
molecules

Article

Discovery of Octahydroisoindolone as a Scaffold for the
Selective Inhibition of Chitinase B1 from Aspergillus fumigatus:
In Silico Drug Design Studies

Alberto Marbán-González 1, Armando Hernández-Mendoza 2 , Mario Ordóñez 1 ,
Rodrigo Said Razo-Hernández 2,* and José Luis Viveros-Ceballos 1,*

����������
�������

Citation: Marbán-González, A.;

Hernández-Mendoza, A.; Ordóñez,

M.; Razo-Hernández, R.S.;

Viveros-Ceballos, J.L. Discovery of

Octahydroisoindolone as a Scaffold

for the Selective Inhibition of

Chitinase B1 from Aspergillus

fumigatus: In Silico Drug Design

Studies. Molecules 2021, 26, 7606.

https://doi.org/10.3390/

molecules26247606

Academic Editor: James Gauld

Received: 22 November 2021

Accepted: 13 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas,
Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico;
alberto.marbangon@uaem.edu.mx (A.M.-G.); palacios@uaem.mx (M.O.)

2 Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas,
Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico;
ahm@uaem.mx

* Correspondence: rodrigo.razo@uaem.mx (R.S.R.-H.); jlvc@uaem.mx (J.L.V.-C.)

Abstract: Chitinases represent an alternative therapeutic target for opportunistic invasive mycosis
since they are necessary for fungal cell wall remodeling. This study presents the design of new chiti-
nase inhibitors from a known hydrolysis intermediate. Firstly, a bioinformatic analysis of Aspergillus
fumigatus chitinase B1 (AfChiB1) and chitotriosidase (CHIT1) by length and conservation was done
to obtain consensus sequences, and molecular homology models of fungi and human chitinases were
built to determine their structural differences. We explored the octahydroisoindolone scaffold as a
potential new antifungal series by means of its structural and electronic features. Therefore, we eval-
uated several synthesis-safe octahydroisoindolone derivatives by molecular docking and evaluated
their AfChiB1 interaction profile. Additionally, compounds with the best interaction profile (1–5)
were docked within the CHIT1 catalytic site to evaluate their selectivity over AfChiB1. Furthermore,
we considered the interaction energy (MolDock score) and a lipophilic parameter (aLogP) for the
selection of the best candidates. Based on these descriptors, we constructed a mathematical model for
the IC50 prediction of our candidates (60–200 µM), using experimental known inhibitors of AfChiB1.
As a final step, ADME characteristics were obtained for all the candidates, showing that 5 is our best
designed hit, which possesses the best pharmacodynamic and pharmacokinetic character.

Keywords: bioinformatic analysis; chitinase AfChiB1; molecular docking; molecular similarity;
oxazolinium ion

1. Introduction

Invasive fungal diseases are a significant cause of morbidity and mortality in the
growing population of immunosuppressed patients, such as transplant recipients, patients
with hematological malignancies, and more recently, patients with severe COVID-19 [1]. In
this high-risk population, the opportunistic pathogens of Aspergillus genera have emerged
as the most frequent cause of invasive fungal diseases [2,3]. Although triazole drugs are
commonly used as the first line of clinical therapy for invasive aspergillosis [4], numerous
adverse clinical effects, such as neurotoxicity, nausea, vomiting and kidney damage, have
been reported. Triazoles are inhibitors of the cytochrome P450 14α-sterol demethylase
(CYP51), an essential enzyme in ergosterol biosynthesis in fungi. Still, they also interfere
with the human CYP3A4 enzyme, increasing toxicity and the risk of drug-drug interactions
in immunocompromised patients [5,6]. In addition, the occurrence of drug resistance in
fungal pathogens is still a significant clinical problem, and ubiquitous fungi like Aspergillus
fumigatus have exhibited drug resistance due to agrochemicals [7,8].

