

The Role of ¹⁸F-FDOPA PET/CT in Recurrent Medullary Thyroid Cancer Patients with Elevated Serum Calcitonin Levels

Serum Kalsitonin Yüksekliği Bulunan Rekürren Medüller Tiroid Kanseri Hastalarında ¹⁸F-FDOPA PET/BT'nin Rolü

Mine Araz¹, Çiğdem Soydal¹, Özgür Demir², Mustafa Kürşat Gökcan³, Nuriye Özlem Küçük¹

¹Ankara University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey ²Ankara University Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey ³Ankara University Faculty of Medicine, Department of Otorhinolaryngology and Head and Neck Surgery, Ankara, Turkey

Abstract

Objectives: To evaluate the diagnostic performance of ¹⁸F-dihydroxyphenylalanine (FDOPA) positron emission tomography/computed tomography (PET/CT) in the detection of medullary thyroid carcinoma (MTC) recurrence in patients with elevated calcitonin levels.

Methods: The patients who had undergone ¹⁸F-FDOPA PET/CT imaging for elevated calcitonin levels after primary surgery of MTC were included in the study. addition, if available ¹⁸F-fluorodeoxyglucose (FDG) PET/CT and Gallium-68 (⁶⁸Ga)- DOTATATE PET/CT images of the patients were evaluated retrospectively. The sensitivity and diagnostic performance of ¹⁸F-DOPA PET/CT were investigated.

Results: A total of 14 patients (9 F and 5 M; median age: 45) were included in the analysis. Three patients had MEN IIA syndrome and 1 patient had MEN IIB syndrome, 10 patients had a diagnosis of sporadic MTC. Median calcitonin levels of the patients were calculated as 757.5 (min-max: 28.5-7911) pg/mL. Nine patients and 5 patients had undergone ultrasound and contrast-enhanced computed tomography (ceCT) of the neck, respectively, before ¹⁸F-FDOPA PET/CT imaging. ¹⁸F-FDOPA PET/CT revealed pathological uptake in the thyroid bed, lymph nodes, and distant organs in three, five and two patients, respectively. Median maximum standardized uptake value for the recurrent or metastatic lesions were calculated as 6.4 (min-max: 1.9-18.4). The sensitivity of ¹⁸F-FDOPA PET/CT in the detection of recurrent disease was calculated as 64%. Eight patients had ⁶⁸Ga-DOTATATE PET/CT and 7 of them had ¹⁸F-FDG PET/CT within 3 months period before ¹⁸F-FDOPA PET/CT. ¹⁸F-FDOPA PET/CT revealed recurrent disease in 4 of 5 and 2 of the 5 patients who had negative ¹⁸F-FDG PET/CT and negative ⁶⁸Ga-DOTATATE PET/CT, respectively. **Conclusion:** ¹⁸F-FDOPA PET/CT can detect recurrence in about two- thirds of patients with elevated calcitonin levels after primary surgery for MTC. Due to variable differentiation degree, different receptor status, and clinical behavior of MTC, all three radiopharmaceuticals can be beneficial and are complementary to each other in patient management.

Keywords: Medullary thyroid cancer, PET/CT, ¹⁸F-FDOPA, calcitonin

Öz

Amaç: Serum kalsitonin yüksekliği bulunan medüller tiroid kanseri (MTK) tanılı hastalarda rekürrensin saptanmasında ¹⁸F-dihidroksifenilalanin (FDOPA) pozitron emisyon tomografisi/bilgisayarlı tomografinin (PET/BT) performansının değerlendirilmesidir.

Yöntem: Primer MTK cerrahisi sonrasında yüksek kalsitonin düzeyi olan ve ¹⁸F-FDOPA PET/BT uygulanmış olan hastalar çalışmaya dahil edildi. Ek olarak, eğer varsa ¹⁸F-florodeoksiglukoz (FDG) PET/BT ve Galyum-68 (⁶⁸Ga)-DOTATATE PET/BT bulguları da retrospektif olarak değerlendirildi.¹⁸F-FDOPA PET/BT'nin duyarlılığı ve tanısal performansı araştırıldı.

