) Peritubular capillaries rarefy after kidney injury, leading to capillary
regression. Peritubular capillary endothelial cells are visualized with immunofluorescence staining for
CD31 (red). Note that many of peritubular capillaries lose their lumina in the injured kidney whereas
the capillary lumen is clearly maintained in the normal kidney. Kidney injury is induced by unilateral
ureteral obstruction (UUO) in the mouse. T indicates a tubular epithelial compartment. Blue represents
nuclei. Scale bar, 50 µm.

2. Anatomy of PTC

Arteriolar blood is delivered to the cortex via a series of large branches of the renal arteries
such as interlobar arteries, arcuate arteries (approximate luminal diameter: 70–100 µm in rats [19]),
and interlobular arteries (approximate luminal diameter: 40–50 µm in rats [19]). Cortical glomeruli
(90% of total glomeruli) and juxtamedullary glomeruli (10% of total glomeruli) branch from interlobular
arteries via afferent arterioles (approximate luminal diameter: 21–25 µm in rats [20]). The majority of
blood flow reaches the medulla through efferent arterioles (approximate luminal diameter: 19–23 µm
in rats [20]) whereas some circumvent glomeruli by a periglomerular shunt (Figure 2). Afferent
arterioles are usually larger in diameter than efferent arterioles to increase blood pressure in glomeruli
for ultrafiltration to take place. A bundle of glomerular capillaries (approximate luminal diameter:
6–10 µm in rats [21]) forms the efferent arteriole. Efferent arterioles follow one of the two pathways.
First, efferent arterioles arise from glomeruli in the mid and outer cortex construct PTC network
(approximate luminal diameter: 5–10 µm in rats [22]) running alongside the proximal and distal
tubules (cortical nephron) (Figure 2). Second, efferent arterioles arise from juxtamedullary glomeruli
construct vasa recta running along the loops of Henle and collecting tubules (juxtamedullary nephron)
(Figure 2). Descending vasa recta (DVR, approximate luminal diameter: 13–17 µm in rats [23])
branches into several vessels, penetrating the inner medulla, which construct the sparse inner capillary
network (sparse capillary plexus). Venous blood returns to the cortex via ascending vasa recta (AVR,
approximate luminal diameter: 18–22 µm in rats [23]) (more details of renal vasculature anatomy
are reviewed in [24,25]). Osmotically active solutes (NaCl and urea) move from AVR to medullary
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interstitium to DVR. This system traps solutes in the interstitium by recycling between AVR and
DVR to create the countercurrent exchange for efficient urine concentration. Kidneys lacking AVR
do not process the capacity to concentrate urine [26]. A trade-off of countercurrent exchange is that
oxygen and nutrients are shunted from DVR to AVR, resulting in profound hypoxia in the inner
medulla. Thus, DVR tightly controls perfusion to the outer and inner medulla to avoid the threat
of ischemia. Indeed, DVR functions both as an exchanging vessel (capillary) and a resistance vessel
(arteriole) [27]. DVR and AVR are not defined as PTCs in this review, because the proximal part of
DVRs is an arteriole surrounded by smooth muscle cells [28]. Capillary endothelial cells (ECs) of
the glomeruli, PTC network, AVRs, but not DVRs, possess fenestrae that are transcellular pores with
60–80 nm diameters [26,29,30] (Figure 3A,B). Fenestration pores allow water, size- and charge-restricted
molecules to pass through. Fenestration pores of PTCs and AVRs display the diaphragmatic structure,
but fenestrae of glomerular capillaries lack diaphragms. The diaphragm is composed of multiple
radial fibrils and accessory glycosaminoglycans [31] (Figure 3A). Endothelial diaphragm deficient
mice demonstrated edematous interstitium in the kidney without any proteinuria and abnormal
kidney function, suggesting that PTC diaphragm is involved in transportation of water and proteins
in the interstitium [29]. Another prominent structure for EC homeostasis is the glycocalyx, a gel
consisting of proteoglycans, glycosaminoglycans, and glycoproteins (approximate height of glycocalyx:
50–100 nm [32]) (Figure 3C). Endothelial glycocalyx covers the luminal surface of ECs and blocks blood
coagulation, platelet aggregation, and inflammatory cell adhesion [33].
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Figure 2. Peritubular microvasculature in the kidney. Arterial blood is delivered to glomerular
capillaries in cortical nephrons (90% of total nephrons) and juxtamedullary nephrons (10% of total
nephrons) via arcuate artery (labeled as 1), interlobular artery (labeled as 2), and afferent arteriole
(labeled as 3). Afferent arterioles occasionally create a periglomerular shunt (indicated with an arrow)
but are mostly connected with capillaries in glomeruli without shunting. Efferent arterioles (labeled as
4) in juxtamedullary nephrons construct vascular bundle (labeled as 5) to supply arterial blood for
interbundle dense capillary plexus (PTC) and DVR. Venous blood returns to AVR and vascular bundle
(labeled as 6) via interbundle dense capillary plexus or sparse capillary plexus. In cortical nephrons,
efferent arterioles construct PTC without branches of vasa recta.
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Figure 3. Endothelial fenestrae and glycocalyx. (A) Endothelium of PTC including AVR owns 
fenestrae with 60–80 nm diameters. Each fenestration pore is spanned with multiple units of 
diaphragm fibrils composed of PLVAP (plasmalemmal-vesicle-associated protein) dimers and 
glycosaminoglycans. (B) In early response to injury, endothelial fenestrae disappear. Endothelial cells 
(ECs) are subsequently thickening. (C) The luminal surface of ECs is coated with glycocalyx consisting 
of proteoglycans (membrane-bound proteins such as syndecans and glypicans); glycosaminoglycans 
(long, linear polysaccharides that impart a strong negative charge, including heparan sulfate, 
chondroitin sulfate, and hyaluronan or hyaluronic acid); and glycoproteins (cell surface receptors 
such as selectins, integrins, intercellular adhesion molecule [ICAM], and vascular cell adhesion 
molecule [VCAM]). Injury promotes glycocalyx shedding, which exposes glycoproteins to blood 
stream, resulting in inflammatory cell adhesion, platelet aggregation, and following coagulation. 
CD44, one of principle glycoproteins in glycocalyx, anchors hyaluronan chains and stripping of 
glycocalyx facilitates CD44-leukocyte interaction and leukocyte extravasation. CKD: chronic kidney 
disease. 
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While PTC rarefaction was correlated with the severity of fibrosis in patients with CKD [34–36], 
PTC rarefaction was found to be a strong predictor of future ESRD development in CKD patients 
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patients [36]. By using multiple murine CKD models such as cisplatin-induced injury, 
rhabdomyolysis, and ischemia-reperfusion injury (IRI), another study similarly demonstrated that 
PTC density correlates with GFR better than fibrosis does [38]. This finding is plausible because a 
bundle of glomerular capillaries forms the efferent arteriole that is directly connected with PTCs or 
DVRs without any collateral vessels (Figure 2). As suggested before [39], once PTCs and DVRs 
disappear or lose their blood flow, perfusion of glomerular capillaries is also dramatically reduced, 
and vice versa. This idea is supported by a fact that impaired PTC/DVR perfusion causes severe loss 
of GFR in rat models with congested kidneys [40]. Moreover, the loss of PTC perfusion induces tissue 
hypoxia that triggers further PTC loss [41]. As perfused PTC number and PTC diameter were 
inversely correlated well with blood urea nitrogen (BUN) level both in the short term and the long 