Molecules 2021, 26, 7606. https://doi.org/10.3390/molecules26247606 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-7809-6888
https://orcid.org/0000-0001-9395-7079
https://orcid.org/0000-0002-9716-9376
https://orcid.org/0000-0003-0202-4180
https://doi.org/10.3390/molecules26247606
https://doi.org/10.3390/molecules26247606
https://doi.org/10.3390/molecules26247606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26247606
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26247606?type=check_update&version=1


Molecules 2021, 26, 7606 2 of 19

Hence, attention has turned to the discovery of new antifungal agents and finding
other possible therapeutic targets. In this context, glycosyl hydrolase family 18 (GH 18)
chitinases are enzymes that hydrolyze N-acetyl-β-D-glucosaminide (1–4)-β-linkages, of
the highly abundant biopolymer chitin, interfering in fungal cell wall morphogenesis,
remodeling and dynamic rigidity [9]. For example, the pseudotrisaccharide allosamidin
is a transition-state mimetic and a selective inhibitor of family 18 [10,11] that inhibits cell
separation in growing yeast of C. albicans, giving rise to clumps of cells [12], while its
derivative, demethylallosamidin (DMT), causes an abnormal cell cluster formation affect-
ing the growth of S. cerevisiae [13]. However, despite the potency of allosamidin, it is not
commercially available and its synthesis remains complex and challenging [14]. Further
evidence points out that some other chitinase inhibitors can also affect the hyphae morphol-
ogy drastically in A. fumigatus, having a significant protective effect in invasive pulmonary
aspergillosis [15], and also several inhibitors have been reported against chitinases from
A. fumigatus [16–20] and C. albicans [21–23].

Unfortunately, few inhibitors exhibit good “hit-” or “lead-like” features. Recently, a
virtual screening identified bioisosteric inhibitors with similar shape and electronic prop-
erties to the chitinase substrate, β-1,4-linked N-acetylglucosamine. Employing structure-
based virtual screening combined with bioactivity assays, two new scaffold series were
discovered—thienopyridine and furoquinoline—which exhibited inhibitory activity to-
ward AfChiB1 at the micromolar range [24]. On the other hand, a virtual screening-based
approach identified a novel purine-based AfChiB1 inhibitor, acting in the low micromolar
range in a competitive mode. X-ray structural studies revealed that ligand stabilization
relies on extensive π-π stacking interactions with conserved, solvent-exposed tryptophan’s
(Trp137, Trp384, and Trp52). Thus, compound C2-dicaffeine exhibited favorable chemi-
cal properties and proved to be a valuable scaffold for the design of family 18 chitinase
inhibitors [17]. In addition, ligands consisting of two linked caffeine moieties with a differ-
ent number of methylene groups in the linker connecting the two xanthine ring systems
showed IC50 values lesser than 10 µM for AfChiB1 and were selective compared to other
human chitinases [18]. Moreover, the fungal natural product argifin is a broad-spectrum
inhibitor of several family 18 chitinases [25]. Additionally, a structure-based dissection
study identified dimethylguanylurea (DGU) as the minimal fragment of argifin necessary
for competitive inhibition of a bacterial type chitinase through hydrogen bond formation,
with the highly conserved residues Asp175, Glu177, Tyr178, Asp246 and Tyr245. Indeed,
all the DGU-containing peptides showed IC50 values in the micromolar range [26].

This study presents the hydrolysis intermediate and AfChiB1 structure-based drug
design of potential inhibitors, employing molecular docking—in a well-conserved crystal
binding site and physicochemical properties of solvation—for selection of the best ligand,
through energy stability in the binding site and selectivity over CHIT1. Thus, this scaffold
proposal could serve as a basis for the future modification of the octahydroisoindolone
bicyclic core to make promising chitinase inhibitors.

2. Computational Details
2.1. Bioinformatic Analysis

The protein sequence was chosen from the crystal structure of the AfChiB1-inhibitor
complex [24]. We used this amino acid sequence to search in the Protein-NCBI webserver
for similar length sequences and retrieved 4254 results. JalView 2.11.1.3 software [27] was
used for multiple sequence alignment and clustering. All the sequences of chitinases were
clustered in two Aspergillus genera and one Cryptococcus variant, with 22 and 7 sequences
respectively (Figure S1, see Supplementary Data). As described in Figure 1, the active site is
highly conserved for all consensus sequences, except for the Cryptococcus group. Then, we
submitted each fungi consensus sequence in the Protein-NCBI webserver for Homo sapiens
searching; these afforded three clusters, generating three human consensus sequences.
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2.2. Homology Structure Modeling