Address for Correspondence: Mine Araz MD, Ankara University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey Phone: +90 532 666 73 13 E-mail: minesoylu@yahoo.com ORCID ID: orcid.org/0000-0001-6467-618X Received: 11.02.2022 Accepted: 17.07.2022

> [©]Copyright 2023 by Turkish Society of Nuclear Medicine Molecular Imaging and Radionuclide Therapy published by Galenos Yayınevi.

Bulgular: Toplam 14 hasta (9 K, 5 E, medyan yaş: 45) analize dahil edildi. Üç hastada MEN IIA, 1 hastada MEN IB sendromu, 10 hastada sporadik MTK mevcuttu. Hastaların medyan kalsitonin seviyeleri 757,5 (min-maks: 28.5-7911) pg/mL bulundu. ¹⁸F-FDOPA PET/BT görüntülemesinden önce 9 hastaya boyun ultrasonu, 5 hastaya kontrastlı boyun BT uygulanmıştı. ¹⁸F-FDOPA PET/BT'de 3 hastada tiroid yatağında nüks, 5 hastada lenf nodu metastazı ve 2 hastada uzak metastaz saptandı. Rekürren veya metastatik lezyonlarda medyan maksimum standartlaştırılmış alım değeri: 6,4 (min-maks: 1,9-18,4) olarak hesaplandı. Rekürren hastalığın saptanmasında ¹⁸F-FDOPA PET/BT'nin duyarlılığı %64 bulundu. ¹⁸F-FDOPA PET/BT'den önceki 3 ay içerisinde 8 hastanın ⁶⁸Ga-DOTATATE, 7 hastanın ¹⁸F-FDG PET/BT görüntülemeleri mevcuttu. ¹⁸F-FDOPA PET/BT, negatif ¹⁸F-FDG PET/ BT'si olan 5 hastanın 4'ünde ve negatif ⁶⁸Ga-DOTATATE PET/BT'si olan 5 hastanın 2'sinde rekürren hastalığı gösterdi.

Sonuç: ¹⁸F-FDOPA PET/BT, MTK için primer cerrahi sonrası yüksek kalsitonin düzeyi bulunan hastaların yaklaşık 2/3'ünde rekürrens saptayabilir. Tiroid medüller karsinomunun değişken diferansiyasyon derecesi, farklı reseptör durumu ve klinik davranışına bağlı olarak, her üç radyofarmasötik de hasta yönetiminde faydalı olabilir ve birbirine tamamlayıcıdır.

Anahtar kelimeler: Medüller tiroid kanseri, PET/BT, ¹⁸F-FDOPA, kalsitonin

Introduction

Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor of the thyroid gland, originating from parafollicular C-cells with a frequency of 5% among all thyroid cancers. Sporadic (75%) and familial (25%) forms have been defined (1). The only curative therapy for medullary thyroid cancer is total resection of the primary tumor and metastatic lesions, and the prognosis is strongly related to the performance of surgery (2). However, despite all aggressive and effective surgeries performed, persistent or recurrent disease is commonly seen during medullary thyroid cancer. Serum calcitonin and carcinoembryonic antigen (CEA) are the tumor markers that are used in the follow-up. CEA has also been reported to be as a marker of dedifferentiation (1,3).

Biochemical recurrence necessitates accurate detection of the recurrent or the metastatic focus. In patients with increased serum calcitonin and/or CEA levels in the followup, a thorough examination and imaging of the whole body is crucial because early detection of recurrent disease enables clinicians and surgeons to perform effective surgeries, local or systemic therapies of the limited disease. With ultrasonography of the neck, computed tomography (CT) of the thorax, abdomen, and pelvis are usually performed for the detection of recurrence. When the levels of serum calcitonin exceeded 150 pg/mL, radionuclide whole-body imaging methods are also indicated because distant metastasis is likely (1,3,4).