Figure 3. Endothelial fenestrae and glycocalyx. (A) Endothelium of PTC including AVR owns fenestrae
with 60–80 nm diameters. Each fenestration pore is spanned with multiple units of diaphragm
fibrils composed of PLVAP (plasmalemmal-vesicle-associated protein) dimers and glycosaminoglycans.
(B) In early response to injury, endothelial fenestrae disappear. Endothelial cells (ECs) are subsequently
thickening. (C) The luminal surface of ECs is coated with glycocalyx consisting of proteoglycans
(membrane-bound proteins such as syndecans and glypicans); glycosaminoglycans (long, linear
polysaccharides that impart a strong negative charge, including heparan sulfate, chondroitin sulfate,
and hyaluronan or hyaluronic acid); and glycoproteins (cell surface receptors such as selectins, integrins,
intercellular adhesion molecule [ICAM], and vascular cell adhesion molecule [VCAM]). Injury promotes
glycocalyx shedding, which exposes glycoproteins to blood stream, resulting in inflammatory cell
adhesion, platelet aggregation, and following coagulation. CD44, one of principle glycoproteins
in glycocalyx, anchors hyaluronan chains and stripping of glycocalyx facilitates CD44-leukocyte
interaction and leukocyte extravasation. CKD: chronic kidney disease.

3. Clinical Significance of PTC Rarefaction

While PTC rarefaction was correlated with the severity of fibrosis in patients with CKD [34–36],
PTC rarefaction was found to be a strong predictor of future ESRD development in CKD
patients [37]. Moreover, compared with tubular atrophy, interstitial fibrosis, and inflammatory
cell infiltration, the extent of PTC loss reflected glomerular filtration ratio (GFR) most accurately in CKD
patients [36]. By using multiple murine CKD models such as cisplatin-induced injury, rhabdomyolysis,
and ischemia-reperfusion injury (IRI), another study similarly demonstrated that PTC density correlates
with GFR better than fibrosis does [38]. This finding is plausible because a bundle of glomerular
capillaries forms the efferent arteriole that is directly connected with PTCs or DVRs without any
collateral vessels (Figure 2). As suggested before [39], once PTCs and DVRs disappear or lose their
blood flow, perfusion of glomerular capillaries is also dramatically reduced, and vice versa. This idea
is supported by a fact that impaired PTC/DVR perfusion causes severe loss of GFR in rat models with
congested kidneys [40]. Moreover, the loss of PTC perfusion induces tissue hypoxia that triggers
further PTC loss [41]. As perfused PTC number and PTC diameter were inversely correlated well
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with blood urea nitrogen (BUN) level both in the short term and the long term after severe IRI [42],
it is strongly suggested that PTC loss is one of the major contributors to impaired GFR.

4. Mechanisms of PTC Rarefaction

4.1. Established Major Mechanisms—Loss of Endothelial Survival Factors

Healthy kidneys keep a tight balance between proangiogenic and antiangiogenic factors to prevent
unnecessary angiogenesis. However, this balance is disrupted during CKD progression. In response to
kidney injury, PTC ECs initially proliferate and subsequently disappear due to endothelial apoptosis [43].
Early proliferation of ECs is supported with intense expression of vascular endothelial growth factor
(VEGF)-A, a major and potent proangiogenic factor, in the tubular epithelium compartment. However,
expression levels of VEGF-A and its receptor vascular endothelial growth factor receptor-2 (VEGFR2)
gradually decline in the later stage, resulting in enhanced EC apoptosis without compensative EC
proliferation [43]. Similarly, expression level of angiopoietin (Angpt)-1, another potent proangiogenic
factor, is dramatically decreased following kidney injury [44]. Concurrently, antiangiogenic factors
such as thrombospondin-1 (TSP-1) and Angpt-2 are strongly induced to antagonize VEGF-A and
Angpt-1 signaling [45,46]. Moreover, inflammatory macrophages infiltrate and secrete inflammatory
cytokines such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), all of which block
tubular VEGF-A expression [45]. Especially macrophage-derived IL-1β and TNF-α were demonstrated
to regress capillary tubes [47]. Deprivation of endothelial survival factors is believed to be a central
and major mechanism for PTC rarefaction following chronic kidney injury. As described below, recent
research work has discovered other important mechanisms to cause PTC loss during CKD progression.