We generated all structures of the found consensus sequences to contrast between
fungi and human chitinases. To resolve this task, we employed the I-TASSER server;
according to CASP competitions, this webserver makes accurate predictions for structure
protein modeling based on a template by sequence similarity [28,29]. Summarizing the
model results, we found acceptable values that the server utilizes to validate protein
structure. The normalized Z-score (Z-score) indicated good alignments with PDB library,
the C-score (range of −5 to 2) had higher values in the range for the quality of predicted
models, and the TM-score indicated a good structural similarity to different chitinases
organisms. Templates used by I-TASSER for consensus sequence-structure assembly of
Aspergillus group I were based on chitinases from A. fumigatus, C. immitis, C. rosea and
Y. entomophaga. The coverage of the alignment of the threading template was more than
0.96 and the percentage sequence identity was around 0.93 for A. fumigatus, while the
Z-score was greater than one. In addition, identity by TM-alignment showed structure
similarity to different chitinases species (TM-score > 0.9). Similarly, for the homology
model construction of consensus sequences of Aspergillus group II and the Cryptococcus
group, chitinases were employed as templates. On the other hand, the coverage of the
threading alignment (>0.87), percentage sequence identity (0.51 to 0.63), Z-score (>1.0) and
TM-score (>0.77) were suitable for template assembly.

I-TASSER constructed Homo sapiens proteins mostly from chitinases with values of
threading alignment (>0.91), percentage sequence identity (from 0.4 to 1.0 for the three
sequences), Z-score (>1.28) and TM-score (>0.85). As a result, amino acid residues in the
binding site showed differences with the examined fungi chitinases.

2.3. Scaffold Proposal

Scaffolds were designed based on the oxazolinium ion formed during chitin hydrolysis;
its known analog is the allosamidin that contains an oxazoline ring. Thus, geometry and
the bioisosteric replacement approach were used for the construction of the intermediate
fragment. Our proposals consisted of a cyclohexane ring [c]-fused to a γ-lactam, giving
ten possible structures, which were submitted to a conformer analysis calculation, using
the semiempirical PM6 approximation [30], generating four bowl-like conformers with
similar dihedral angles for the reaction intermediate. Hence, four scaffolds were selected
according to the dihedral angles of the reaction intermediate. Additionally, a single-point
calculation using the density functional theory approach [31] with the functional and basis
set M06/6-31 + G* [32] was employed. SPARTAN’18 was used for calculations [33].

2.4. Molecular Docking Calculations

All the ligands used for these calculations were constructed and geometrically op-
timized using semiempirical AM1 theory. Two partial charges schemes were evaluated:
electrostatic and Mulliken. All these calculations were performed with SPARTAN’18.
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We used the crystal structure of AfChiB1 from the protein data bank (PDB) with
code 3CH9, and a 2.20 Å resolution. All water molecules were removed, and structure
details were corrected. The co-crystallized ligand of 3CH9 was set up as a template for
molecular docking (atoms were specified as in Figure 2), considering the amide group
orientated to (α/β)8-barrel fold in the binding site (volume cavity is 386.11 Å3). Different
scoring functions and search algorithm parameters (such as the number of runs, maximum
iterations, and population size) were tried, to reproduce the structural conformation of the
ligand in the cocrystal complex. Finally, the ligand electrostatic partial charges, as well as
the MolDock score (GRID) scoring function (with 0.2 Å (grid resolution), 12 Å radius of
search sphere) and the MolDock optimizer search algorithm (with 20 runs and a maximum
of 4000 iterations for a population size of 200 individuals) were the best to reproduce
DGU’s conformation. The docking process was validated with conformer reproducibility
of DGU with a root mean square deviation (RMSD) less than 1 Å, and the poses selected
according to orientation at the cavity, as described in Figure 2. Molegro Virtual Docker
(MVD) 6.0 was used to perform all the docking calculations [34].
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2.5. Construction of Ligands Derivatives

On the other side, to discriminate scaffold proposals, poses were inspected visually by
considering orientation, and intramolecular and intermolecular clashes. Several modifi-
cations of the four scaffold proposals (easily accessible through organic synthesis, mainly
C-3 substituted derivatives) gave 76 structures. As a result, from these rigid docking
calculations, we identified a preferred scaffold stereochemical configuration in the AfChiB1
complex. Next, we designed new C-3 substituents with the aliphatic chain (CH2)2R and its
homolog structure (CH2)3R, where R represents a heterocyclic or heteroaromatic fragment,
giving 38 derivatives. Partition coefficient octanol-water (aLogP) was also employed to
select the best ligands in correlation with their interaction energy [35]. To contrast chitinase
selectivity, the best ligands were evaluated in human chitotriosidase-1 (CHIT1, PDB: 5NR8)
using the same rigid docking method as described above. This chitinase is relevant because
it is produced mainly by macrophages and could play a role in defense against fungal
infections [36,37].