Positron emission tomography (PET)/CT with ¹⁸F-fluorodeoxyglucose (FDG) is the most common radionuclide imaging tool in oncology. However, it has been reported that the performance of ¹⁸F-FDG PET/ CT is highly related to serum calcitonin levels and is recommended for cases with serum calcitonin >500-1000 (5). Alternative tracers using different uptake pathways have been tested. Somatostatin receptor imaging with (Gallium-68) ⁶⁸Ga labeled somatostatin analogs (DOTATATE, DOTATOC or DOTANOC) and ¹⁸F-dihydroxyphenylalanine (FDOPA) have been proposed for restaging in case of biochemical recurrence. Being a cyclotrone-produced radiopharmaceutical, which can be highly expensive, ¹⁸F-FDOPA is not easily maintained throughout the world and the literature is still a lack of data about the role of ¹⁸F-FDOPA PET/CT in medullary thyroid cancer, a relatively rare tumor type of thyroid.

In this study, we evaluated the role of ¹⁸F-FDOPA PET/CT in the detection of recurrence in medullary thyroid cancer patients with elevated serum calcitonin levels.

Materials and Methods

Patients

This retrospective study was approved by the Ankara University Review Board (approval no: 17-522-21, date: 06.09.2021). Medullary thyroid cancer patients who were referred to the nuclear medicine department for ¹⁸F-FDOPA PET/CT between January 2018 and January 2021 were included in the study. Inclusion criteria were i) >18 years old male or females with histopathologically confirmed medullary thyroid cancer diagnosis after thyroidectomy, ii) elevated levels of serum calcitonin in the follow-up after surgery for primary tumor, iii) clinical follow-up results of at least 2 years for confirmation of recurrence. Exclusion criteria were, i) age <18 years, ii) history of secondary malignancy, iii) lack of clinical follow-up.

¹⁸F-FDOPA PET/CT Protocol and Image Interpretation

Premedication with carbidopa was not performed. Following a minimum of 4 h fasting, 2 to 4 MBq/kg of ¹⁸F-FDOPA was intravenously administered by slow injection. Whole-body PET/CT images from the vertex to the upper thigh were obtained 60 min after radiopharmaceutical injection by using a hybrid PET/CT scanner (GE Discovery 710, General Electric Company, USA). PET images were acquired for 2 min per bed position. PET images were reconstructed with non-contrast low-dose CT images. CT images were obtained with a standardized protocol of 140 kV, 70 mA, tube rotation time of 0.5 s per rotation, a pitch of 6 and a slice thickness of 5 mm. Patients were allowed to breathe normally during the procedure. Attenuation-corrected PET/CT fusion images were reviewed in three planes (transaxial, coronal and sagittal) on Advanced Workstation Volumeshare 5 (GE Medical Systems).

All PET/CT images were reevaluated by two nuclear medicine specialists with consensus. Any area of focal uptake higher than the adjacent background activity outside the areas of physiological distribution of the radiotracer with a corresponding nodular lesion on CT were considered as pathological. Maximum standardized uptake value (SUV_{max}) was measured for all lesions for semiquantitative analysis.

Statistical Analysis

In this retrospective analysis, with demographics, serum calcitonin levels, results of any radiological or functional imaging studies, including neck US, CT of the thorax, abdomen or pelvis, Tc-99m methylenediphosphanate whole body bone scan, ¹⁸F-FDG PET/CT, or ⁶⁸Ga- DOTATATE PET/CT were recorded. Clinical follow-up or histopathological examination results in patients who underwent surgeries after ¹⁸F-FDOPA PET/CT were used for confirmation of results. Patient-based sensitivity, specificity, and accuracy were calculated for ¹⁸F-FDOPA PET/CT in the detection of disease recurrence.

Results

A total of 14 patients (9 F and 5 M; median age: 45) were included in the analysis. Three patients had MEN IIA syndrome and 1 patient MEN IIB syndrome, 10 patients had a diagnosis of sporadic MTC. Median calcitonin levels of patients were calculated as 757.5 (min-max: 28.5-7911) pg/mL. Nine patients and 5 patients had undergone ultrasound and contrast-enhanced computed tomography (ceCT) of the neck, respectively, before PET/CT imaging. Eight patients had ⁶⁸Ga- DOTATATE and 7 patients had ¹⁸F-FDG PET/CT within 3 months period before ¹⁸F-DOPA PET/CT. Results were confirmed histopathologically in 7 patients. Clinical follow-up results were used for confirmation in 7 patients. Four of these patients showed no sign of recurrence, and in 3 patients, progression was recorded on radiological examinations [CT and/or magnetic resonance imaging (MRI)] in the follow-up. Patient characteristics, details of PET/CT and follow-up results are given in Table 1.