4.2. PTC Endothelium Quickly Responds to CKD Development

A recent ultrastructural study of PTCs revealed that the number of fenestrated pores starts to
decrease only 24 h after progressive kidney injury by unilateral ureteral obstruction (UUO) in mice [48].
This time point (24 h post-UUO) was a very early stage in the disease course compared with 5 days
post-UUO when significant fibrosis was detectable [49]. Significant PTC rarefaction and endothelial
thickening in PTC were detected 3 days and 5 days after UUO, respectively. In the same study,
similar fenestration loss and endothelial thickening were observed in other animal CKD models (IRI,
Alport mice) and in biopsy samples of CKD patients [48], implying that PTC ECs immediately and
continuously react to kidney injury in rodents and humans regardless of the type of insults. The loss
of fenestration indicates endothelial activation in glomerular and liver sinusoidal capillaries [50–52].
Activated ECs induce heparanase and hyaluronidase that degrade endothelial glycocalyx [53]. Without
glycocalyx coverage, ECs become pro-coagulant, pro-thrombotic and pro-adhesive (Figure 3C).
For example, the glycoprotein molecule of CD44 on PTC was increased and exposed to the blood
stream by glycocalyx stripping after kidney injury, resulting in enhanced neutrophil recruitment/influx,
exaggerated inflammation, and PTC loss [54,55] (Figure 3C). Consequently, EC activation leads to
impaired blood flow and lowered laminar shear stress on ECs. As shear stress is one of the primary
regulators of glycocalyx formation [56], low perfusion of PTCs leads to destabilization and further loss
of endothelial glycocalyx. Actually, GFR was inversely correlated with glycocalyx shedding in patients
with CKD [57]. Finally, this whole process triggers endothelial apoptosis [58]. These findings suggest
that ECs in PTC are promptly activated in response to kidney injury, culminating in PTC loss due to
EC apoptosis during CKD progression.

4.3. PTC Endothelium Is a Unique Population with Low Proliferative Potential

In response to IRI, PTC ECs progressively disappeared with marginal endothelial proliferation [59].
While 0.5–1.0% of PTC ECs were proliferative in normal kidneys, subtle increase in EC proliferation
was detected in the early phase of UUO injury [60]. However, the mechanisms underlying low
proliferation of PTC ECs have remained unclear. Recent studies identified impaired proliferation
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of PTC ECs isolated from mouse, rat, and human compared with that of ECs from other organs
such as lung and aorta [61,62]. Dang et al. demonstrated that constitutively active phosphatase and
tensin homolog (PTEN) suppresses proliferation/growth of kidney microvascular ECs by counteracting
phosphoinositide-3-kinase (PI3K)/Akt signaling whereas VEGF-A potentiates PI3K/Akt pathway for
capillary growth [62] (Figure 4). In ECs, activated PI3K/Akt signaling prevents nuclear translocation of
forkhead box O-1 (FOXO-1) transcription factor, promoting cell cycle progression by enhanced MYC
activity [63] (Figure 4). Chemical inhibitor of PTEN not only restored angiogenesis of PTC ECs in vitro
but also antagonized PTC rarefaction in IRI in vivo [62]. This finding explains why PTCs are easy to
regress after injury.
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Figure 4. Major signaling pathways for endothelial growth/proliferation. When ligands (vascular
endothelial growth factor-A (VEGF-A) or angiopietin-1 (Angpt-1)) bind to receptor tyrosine kinase,
activated PI3K (phosphoinositide-3-kinase) converts PIP2 (phosphatidylinositol-4,5-biphosphate) to
PIP3 (phosphatidylinositol-3,4,5-triphosphate) by phosphorylation. Conversely, PTEN (phosphatase
and tensin homolog deleted from chromosome ten) turns PIP3 into PIP2 by dephosphorylation. PIP3 is
a membrane bound and intracellular messenger that recruits PDK-1 (phosphatidylinositol-dependent
kinase 1) and Akt to the plasma membrane. PDK-1 phosphorylates Akt, which, in turn, inhibits nuclear
translocation of forkhead box O-1 (FOXO1). As cytoplasmic FOXO1 cannot suppress transcription
factor, MYC, enhanced MYC activity leads to increased cellular metabolisms, growth, and proliferation.
Phosphorylated FOXO1 is ubiquitinated by SKP2 (S-phase kinase associated protein2 E3 ligase) and is
subjected to degradation. When VEGF-A or Angpt-1 is not available, nuclear FOXO1 inhibits MYC
activity, limiting endothelial growth/proliferation.
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4.4. EC Apoptosis Is a Pivotal Cause of PTC Dropout

CKD progression enhances endothelial expression of active caspase-3 [64] and endothelial
apoptosis [43]. In global caspase-3 deficient mice, endothelial apoptosis was significantly
reduced post-IRI, resulting in reduced PTC rarefaction [65]. Moreover, loss of caspase-3 lowered
hypoxia-inducible factor (HIF)-1α expression following IRI, indicating that preserved PTC network
counterbalances tissue hypoxia. Global caspase-3 defect also rescued tubular cells from IRI, probably
preserving tubular VEGF-A expression. This would inhibit PTC dropout in mutant mice although
VEGF-A level was not measured in this study [65]. Kidney injury increased expression of anti-angiogenic
factors such as TSP-1 and endostatin [45,66], both of which induce EC apoptosis by caspase-3
activation [67,68]. Another molecule, CD44, one of endothelial glycocalyx components and induced by
kidney injury, strongly enhanced EC apoptosis by caspase-3 activation [69].