2.6. Re-Docking and Selectivity Analysis over CHIT1

The best poses from our previous analysis were submitted to a flexible docking
calculation by setting a template based on the best results obtained in the first docking.
Then, amino acid residues were selected to be flexible and parameters such as tolerance
were set to 0.9 for all residues and strength was applied as described in the Supplementary
Data (Table S29). The strength parameter points out that zero values are set to very flexible
sidechains [38]. This approach was extended to CHIT1, then the resulting interaction
energies and cavities were analyzed. Additionally, the aLogP value was determined for all
candidates.
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2.7. Mathematical Model for IC50 Prediction

The same approach was applied to AfChiB1 inhibitors (caffeine, dicaffeine, PTX,
DGU, TPH, 6, 7 and 8), and their MolDock score and aLogP [39] values were used for
the construction of a mathematical model for the IC50 prediction. Therefore, these values
were considered as independent variables, and experimental IC50 values as the dependent
variables. Nevertheless, to generate a quality model, a logarithmic transformation over
IC50 was done; this model was constructed with Excel Microsoft Office 365. Standard
deviation (s), Fishers F-test (F), and the coefficient of determination (R2) were used for
the model validation. For the predictive ability evaluation of the model, we used the
cross-validation coefficient (Q2

LOO) with the Leave-One-Out (LOO) method; due to the
small number of compounds used for this model, Q2

LOO gives us a quality evaluation of its
prediction ability [40].

3. Results and Discussion
3.1. 3D Structure Protein Analysis

We constructed chitinase 3D homology models for each consensus sequence, with
good I-TASSER C-scores, within positive values indicating good quality. C-score values
for the Cryptococcus group, Aspergillus group I, and Aspergillus group II were 0.16, 1.5, and
0.98, respectively. The three structures were aligned with the crystal structure of AfChiB1
(RMSD less than 1 Å). The catalytic site is very conserved and is exposed to the solvent.
According to its molecular electrostatic potential (MEP) surface, most of the cavity display
a negative MEP value, and only a small region displays a positive MEP value, where Arg57
and Arg301 are located (Figure 3A). After the structural alignment of the Cryptococcus
group, there were two residue differences detected: Thr138 changed to Ser140 and Tyr139
to Phe141 (Figure 3C); aside from these, there were no significant changes in amino acids
between the two groups.
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Figure 3. AfChiB1 crystal structure protein data bank with code 3CH9 (PDB: 3CH9) and structural
alignment with consensus homology models. (A) Molecular electrostatic potential (MEP) surface and
catalytic cavity (highlighted by a rectangular form) of chitinase AfChiB1; blue, red and white colored
regions indicate positive, negative and zero values of MEP, respectively. (B) Structural alignment of
the fungi consensus model, and human consensus chitinases. (C) Catalytic site of fungi-predicted
structures; 3CH9 representation is colored in blue. (D) Structural alignment of human consensus
model against 3CH9 colored in blue. Key residue differences are highlighted by ball and stick
representation.
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Figure 3D shows the structural alignment of human consensus chitinases with AfChiB1
(3CH9), and some differences in amino acid residues close to the binding site, heightening
mutants in AfChiB1 and the three human consensus structures: Thr138 (all sequences
had Asn), Tyr139 (all sequences had Phe), Asp175 (only Ala 136 in human sequence from
Aspergillus group II), Glu177 (Leu 138 from Aspergillus group II) and Phe251 (all sequences
had Trp).