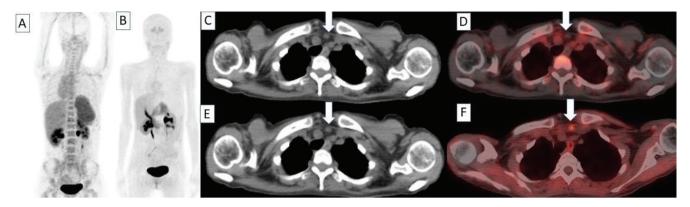
¹⁸F-FDG PET/CT Findings

¹⁸F-FDG PET/CT was normal in 5 patients. In 1 patient, ¹⁸F-FDG PET/CT revealed cervical metastatic lymph node, and in 1 patient ¹⁸F-FDG was positive in both cervical and mediastinal lymph nodes. In these 2 patients, ¹⁸F-FDOPA PET/CT was negative for lymph node metastasis and ⁶⁸Ga PET/CT was not available.

68Ga-DOTATATE PET/CT Findings

⁶⁸Ga-DOTATATE was negative in 5 patients. In patients with a positive ⁶⁸Ga-DOTATATE PET/CT, cervical lymph nodes were detected in all 3 of them, mediastinal lymph nodes in one patient, and pathological uptake was recorded in the thyroid bed in 1 patient. In 1 patient with cervical lymph node metastasis, ¹⁸F-FDOPA PET/CT was negative and ¹⁸F-FDG PET/CT was not performed.

¹⁸F-FDOPA PET/CT Findings


¹⁸F-FDOPA PET/CT was normal in 5 patients. ¹⁸F-FDOPA PET/CT revealed pathological uptake on the thyroid bed, lymph nodes and distant organs in 3, 5, and 2 patients, respectively. Median SUV_{max} for the recurrent lesions were calculated as 6.4 (min-max: 1.9-18.4). Although not statistically significant, serum calcitonin levels in ¹⁸F-FDOPA PET/CT-positive patients were higher than ¹⁸F-FDOPA PET/ CT-negative patients (800 pg/mL min: 47, max: 7911 vs. 98.2 pg/mL, min: 28.5, max: 800, respectively, p=0.30).

¹⁸F-FDOPA PET/CT detected recurrent disease in 4 of 5 and 2 of the 5 patients who had negative ¹⁸F-FDG PET/CT and negative ⁶⁸Ga-DOTATATE PET/CT, respectively. In 5 patients with negative ¹⁸F-FDG PET/CT, ¹⁸F-FDOPA was positive in the thyroid bed in 2 patients, in regional lymph nodes in 2 patients, and in lung metastasis in 1 patient. In 2 patients with a negative ⁶⁸Ga-DOTA PET/CT scan, ¹⁸F-FDOPA was positive in the thyroid bed (Figure 1). The sensitivity of ¹⁸F-FDOPA PET/CT in the detection of recurrent disease was calculated as 64%.

Discussion

Medullary thyroid cancer is a relatively rare malignancy of the thyroid. Disease progression is usually slow, and overall survival rates are acceptable if an effective surgical resection at the time of diagnosis could be achieved. However, calcitonin recurrence or persistence is observed in up to 80% of the patients. Detection and accurate localization of structural diseases in patients with biochemical recurrence is important for further therapies (6). Reoperation aims to total resection of recurrent or persistent malignant tissues and to achieve undetectable calcitonin levels. Even with experienced operators and excellent surgeries, complete remission could be maintained in only 30% of patients (7). Thus, imaging studies are expected to detect insignificantvolume diseases with high accuracy for differentiating candidates of surgery/local therapies or systemic therapy (8).