4.5. Pericyte Detachment Worsens PTC Loss

Kidney pericytes are closely attached to PTC ECs and maintain the structure and function
of PTCs [70,71]. For example, kidney pericytes contact ECs and intensify synthesis of capillary
basement membrane to maintain capillary integrity [60]. While kidney pericytes stabilize endothelial
tube formation of PTCs in healthy kidneys, pericytes promptly migrate away from PTC following
kidney injury, leading to PTC disintegration and rarefaction [60,72] (Figure 5). Images by two
photon microscopy revealed that many processes from the cell body of pericytes are attached to
PTC in normal kidneys whereas those processes are detached from PTCs and reattached to walls
of tubular epithelial cells 3 days after UUO [71]. After injury, pericytes differentiated into two
scar-forming populations (α-smooth muscle actin positive myofibroblasts and α-smooth muscle actin
negative activated fibroblasts) [73]. Neither fibrotic population could stabilize PTCs after injury [74].
These facts offer the mechanisms by which PTC rarefaction accompanies tissue fibrosis (Figure 5).
Kramann et al. identified that Gli1+ cells are a perivascular population of mesenchymal stem cell-like
cells [75]. In the kidney, Gli1+ cells functioned as pericytes in normal kidneys, and Gli1+ pericytes
were significantly detached from PTCs following IRI [76]. Genetic ablation of Gli1+ pericytes resulted
in PTC rarefaction (predominant rarefaction of smaller capillaries whose diameter was less than 7 µm),
tissue hypoxia, and transient hypoxic tubular epithelial injury 10 days post-ablation. Interestingly,
Gli1+ pericyte ablation induced an inflammatory response with upregulation of renal TNF-α and IL-6
expression. Lemos et al. genetically ablated a forkhead box D-1 (FoxD1) positive population, which
induced PTC loss, tubular injury, and albuminuria without acute inflammatory response 3 days after
ablation [77]. Loss of FoxD1 was severe enough to sacrifice all mice within 3 days post-treatment.
While Gli1+ cells represented a small fraction of kidney pericytes, FoxD1+ population contained
pericytes, perivascular fibroblasts, glomerular mesangial cells, podocytes, and vascular smooth muscle
cells in the kidney [78]. Both studies reported that pericytes loss causes tubular damage. Injured
tubules increased transforming growth factor (TGF)-β expression, promoting pericyte-myofibroblast
differentiation and further tissue damage [79]. Studies of pericyte ablation indicate that kidney
pericytes are essential for PTC integrity as well as tubular integrity and the loss of pericytes accelerates
PTC rarefaction.
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Figure 5. Kidney pericytes are essential to the integrity of peritubular capillaries. (A) In peritubular
capillaries of the normal kidney, kidney pericytes (green) are attached to capillary endothelial cells (red)
to stabilize capillary tube formation. Pericytes share the capillary basement membrane with endothelial
cells. (B) In response to injury, kidney pericytes promptly migrate away from the capillary basement
membrane, resulting in activation of endothelial cells. (C) Following further injury, kidney pericytes
differentiate into scar-forming myofibroblasts or activated fibroblasts. These populations synthesize
extracellular matrices such as collagens, promoting tissue fibrosis. Capillary endothelial cells are not
able to maintain the capillary basement membrane without pericytes. Finally, peritubular capillaries
start to disappear due to apoptosis, as myofibroblasts can no longer stabilize capillary tube formation.

5. Major Factors Affecting PTC Loss

5.1. VEGF-A

VEGF-A is the potent regulator to maintain PTC network. In the adult kidney, VEGF-A is mainly
expressed in podocytes and the thick ascending limbs of Henle’s loop and, to a lesser extent, in proximal
and distal tubules [80]. Loss of tubular epithelial VEGF-A induced PTC rarefaction even without
kidney injury [80]. Moreover, tubular VEGF-A deletion resulted in pronounced polycythemia due
to elevated erythropoietin (EPO) production, suggesting that PTC loss induces tissue hypoxia and
thereby stimulates renal EPO producing cells [80]. Consistently, expression of VEGF-A was remarkably
decreased in rodent CKD models and in CKD patients mainly due to tubular cell atrophy [37,43,45,81].
Conversely, overexpression of VEGF-A in tubular epithelial cells caused overgrowth of PTC ECs that
synthesize excess amounts of platelet-derived growth factor (PDGF)-B and TGF-β [82]. This sequence
of events resulted in tissue fibrosis because PDGF-B and TGF-β simulates pericyte proliferation
and pericyte-myofibroblast transition, respectively [79]. As both loss and overexpression of tubular
VEGF-A disorganize PTC architecture, a proper range of tubular VEGF-A expression is indispensable
for healthy PTC integrity. Separately, soluble fms-like tyrosine kinase-1 (sFlt-1, soluble VEGFR1) was
found to be elevated in patients during CKD progression [83]. sFlt-1 is a truncated form of VEGFR1
and a potent circulating antagonist for VEGF-A. Renal biopsy samples demonstrated that sFlt-1 is
expressed in CD68+ histiocytes (a part of macrophage population) and PTC network around sFlt-1+

cells are diminished [84]. In patients receiving cardiac surgery, perioperative low VEGF-A and high
sFlt-1 levels in the plasma significantly predicted future development of acute kidney injury (AKI) [85].
In addition, other VEGF-A antagonists such as endostatin [86–88] and TSP-1 [89–92] were increased
in patients with CKD, which worsened PTC rarefaction [88,92]. Finally, VEGF-A rich angiogenic
macrophages were identified in damaged kidneys from mice and patients [93]. These macrophages
were kidney resident, not derived from circulating monocytes, and supported proliferation of PTC ECs.
Taken together, reduced tubular VEGF-A expression and increased VEGF-A antagonists cooperatively
promote PTC rarefaction during CKD progression.