3.2. Scaffold Design

We analyzed the reaction intermediate proposed during the hydrolysis mechanism
in the GH 18 family, given by an acetamide intramolecular nucleophilic attack at the C-3a
position (glycosidic bond carbon) that generates an intermediate oxazolinium ion, giving
rise to a constrained pyranose ring fused to an oxazole ring (Figure 4). This skeleton was
maintained with cyclohexane and a five-member ring lactam. The bioisosteric replacement
to an amide group was thought to electronically mimic the oxazolinium ion formed due to
glycosidic bond rupture. Then, some scaffolds could have hydroxyl groups in carbon C-5
and C-6 to maintain a glycosidic-like structure (Figure 5).
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We performed a conformer analysis of this hydrolysis intermediate, using PM6 ap-
proximation, obtaining 19 conformers. From these geometries, the angles were analyzed
and considered for the ligand-based design, and the minimal energy conformation was
selected which had a geometry-like bowl (Figure 6 and Table S25, see Supplementary
Data). Besides, electronic properties were examined by single-point energy calculations
of each conformer with DFT, used to explore frontier molecular orbitals and molecular
electrostatic potential of organic compounds [41–45]. Thus, we used the allosamizoline
ligand (PDB: 2A3E) as a reference because it shares structural characteristics with the
oxazolinium ion intermediate (Figures 5 and 6) [46]. We found the molecular geometry of
the oxazolinium ion in its minimum energy conformation with dihedral angles of ϕ1 =
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8.75◦, θ1 = 105.82◦ (O4-C3a-O3) and θ2 = 110.03◦ (C7-C7a-N1), which were similar to the
allosamizoline conformation.
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On the other side, scaffold design was performed on the basis of reliable synthetic
methods, like those described in Meyers’s lactams synthesis for the preparation of cis- and
trans-fused lactams [47–49]. As a result, from conformational analysis in comparison to
oxazolinium ion and allosamizoline moiety, only in Figure 7, the cis-fused scaffolds and
their enantiomers had similar angles (Table S26, see Supplementary Data). Geometry gets
closer to the oxazolinium ion because scaffolds and intermediates had six-five fused rings
and allosamizoline had a five-five fused system. Further, ϕ1, θ1, and θ2 angles indicate
similar amide orientation in scaffolds, as oxazole shows in the structure references.
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Additionally, electronic properties were explored. We found similarity of the oxazolin-
ium ion by the lowest molecular orbital (LUMO) region located in oxazole ring, same region
for the electron acceptor site. This agreedwith the chitinase GH 18 hydrolysis mechanism,
that involves an intramolecular nucleophilic attack by the oxygen of the acetamide to the
anomeric carbon (Figure 4) [50–53].

Moreover, the scaffold proposals had a similar LUMO map in Figure 8, depicted by the
amide group that mimics the oxazole ring electronically, forming the electrophilic region
on the five-membered ring-like intermediate.
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This electronic similarities are more evident when LUMO orbital graphics are dis-
played, as illustrated in Figure 9. LUMO graphics are located in the five membered ring.

On the other hand, scaffolds and oxazole rings have three types of atoms that showed
correlated Mulliken partial charges; carbon (sp2 hybridization) had positive charges,
thereby nitrogen and oxygen had negative charges for all scaffolds and the oxazolinium
ion (Table S27, see Supplementary Data). In summary, the scaffold conformers presented
similar geometry to the oxazolinium ion. Some electronic parameters correlate our pro-
posals with the reaction intermediate, suggesting similar interactions on the atoms in
the five-membered rings. Thus, the next step was to seek scaffold derivatives through a
structure-based design that relied on docking calculations.

3.3. Structure-Based Drug Design

For this set analysis we employed a rigid docking approach; hence, Figure 10 shows
the scaffold derivatives design that consisted of the substitution in the C-3 position, because
the access to enantiomerically pure compounds was rationalized by a nucleophilic attack
via the acyliminium ion as a reaction intermediate furnishing the substituted lactams [48,54].
The first design step explored the functional groups effect by placing hydrocarbon chains
by one to three carbons, and bound to functional groups like amines, thiols, alcohols, or
carboxylic acids (group I). On the other hand, the hydrophobic substituents were set by
one to six carbons homologation to seek possible clashes or to increase chain stability
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through interactions with aromatic residues like Trp137, Tyr48, and Trp384 in the active
site (group II).
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Figure 10. Scaffold modifications A, ent-A, C, and ent-C in the C-3 position for group I and II. Surface
plot of the catalytic site, showing the aromatic interaction profile. Group I (R = −(CH2)n − Z, n = 1
to 3, Z = functional group) and group I (R = −(CH2)n-CH3, n = 1 to 6). The face label indicates a face
interaction between amino acid residues and ligands’ hydrophobic fragments, and the edge label
shows the noncoplanar amino acid residues orientation to the protein surface.