Table 1.	Patient c	haracte	Table 1. Patient characteristics, PET/CT findings and Follow-up results	gs and Fo	llow-up resu	ılts						
Patient	Gender	Age	¹⁸ F-FDOPA PET/CT		¹⁸ F-FDG PET/CT	ע)	68Ga-DOTATATE PET/ CT	те рет/	CEA	Calcitonin	Svndrome	Follow-up results
number		'n	Location	SUV _{max}	Location	SUV _{max}	Location	SUV _{max}				
-	Σ	47	Cervical LN	3.5	(-)	NA	Cervical LN	4.4	2.48	800	Sporadic	Right central lymph node dissection revealed metastasis
7	Σ	36	Thyroid bed	5.8	(-)	NA	Thyroid bed, cervical LN	17.4	5.16	48.4	MEN IIA	Left central revision lymph node dissection revealed lymph node metastasis and thyroid bed recurrence
m	щ	68	Bone, mediastinal LN, liver, adrenal gland	13.3	(-)	NA	(-)	NA	4079.6	800	MEN IIA	Progression on CT and MR in the follow-up
4	Σ	53	Normal	NA	(-)	NA	Normal	0	920	457	Sporadic	No recurrence in clinical follow-up
ß	ш	45	Thyroid bed	2.2	Normal	0	Normal	0	NA	1372	MEN IIA	Biopsy revealed local recurrence
Q	щ	54	Normal	NA	Cervical LN	ъ	(-)	NA	1.31	43.4	Sporadic	Cervical lymph node biopsy revealed metastasis
7	щ	78	Normal	NA	(-)	NA	Normal	0	NA	28.5	Sporadic	No recurrence in clinical follow-up
œ	ш	45	Cervical LN	2.2	(-)	NA	(-)	NA	1.74	47	Sporadic	Left cervical lymph node dissection revealed lymph node metastasis
б	ш	34	Lung	1.9	Cervical LN, mediastinal LN	3.5	(-)	NA	7.27	1800	Sporadic	Progression in lung nodule and lymph node dimensions on CT
10	Σ	30	Normal	NA	Normal	NA	Normal	0	7.75	800	MEN IIB	No recurrence in clinical follow-up
5	ш	19	Cervical LN	2.8	Normal	NA	(-)	NA	3.48	138.1	Sporadic	Right cervical lymph node dissection revealed metastasis
12	Σ	71	Thyroid bed	18.4	Normal	NA	Normal	NA	7.4	715	Sporadic	Biopsy revealed local recurrence
13	ш	44	Cervical lymph node, mediastinal lymph node	6.4	Normal	NA	Cervical LN, mediastinal LN	2.8	174	7911	Sporadic	Progression in cervical and mediastinal lymph node dimensions on CT
14	ш	46	Normal	NA	(-)	NA	(-)	NA	2.28	98.2	Sporadic	No recurrence in clinical Follow-up
M: Male, F: uptake valu	Female, LN: e, CEA: Carci	Lymph nc noembryo	M: Male, F: Female, LN: Lymph node, PET/CT: Positron emission tomog uptake value, CEA: Carcinoembryonic antigen, MR: Magnetic resonance	tomography, onance	computed tomo	graphy, FDOF	A: ¹⁸ F-dihydroxyph	nenylalanine,	68Ga: Galliu	m-68, FDG: Fluc	orodeoxyglucose,	M: Male, F: Female, LN: Lymph node, PET/CT: Positron emission tomography/computed tomography, FDOPA: ¹⁸ F-dihydroxyphenylalanine, ⁶⁸ Ga: Gallium-68, FDG: Fluorodeoxyglucose, SUV _{max} : Maximum standardized uptake value, CEA: Carcinoembryonic antigen, MR: Magnetic resonance

Figure 1. ⁶⁸Ga- DOTATATE and ¹⁸F-FDOPA PET/CT images of patient number 5. Forty-five years old female diagnosed with MEN IIA syndrome (medullary thyroid carcinoma and adrenal paraganglioma) was referred with elevated serum calcitonin levels (1372 pg/mL) following total thyroidectomy. On maximum intensity projection (A, B), axial CT, and fusion images of ⁶⁸Ga-DOTATATE (C, D) and ¹⁸F-FDOPA (E, F) PET/CT studies, focal pathological ¹⁸F-FDOPA uptake was detected on a nodular lesion located in the thyroid bed (SUV_{max}: 2.2), which was ⁶⁸Ga-DOTATATE negative (arrows). A biopsy revealed local recurrence in the thyroid bed