5.2. Angiopoietin/Tie

Angpt-1 and Angpt-2 are another critical angiogenic factors that act on Tie (tyrosine kinase
with Ig and EGF homology domains) receptors, Tie1 and Tie2. In the adult kidney, Angpt-1 is
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expressed in tubular epithelial cells, podocytes, and pericytes, whereas Angpt-2 is detected in ECs,
with lower levels in tubular epithelial cells. Tie2 is expressed in glomerular and peritubular ECs
in addition to hematopoietic cells. Generally, Angpt-1 binds to Tie2, enhancing EC survival and vascular
stabilization, while Angpt-2 competitively inhibits the action of Angpt-1 on Tie2 [94]. In patients with
CKD, circulating levels of VEGF-A and Angpt-1 were decreased and those of Angpt-2 were elevated,
generating anti-angiogenic environment [46]. Furthermore, elevated Angpt-2 level was a strong
predictor of mortality in CKD patients [95]. Inducible and global loss of Angpt-1 accelerated PTC loss
and fibrosis only after kidney injury in mice [44], indicating a protective role of Angpt-1 in kidney injury.
While Tie2 activation (Tie2 phosphorylation) was reduced by vascular endothelial protein tyrosine
phosphatase (VE-PTP) during hypertensive or diabetic kidney injury, inhibition of VE-PTP activated
endothelial Tie2 signaling and protected kidneys from such damage [96]. VE-PTP was highly expressed
in glomerular and peritubular capillaries and repressed Tie2 activity by its dephosphorylation [96].
Although the role of Tie1 has been ambiguous, recent study showed that Tie1 enhances Angpt-1/Tie2
signaling in ECs [97,98]. However, acute inflammation promoted endothelial Angpt-2 expression
and Tie1 ectodomain cleavage, counteracting angiogenesis by impairment of Tie2 signaling [97,98].
Genetic loss of endothelial Tie1 caused capillary regression via markedly enhanced EC apoptosis even
if ECs expressed Tie2 [99]. Endothelial overexpression of Angpt-2 induced pericyte detachment from
capillary EC, promoting capillary destabilization [100]. Collectively, Angpt-1/Tie2 signaling protects
against PTC rarefaction.

5.3. HIF

Hypoxia-inducible factor (HIF) is a master regulator of cellular adaptation to hypoxia. HIF
is a heterodimeric transcription factor that is composed of HIF-α and HIF-β subunits. HIF-β
is constitutively expressed whereas HIF-α expression is tightly controlled by oxygen-dependent
degradation. In normoxia, two conserved proline residues of HIF-α are hydroxylated by prolyl
hydroxylase domain-containing proteins (PHDs). Hydroxylated HIF-α is detected by the von
Hippel-Lindau protein and is subjected to polyubiquitination and following proteasomal degradation.
In hypoxia, however, HIF-α escapes from hydroxylation by PHDs and binds to HIF-β. This functional
heterodimeric HIF translocates to the nucleus and upregulates the transcription of HIF responsive
genes such as EPO and VEGF-A. HIF-α has two major isoforms, HIF-1α and HIF-2α. In the hypoxic
kidney, HIF-1α is expressed in tubular and glomerular epithelial cells, whereas HIF-2α is detected
in glomerular and peritubular ECs and fibroblasts. Deletion of tubular HIF-1α attenuated tissue fibrosis
and macrophage infiltration post-UUO injury [101]. While endothelial-specific HIF-1α inactivation did
not show any influence on kidney injury, HIF-2α deletion in the endothelium worsened PTC rarefaction,
glomerular capillary loss, albuminuria, and tissue fibrosis following kidney damage [102,103]. Loss
of endothelial HIF-2α prolonged inflammatory response [104] and impaired protection against
oxidative stresses [105]. Moreover, HIF-2α+ pericytes/fibroblasts were the unique source of renal
EPO production [106]. EPO production in kidney pericytes/fibroblasts was exclusively dependent on
HIF-2α [107], implying that HIF-2α in pericytes/fibroblasts is protective against anemia and tissue
hypoxia. Taken together, renal HIF-1α exaggerates kidney injury, and renal HIF-2α antagonizes
PTC loss.

5.4. Sirtuin

Silent information regulator two protein (Sirtuin)-1 is a protein with nicotinamide adenine
dinucleotide (NAD+)-dependent deacetylase activity and is highly expressed in ECs. Sirtuin-1
antagonizes endothelial cellular senescence (aging process accompanying EC dysfunction) through
multiple pathways [108]. ECs stop proliferation after a limited number of doublings. Cessation of
cell division induces cell growth arrest, which is termed replicative senescence. Some stresses such
as oxidative stress and DNA damage elicit quite similar cell growth arrest in the short term, referred
to as stress-induced premature senescence (SIPS). Kidney injury antagonizes PTC angiogenesis by
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inducing endothelial SIPS. Endothelial Sirtuin-1 prevented capillary loss in the hindlimb model by
repressing FOXO1 activity [109]. Furthermore, Sirtuin-1 inactivated p53 by its deacetylation and
induced cellular growth in ECs [110]. As FOXO1 and p53 strongly induce endothelial SIPS by cell cycle
arrest, Sirtuin-1 maintains the angiogenic properties of PTC ECs by counteracting SIPS [108]. Deletion
of endothelial Sirtuin-1 enhanced PTC loss via down-regulation of matrix metalloproteinase (MMP)-14
and activation of Notch1 signaling [111,112]. ECs needed MMP-14 to degrade the extracellular matrix
for new microvessel formation [111]. In ECs, Notch1 induced SIPS and cell cycle arrest by elevated
PTEN expression [112,113]. Separately, loss of endothelial Sirtuin-1 extensively reduced endothelial
glycocalyx [114]. Reduced glycocalyx was shown to lower microvascular perfusion in rodents and
humans [115–117], suggesting that Sirtuin-1 deficient PTCs lose their perfusion and induce tissue
hypoxia following kidney injury. Taken together, endothelial Sirtuin-1 is protective against PTC loss.

5.5. Vasohibin

Vasohibin-1 (VASH-1) was initially identified as a novel antiangiogenic factor derived from
ECs [118], while Vasohibin-2 (VASH-2) was identified as a VASH-1 homolog and a novel proangiogenic
factor [119]. VASH-1 is expressed in glomerular and capillary ECs of the normal kidneys, and kidney
injury induces VASH-1 expression in glomerular mesangial cells and inflammatory cells in addition
to ECs [120]. Later study found that endothelial VASH-1 increases the expression of superoxide
dismutase-2 and the synthesis of Sirtuin-1 in ECs, indicating that endothelial VASH-1 promotes stress
tolerance by quenching reactive oxygen species and SIPS [121]. In response to cisplatin-induced kidney
injury, VASH-1 deficient mice enhanced loss of renal function, tubular injury, macrophage infiltration,
and PTC rarefaction compared with control mice [122]. Kidney injury decreased VASH-1 expression
in whole kidneys and accelerated PTC loss [122]. VASH-2 expression is observed in ECs of PTC/vasa
recta and cortical/medullary tubules in the normal kidney and is strongly induced in tubular epithelial
cells after kidney injury [123]. Following IRI, VASH-2 knockout mice exaggerated loss of renal function,
tubular injury, neutrophil infiltration, and PTC rarefaction compared with control mice [124]. VASH-2
expression was intensely increased in damaged kidneys, antagonizing PTC rarefaction. Collectively,
VASH protects against PTC loss.