Molecules 2021, 26, 7606 10 of 19

Ligands were discriminated according to their interaction energies and selected by
visual inspection of their binding modes [55], as well by the ligand orientation of the
bioisosteric group towards the (α/β)8 barrel fold. As mentioned above, ent-C derivatives
from group I in Figure 10 had a slight preference by AfChiB1 interacting mainly with
Tyr48, Gly136, Trp137, Asp175, Glu177, Asp246, Tyr245, Met243 and Trp384. Hence,
most stable poses were derived from scaffolds with primary amines, followed by thiol
and alcohol chains; this suggests that protonation at the physiological pH of amines
provides stability. In addition, ent-C substituted carboxylates showed more stability by
hydrophobic interaction enhancement between Trp384 and the scaffold lactam ring, than
the previously mentioned derivatives. Additionally, in Figure 10, the scaffold modification
of ent-C presented a noticeable preference of AfChiB1 in group II, since they showed better
interaction through Trp384 and Trp137 stabilization, and hydrogen bonds with Glu177 and
Tyr245.

From this screening, we identified a stereochemical preference of AfChiB1 and promis-
ing auxophoric groups like amines, ethers, and non-polar chains, by constructing group III
to V of derivatives based on scaffold ent-C. In Figure 11, the derivatives in group III were
designed to elongate the hydrocarbon chain to 7–10 carbons; nevertheless, they showed
similar affinity energies to group II.
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Furthermore, structures of Figure 11 showed groups IV and V with amine substituents
generally with better energies than groups I–III. Then, derivatives with amines directly
bonded to aromatic or aliphatic rings presented the lowest energy, predominantly through
stronger interactions by Phe76, Trp137, Thr138, Tyr 139, Glu177, Tyr245 and Trp384.

Then, all proposed derivatives constituted a large set to discriminate based on their
interaction energy, without considering the pharmacokinetic criteria. Therefore, aLogP was
considered for the selection of the final candidates, taking the best value range between



Molecules 2021, 26, 7606 11 of 19

0 and 3 for acceptable drug absorption, as was highlighted in Figure 12, identifying five
structures as the best candidates.
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3.4. Selectivity Analysis over AfChiB1 and CHIT1

Each pose from the previously selected five structures was submitted to a second
docking calculation and examined, identifying hydrogen bonds and other important non-
covalent interactions (Table 1). In this way, 1 had interactions with Trp384, Asp246, Glu177,
Trp137, Thr138, Tyr 139, Gly136, Phe76, Tyr245, Met243, Tyr48, and Asp175. Ligand 1
showed a hydrogen bond from amide NH and the carboxylate Asp175. Furthermore,
amide carbonyl interacts through hydrogen bonding to the hydroxyl Tyr245, and hydroxyl
in the C-5 position of 1 forms a hydrogen bond to Asp246. The phenyl ring A was
orientated towards Trp137 and exposed to the solvent. On the other hand, aromatic
ring B was orientated to Phe76, Trp52, Gly136, Thr138, and Tyr139 residues. Ligand 2
had a phenyl ring proximity identical to aromatic non-polar residues as the orientation
of ring B in pose 1 and hydrogen bonds with Asp175 and Tyr245, besides C-5 and C-6
hydroxyl groups interacted with Glu177 and Asp246, respectively. On the other side, 3
only presented hydrogen bonding to Tyr245, Asp246 and Glu177, but the phenyl was
exposed to solvent and orientated to Trp52 and Trp384. Thus, 4 kept the hydrogen bond
to Tyr245 and hydroxyls formed two hydrogen bonds with Asp246, and the cyclohexyl
ring was orientated, as 1 and 2 did. Finally, 5 presented a similar pose as 2, keeping
hydrogen bonding to Asp175, Glu177, Tyr245 and Asp246, as well as the phenyl orientation
(Tables S30–S34, see Supplementary Data).
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Table 1. Best pose of the best scaffold derivatives (ligands) in AfChiB1.

Ligands Pose in Cavity Interactions

1
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the AfChiB1 sequence by structural alignment near the active site. Furthermore, from
bioinformatic analysis, mutations between A. fumigatus and human were identified since
there were null interactions in flexible docking for AfChiB1 with Phe251 and Tyr247. In
contrast, 1, 2, 3 and 4 had non-polar stabilization interactions by residues Trp218 and
Phe214, which are the analogue mutants’ residues for CHIT1 (PDB: 5NR8).