5.6. Pericyte-Endothelial Cell Interaction

As mentioned above, endothelial-pericyte crosstalk is critical for angiogenesis and vascular
stabilization. This crosstalk involves multiple ligand-receptor interactions including PDGF-B/PDGF
receptor-β (PDGFRβ) and Angpt-1/Tie2 [125]. When either PDGFRβ signaling in pericytes or VEGFR2
signaling in ECs was blocked by circulating soluble receptor ectodomains, both PTC rarefaction
and fibrosis were remarkably alleviated during CKD progression [126]. This result indicates that
(1) bidirectional signaling between pericytes and PTC ECs is necessary to prevent pericyte detachment
from PTCs, and (2) kidney injury excessively enhances this bidirectional signaling, resulting in pericyte
loss and unstable vasculatures. Once pericytes were detached from PTCs, angiogenesis of functional
PTC was disrupted and inefficient, which could be corrected by PDGFRβ or VEGFR-2 blockade [126].
While pericytes synthesized EPO in normal kidneys, myofibroblasts lost the capability of producing
EPO, which induced renal anemia and thereby enhanced tissue hypoxia [71,127,128]. Impaired
EPO/EPO receptor signaling was shown to cause PTC rarefaction post-IRI [129]. Moreover, tissue
hypoxia played a critical role in acceleration of PTC loss after kidney injury [41].

5.7. Endothelial Progenitor Cells

Endothelial progenitor cells (EPCs) are defined as non-ECs that are capable of differentiating
into ECs. Asahara et al. provided the first evidence that bone marrow-derived circulating EPCs
differentiate into mature ECs to form new vessels in vivo [130]. Following this primary publication,
numerous studies have shown that EPCs contribute to vascular regeneration in patients and multiple
models of tissue injury including AKI and CKD. However, later studies detected only marginal EPC
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incorporation into the vasculatures in animal models of AKI and CKD [131–133]. Furthermore, all
new blood vessels in the damaged heart were derived from pre-existing ECs, not from EPC [134].
These results suggest an idea that EPCs stimulate PTC angiogenesis via paracrine mechanisms such
as secretion of proangiogenic factors (VEGF-A and Angpt-1) to repair damaged vasculatures [131].
Alternatively, EPCs may have the potential to prevent pericyte detachment from PTCs [135].

5.8. Endothelial to Mesenchymal Transition (EndMT)

The concept of EndMT is that endothelial cells are capable of differentiating into mesenchymal
cells (fibroblasts and myofibroblasts) under certain conditions. The initial study demonstrated that
30–50% of myofibroblasts are derived from ECs during kidney injury [136]. However, the later study
revealed that only 10% of myofibroblasts emerged via EndMT following kidney injury [137]. Thus,
renal ECs mainly disappear without becoming fibroblasts in damaged kidneys. Many studies exploring
the role of EndMT in renal fibrosis have used vascular endothelial (VE)-cadherin-Cre (Cdh5-Cre) mice
and Tie2-Cre mice for linage tracing or deletion of specific factors in ECs. However, VE-cadherin
and Tie2 have been shown to be non-specific for ECs and were expressed in hematopoietic cells
during development, because of endothelial origin of hematopoietic stem cells [138]. The lack of
a specific marker for ECs for lineage tracing makes it difficult to interpret these studies properly. As no
evidence of EndMT was detected in cardiac fibrosis following injury [139], further study is necessary
to determine the minor contribution of EndMT to PTC rarefaction.

6. Assessment of PTC Loss or Its Surrogate Marker, Tissue Hypoxia

6.1. Histological Assessment

Histological evaluation is the popular method to assess PTC density. Many researchers have
immunostained kidney sections with EC marker(s) and measured PTC density by a grid method (% of
EC marker-positive grids among total grids) or by an area fraction method (% of EC marker-positive
area among total area). However, these methods may overestimate PTC density, because ECs of
clogged or collapsed capillaries with micro-embolisms are still stained and positive for EC marker(s),
even if PTCs totally lose their perfusion. Kramann et al. injected the fluorescence microbead (0.02-µm
diameter)-agarose mixture into the beating heart to visualize actual capillary lumen in mouse kidneys
post-IRI [42]. They found that total perfused PTC cross-sectional area, PTC number, individual capillary
cross-sectional area, and individual capillary perimeter are significantly decreased in damaged kidneys
compared with sham-operated control kidneys 8 weeks post-severe IRI. Moreover, these factors of PTC
density were inversely correlated with renal function assessed by BUN. For more accurate assessment
of PTC density, Babickova and colleagues proposed a normalization of PTC counts to the number of
adjacent tubular segments, because the number of tubules differed between rodent CKD models [48].
For example, the number of tubules per area remained constant (with the appearance of dilated and
atrophic tubules), but the number of PTCs per field decreased during CKD progression in UUO model,
whereas the number of PTCs was not significantly lower, but the number of tubules was higher (given
the many atrophic tubules and only very few dilated tubules) in IRI model. In Alport mice, both
the number of PTC and tubules reduced, but loss of PTC was more significant [48]. Further study is
necessary to determine which method is most optimized for the assessment of PTC density in the course
of CKD progression. Although a histological assessment of PTC density by immunostaining is the most
popular method for animal models of CKD, it could not be used for follow-up of CKD patients because
tissue sampling is invasive.

6.2. Micro-Computed Tomography (Micro-CT)

Micro-computed tomography (Micro-CT) provided the ability to create high resolution images of
renal microvasculature such as arterioles (their diameter is bigger than 20 µm) [49]. As the diameter
of PTC is typically 5–10 µm [22], Micro-CT does not have sufficient power to visualize the smallest
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size of capillaries. However, the recently developed microangio-CT method was utilized to visualize
capillaries with high resolution [140]. This new method used a new polymerizing contrast agent
and successfully visualized PTCs in the mouse, showing that created PTC images are comparable to
immunostaining images [140]. Although microangio-CT could assess PTC density much faster than
histology-based methods, further study is necessary for its general use.

6.3. Renal Resistive Index

Renal resistive index (RRI) is noninvasively measured by renal Doppler ultrasonography and
is calculated with the following formula: (peak systolic velocity—end diastolic velocity)/peak
systolic velocity. RRI not only reflects changes in intrarenal perfusion but is also related to
systemic hemodynamics and the presence of subclinical microvascular atherosclerosis in the kidney.
In 30 patients with CKD, RRI positively correlated with systolic blood pressure, interstitial
fibrosis, and arteriosclerosis, and negatively correlated with PTC density and creatinine clearance
(renal function) [141]. A multivariate analysis demonstrated that PTC loss emerged as one of
independent variables associated with RRI elevation. As RRI could be measured repeatedly, RRI may
be a feasible method to periodically assess PTC rarefaction in CKD patients.

6.4. Endothelial Micro-Particles

Endothelial micro-particles (EMPs) are extracellular vesicles that are shed by damaged (activated)
ECs. In urine samples collected from patients with essential and renovascular hypertension, the levels
of EMPs, which were positive for plasmalemmal-vesicle-associated protein (PL-VAP) and negative for
CD31 as well as CD144 (VE-cadherin), significantly increased compared with those in urine samples
from healthy subjects [142]. In the kidney, PL-VAP (PV-1) was abundantly expressed in diaphragms
of endothelial fenestrae of PTCs and AVRs (Figure 3A), while it was undetectable in arterial and
glomerular ECs [29,143]. Urine PL-VAP+ EMP levels, but not circulating EMPs, were inversely
correlated with histologically assessed PTC density, GFR, and renal blood flow [142], suggesting
that increased levels of urine EMPs reflect PTC rarefaction. However, glomerular injury promoted
PL-VAP expression in glomerular ECs [144,145], and PL-VAP was abundantly expressed in ECs of
other organs [29]. These issues must be cleared before its clinical use for PTC assessment.

6.5. BOLD-MRI

One of the major outcomes of PTC rarefaction is tissue hypoxia. Blood oxygen level-dependent
(BOLD) magnetic resonance imaging (MRI) could be an indirect and non-invasive assessment of PTC
rarefaction by evaluating renal hypoxia. BOLD-MRI used the principle that magnetic properties
of hemoglobin depend on its oxygenated status. Increased local deoxyhemoglobin levels caused
decreased T2* (tissue parameter and expressed in sec) or increased R2* (decay rate, defined as 1/T2*
and expressed in 1/sec) [146]. CKD patients showed significantly decreased T2* value in their kidneys
compared with healthy controls [147]. Decline in GFR correlated with increased R2* value of the cortical
layers [148], suggesting that cortical hypoxia deteriorates renal function. BOLD-MRI does not require
the administration of contrast agents (possibly nephrotoxic) and could be repeated multiple times
without side effects.

7. Therapy to Mitigate PTC Rarefaction

7.1. Anti-Hypertensive Drugs

Hypertensive kidney diseases are one of the major causes of CKD. Several anti-hypertensive drugs
were demonstrated to counteract PTC loss (or microvascular loss) in experimental animal models. In the
rat model with age-dependent progressive kidney diseases, angiotensin-converting enzyme (ACE)
inhibitor or angiotensin II receptor blocker (ARB) antagonized PTC rarefaction [149]. These drugs
inhibited EC apoptosis and augmented EC proliferation, though the control of blood pressure was



Int. J. Mol. Sci. 2020, 21, 8255 13 of 24

not reported [149]. In the rat hypertensive model with angiotensin II infusion, ACE inhibitor and
ARB antagonized PTC rarefaction independent of blood pressure lowering effect [150]. Moreover,
ARB preserved PTC perfusion and ameliorated tissue hypoxia in damaged kidneys [151]. In the rat
uninephrectomy model with saline and mineralocorticoid infusion, spironolactone (SPL) counteracted
hypertension, loss of creatinine clearance (renal function), and PTC loss [6]. SPL inhibited endothelial
apoptosis and TSP-1 expression although it did not affect endothelial proliferation. In the pig model
with renovascular diseases (renal artery stenosis), endothelin-A receptor (ET-A) blocker, but not ET-B
blocker, ameliorated hypertension, reduction in GFR, and loss of microvasculature [152]. As the
diameter of microvasculature was defined as less than 200 µm in that study, it mainly consisted of
arterioles and venules instead of PTCs [152]. Consistent with this finding, long term use of ET-A
blocker retarded CKD progression in patients with type 2 diabetes in the international trial, though
water retention was its major and serious side effect [153]. These anti-hypertensive drugs could be
effective to block PTC rarefaction during CKD progression.

7.2. Sodium Glucose Cotransporter Inhibitor for Diabetic Nephropathy

PTC rarefaction was identified in diabetic nephropathy, a leading cause of CKD [4]. In large
clinical trials in patients with type 2 diabetes, inhibitors of sodium-glucose cotransporter 2 (SGLT2)
significantly prevented the progression of diabetic nephropathy to ESRD [154,155]. SGLT2 inhibitor
protected tubular epithelial cells from the toxicity of chronic hyperglycemia, resulting in preservation
of tubular VEGF-A synthesis [156]. In addition to blood glucose lowering effect, SGLT2 inhibitor
maintained tubular VEGF-A expression following IRI, antagonizing PTC rarefaction and fibrosis [156].
Interestingly SGLT2 inhibitor retarded CKD progression in patients without diabetes [157].

7.3. Tie2 Activator

While kidney injury compromised Tie2 activity by increased VE-PTP expression, chemical or
genetic Tie2 activation sustained PTC integrity following injury, preserving GFR [96,158]. As mentioned
above, VE-PTP inhibition maintained Tie2 activation (Tie2 phosphorylation) independent of Angpt-1 or
Angpt-2. In clinical trials of patients with diabetic macular edema, subcutaneous injections of VE-PTP
phosphatase inhibitor (AKB-9778) were well-tolerated for 12 weeks [159]. In some of such diabetic
patients, AKB-9778 improved albuminuria, suggesting that AKB-9779 is a renal protective agent.