The main interactions in the docking calculations of all the tried ligands with CHIT1
were Asp213, Trp99, Trp458, Met210, Tyr141, Tyr267, Trp218, Tyr212, Ala186, Phe214,
Glu140, Tyr190, Pro185 and Gly187. In Table 2, we inspected 1, thereby amine presented
a salt bridge with Tyr141, and carbonyl formed a hydrogen bond to Tyr212. Its phenyl
ring A was positioned close to Gly187, Ala186, Tyr141, Phe214, and Tyr190, while phenyl
ring B was near Trp218 and exposed to solvent. 2 presented a salt bridge with Tyr141,
besides hydrogen bonding to Trp358 with the same substituent orientation. On the other
side, 3 had the same carbonyl interactions as 1, but hydroxyl C-5 made a hydrogen bond to
Asp213, and the phenyl substituent had a similar orientation to the phenyl ring A. For the
last ligand, 4, Asp213 presented a salt bridge between amine and hydrogen bonding with
hydroxyl C-5, and carbonyl kept the same hydrogen bond interaction, while cyclohexyl
had a similar orientation to 1, 2 and 3 (Tables S35–S38, see Supplementary Data).

Table 2. Best pose of scaffold derivatives (ligands) in Homo sapiens CHIT1.

Ligand Pose in Cavity Interactions

1
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On the other hand, A. fumigatus had the major interaction energy because of stronger 
interactions with Trp384, Trp137, Phe76, Thr138, Trp52, Tyr139 and Asp246 residues; 2, 4 
and 5 displayed similar complex energy but lesser that 1, while 3 only had the main inter-
actions with Trp384, Trp137, Glu177 and Tyr245. In comparison, 1 in CHIT1 showed 
slightly stronger interactions with Asp213, Trp99, Trp358, Tyr212, Met210, Tyr141, Tyr267 
and Ala 186 residues, while 2–4 kept lesser strong interactions with Asp213, Trp99, 
Trp358, and Tyr212 (energy interaction values of the final candidates from flexible dock-
ing with AfChiB1 and chitotriosidase with aLogP values are displayed in Table S47, see 
Supplementary Data). However, we cannot correlate these designed ligands’ binding en-
ergies for the estimation of drug potency, like Glide or Vina can perform. Then, a predic-
tive model was developed, using the experimental IC50 values of AfChiB1 inhibitors and 
their MolDock score and aLogP values. 

3.5. Mathematical Model for the IC50 Prediction over AfChiB1 
Flexible docking parameters were set up in an identical way for reported inhibitors 

(considering the ligand DGU as a template, like was established for the drug-based design 
in AfChiB1), interactions were reviewed and verified for inhibitors with xanthine moieties 
(Tables S39–S48, see Supplementary Data). For example, available crystals and calculated 
poses kept most of interactions (Caffeine, PTX, DGU and TPH), while 6, 7 and 8 were 
checked for amide orientation towards the active site. 

Then, using logarithm transformation over IC50 helped us to find a linear correlation 
with MolDockscore (interaction energy) and aLogP as independent variables, generating 
Equation (1). The linear correlation between IC  and IC  is displayed in Figure 13. 
According to Q , our model has a good predictive capability (IC  values are shown 
in Table S48, see Supplementary Data). From Equation (1), the importance of the interac-
tion energy with AfChiB1 is displayed; according to its coefficient, highly negative 
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On the other hand, A. fumigatus had the major interaction energy because of stronger
interactions with Trp384, Trp137, Phe76, Thr138, Trp52, Tyr139 and Asp246 residues; 2,
4 and 5 displayed similar complex energy but lesser that 1, while 3 only had the main
interactions with Trp384, Trp137, Glu177 and Tyr245. In comparison, 1 in CHIT1 showed
slightly stronger interactions with Asp213, Trp99, Trp358, Tyr212, Met210, Tyr141, Tyr267
and Ala 186 residues, while 2–4 kept lesser strong interactions with Asp213, Trp99, Trp358,
and Tyr212 (energy interaction values of the final candidates from flexible docking with
AfChiB1 and chitotriosidase with aLogP values are displayed in Table S47, see Supplemen-
tary Data). However, we cannot correlate these designed ligands’ binding energies for the
estimation of drug potency, like Glide or Vina can perform. Then, a predictive model was
developed, using the experimental IC50 values of AfChiB1 inhibitors and their MolDock
score and aLogP values.