7.4. Nicotinamide (NAM)

Although Sirtuin-1 activators such as resveratrol have been demonstrated to successfully treat
kidney injury in animal models [160], there have been no clinical trials to assess Sirtuin-1 activators for
patients with kidney diseases [108]. NAD+ is required for Sirtuin-1 function. Supplementation with
nicotinamide mononucleotide (NMN), an NAD+ precursor, protected mice from cisplatin-induced AKI
via restored renal Sirtuin-1 activity [161]. Since AKI lowered renal NAD+ level, patients were orally
administered with nicotinamide (NAM) for 3 days before and after cardiac surgery to assess whether
NAM could block AKI development [162]. NAM is converted to NAD+ through the intermediate
NMN. NAM treatment significantly increased circulating NAD+ level and prevented perioperative
AKI compared with placebo, suggesting that increasing NAD+ level is protective against PTC loss and
kidney injury by enhancing Sirtuin-1 activity.

7.5. PHD Inhibitor

PHD inhibitor robustly stabilizes HIF-1α and HIF-2α, which dimerize with HIF-1β and increase
transcription of HIF target genes including EPO and VEGF-A. Since tissue hypoxia worsens PTC
loss, HIF stabilizers are expected to improve PTC rarefaction by correcting renal anemia. In two
clinical trials with non-dialysis and dialysis patients, PHD inhibitors (roxadustat) were tolerated well
for 26 weeks and effectively improved renal anemia [163,164]. Moreover, PHD inhibitors effectively
promoted erythropoiesis by lowering circulating hepcidin level in treated patients. In the study of



Int. J. Mol. Sci. 2020, 21, 8255 14 of 24

knockout mice, HIF-2α promoted hepatic and renal EPO production, which inhibited hepatic hepcidin
expression [165]. Reduced hepcidin level increases dietary iron absorption and iron release from
macrophages, facilitating erythropoiesis. PHD inhibitors also increased VEGF-A level in CKD animal
models, which may favor PTC preservation [166].

7.6. Nintedanib

Targeting endothelial-pericyte cross-talk may provide a novel therapeutic opportunity to prevent
PTC loss and fibrosis. In the clinical setting, Richeldi et al. treated patients with idiopathic pulmonary
fibrosis (IPF) for 1 year with nintedanib (formerly known as BIBF 1120), an intracellular inhibitor
that can block multiple tyrosine kinase receptors such as PDGFRβ and VEGFR-2 [167]. Nintedanib
significantly retarded IPF progression, suggesting a beneficial effect of the drug on tissue fibrosis.
In an animal model of systemic sclerosis, nintedanib was shown to reduce capillary rarefaction and
tissue fibrosis [168]. Although the most frequent adverse effect of nintedanib was diarrhea, more
than 95% of patients tolerated the drug intake during the study period [167]. Nintedanib may have
a potential to normalize endothelial-pericyte crosstalk and prevent pericyte detachment as well as PTC
rarefaction during CKD progression.

8. Capillary Rarefaction in Other Organs

This review focused on the roles of PTC rarefaction in the progress of CKD. However, capillary
rarefaction has been found to be correlated with organ dysfunction in heart [169], lung [170,171],
skin [172], muscle [173], retina [174], and brain [175], suggesting that capillary rarefaction could be
an important and universal component to determine future declines in the function of various organs.

9. Conclusions

AKI and CKD universally cause PTC rarefaction in the kidney. As glomerular capillaries and
PTCs/DVRs are interconnected without collateral vessels, PTC loss causes the loss of GFR (the loss of
kidney function) and vice versa. Recent studies have identified novel mechanisms of PTC rarefaction
and indicated that PTC rarefaction is not only a prominent histological characteristic of CKD but also
a central driving force of CKD progression. As we currently obtain new tools to assess PTC density
and multiple drugs to mitigate PTC rarefaction in patients, PTC rarefaction would become a practical
therapeutic target to halt the progression of CKD.
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Abbreviations

CKD chronic kidney disease
PTC peritubular capillary
ESRD end-stage renal disease
DVR descending vasa recta
AVR ascending vasa recta
EC endothelial cell
GFR glomerular filtration ratio
VEGF-A vascular endothelial growth factor-A
VEGFR2 vascular endothelial growth factor receptor-2
BUN blood urea nitrogen
Angpt-1 angiopoietin-1
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TSP-1 thrombospondin-1
TNF-α tumor necrosis factor-α
IL-1β interleukin-1β
UUO unilateral ureteral obstruction
IRI ischemia reperfusion injury
PI3K phosphoinositide-3-kinase
FOXO1 forkhead box O-1
PTEN phosphatase and tensin homolog
HIF hypoxia-inducible factor
FoxD1 forkhead box D-1
TGF-β transforming growth factor-β
EPO erythropoietin
PDGF-B platelet-derived growth factor-B
AKI acute kidney injury
VE-PTP vascular endothelial-protein tyrosine phosphatase
PHD prolyl hydroxylase domain-containing protein
NAD nicotinamide adenine dinucleotide
SIPS stress-induced premature senescence
MMP matrix metalloproteinase
VASH vasohibin
PDGFRβ platelet-derived growth factor receptor-β
EPC endothelial progenitor cell
EndMT endothelial to mesenchymal transition
RRI renal resistive index
EMP endothelial microparticles
PL-VAP plasmalemmal-vesicle-associated protein
BOLD-MRI blood oxygen level-dependent-magnetic resonance imaging
ACE angiotensin-converting enzyme
ARB angiotensin II receptor blocker
SPL spironolactone
ET-A endothelin-A receptor
SGLT2 sodium glucose cotransporter 2
NMN nicotinamide mononucleotide
NAM nicotinamide
IPF idiopathic pulmonary fibrosis
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