3.5. Mathematical Model for the IC50 Prediction over AfChiB1

Flexible docking parameters were set up in an identical way for reported inhibitors
(considering the ligand DGU as a template, like was established for the drug-based design
in AfChiB1), interactions were reviewed and verified for inhibitors with xanthine moieties
(Tables S39–S48, see Supplementary Data). For example, available crystals and calculated
poses kept most of interactions (Caffeine, PTX, DGU and TPH), while 6, 7 and 8 were
checked for amide orientation towards the active site.

Then, using logarithm transformation over IC50 helped us to find a linear correlation with
MolDockscore (interaction energy) and aLogP as independent variables, generating Equa-
tion (1). The linear correlation between IC50pred and IC50 is displayed in Figure 13. According
to Q2

LOO, our model has a good predictive capability (IC50pred values are shown in Table S48,
see Supplementary Data). From Equation (1), the importance of the interaction energy with
AfChiB1 is displayed; according to its coefficient, highly negative MolDockscore values
(more stable complexes) will increase the potency of the inhibitors. In addition, the aLogP
coefficient indicates that hydrophilic compounds are preferred to increase the potency of
the compounds. Nevertheless, we need to consider the type of the biological test for the
determination of the IC50 values, which do not consider a biological barrier. Therefore,
we propose values of aLogP close to 1 for the design of this class of inhibitors. It is worth
mentioning that the presence of these two variables in our model allowed us to study the
inhibitors potency in two separated ways, its pharmacodynamic (MolDockscore), and the
pharmacokinetic (aLogP) character.

Log(IC50) = 0.01843MolDockscore + 0.1609aLogP + 4.3994 (1)

s = 0.26 F = 29.11 R2 = 92.1 Q2
LOO = 78.9 n = 8
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Figure 13. Inhibitors structures used for the model construction: caffeine (PDB: 2A3B), pentoxifylline
(PTX; PDB: 2A3C), DGU (PDB: 3CH9), inhibitors 6 [15], 7 [22], 8 [22] and theophylline (TPH; PDB:
2A3A), and the linear relationship between IC50pred and IC50.

Nevertheless, the model is limited to bicyclic derivatives, and rigid molecules, prefer-
ably. This assumption is based on the ability of our model to predict, in a better way, IC50
values for caffeine, TPH, 7 and 8 (Figure 13, vide supra). Then, using Equation (1), we
predicted the IC50 values for our designed ligands in Table 1, estimating the concentrations
of them to be around 60–200 µM for 1–5.

For a complete drug design scheme, we determined the toxicity and drug-likeness of
these candidates through the SwissADME webserver [56]. According to these calculations,
final designed ligands will not inhibit cytochrome p450 isoforms and can be substrates for
P-gp, a glycoprotein involved in pumping xenobiotics out [57]. Only 1 could permeate the
blood–brain barrier (BBB), and it is predicted to be poorly soluble in water. Further, the
expected bioavailability would be around 55% for all ligands; in general, they satisfied the
main rules for drug design, like Veber, Lipinski, and Ghose.

In summary, docking in fungi and human chitinase suggests that 5 is a potential
inhibitor of AfChiB1, since 5 could have a different orientation in the CHIT1 active site. At
the same time, 1 will have the highest potency for AfChiB1 and CHIT1, and also possesses
a good drug-likeness and pharmacokinetic profile, but the possibility of crossing the BBB
will not be desirable for its biological application (Table S50, see Supplementary Data).

4. Conclusions

The bioinformatic analysis revealed that chitinases from different pathogenic As-
pergillus taxa, including A. fumigatus, A. novofumigatus, A. niger, A. candidus, A. fischeri, A.
flavus, and the Cryptococcus taxon of the grubii variant, are well conserved. A comparison
of amino acid changes around the active site reported in human chitinases have also been
documented. Eventually, we showed that the proposed scaffolds could mimic the oxa-
zolinium ion concerning its conformation and electronic properties. On the other hand,
we made a structure-based drug design, identifying the ent-C scaffold as preferred by the
enzyme AfChiB1, allowing the selection of 1 to 5 ligands according to their aLogP values.
In contrast, analysis with human chitotriosidase indicated that the most promising inhibitor
is 5 for AfChiB1. The employed structure-based drug design and virtual screening protocol
not only demonstrates its efficiency, but also provides novel and selective compounds for
developing AfChiB1 inhibitors to protect against opportunistic invasive mycosis.
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