⁶⁸Ga: Gallium-68, FDOPA: ¹⁸F-dihydroxyphenylalanine, PET/CT: Positron emission tomography/computed tomography, SUV_{max}: Maximum standardized uptake value

¹⁸F-FDOPA has gained importance in medullary thyroid cancer recently. In a meta-analysis, the patient-based and lesion- based detection rates of ¹⁸F-FDOPA in patients with increased tumor markers were calculated as 66% and 71% respectively. The performance of ¹⁸F-FDOPA PET/ CT was related to serum calcitonin levels. The detection rate of ¹⁸F-FDOPA was found 86% in patients with serum calcitonin levels >1000 pg/mL (9). In another study comparing the diagnostic utility of ¹⁸F-FDOPA and ¹⁸F-FDG PET/CT, the sensitivity of ¹⁸F-FDOPA was significantly higher in patients with serum calcitonin levels >150 pg/ mL compared to <150 pg/mL (90.9% vs. 28.6%; p=0.013) (10). In our study, compatible with the literature, patientbased sensitivity of ¹⁸F-FDOPA PET/CT in medullary thyroid cancer patients with elevated serum calcitonin levels was found to be 64%. Serum calcitonin levels were relatively higher in ¹⁸F-FDOPA PET/CT-positive patients compared to others (800 pg/mL vs. 98.2), but this difference could not be proved statistically due to the very small number of patients in the subgroups.

In comparative studies with ¹⁸F-FDG PET/CT and ⁶⁸Ga-DOTATATE PET/CT, ¹⁸F-FDOPA PET/CT was reported to be superior (11,12,13). This is why the European Association of Nuclear Medicine recommends ¹⁸F-FDOPA PET/CT in the first line in medullary thyroid cancer patients with elevated serum calcitonin levels after initial treatment (14). In this study, because not all patients had ⁶⁸Ga-DOTATATE PET/ CT and ¹⁸F-FDG PET/CT, no direct comparison of patient or lesion-based sensitivity or detection rates of these three modalities could be possible. In regional analysis, it is shown that ¹⁸F-FDOPA was positive in lymph nodes in 2 patients and in the thyroid bed in 2 patients with negative ¹⁸F-FDG PET/

CT and in the thyroid bed in 2 patients with negative ⁶⁸Ga-DOTATATE PET/CT. However, there were 2 patients (patients 6 and 9) with ¹⁸F-FDG positive but ¹⁸F-FDOPA negative lymph node metastasis and 1 patient (patient 2) with 68Ga-DOTATATEpositive but ¹⁸F-FDOPA negative lymph nodes. According to the literature, ¹⁸F-FDOPA has a higher performance in the neck compared to both ¹⁸F-FDG and ⁶⁸Ga-DOTATATE. This is probably due to a higher ratio of tumor/background counts compared to the other two radiopharmaceuticals. Another thing is that the uptake mechanisms of these three radiopharmaceuticals are different, and ¹⁸F-FDOPA is rather positive in relatively differentiated medullary thyroid cancer. While ¹⁸F-FDG uptake is related to dedifferentiation, ⁶⁸Ga-DOTATATE uptake is a measure of somatostatin receptor expression of the tumor cells (11,12,15,16). Our results partly confirm previous reported data, as there are patients with locoregional disease either ¹⁸F-FDG or ⁶⁸Ga-DOTATATE positive but ¹⁸F-FDOPA negative.

Regarding distant metastasis, only ¹⁸F-FDOPA was positive in a single patient with lung metastasis, which was also reported on ceCT (patient 9). Because ⁶⁸Ga-DOTATE PET/CT was not performed in this patient, a comparison between ⁶⁸Ga-DOTATATE PET/CT and ¹⁸F-FDOPA PET/CT could not be made but, this lung nodule was ¹⁸F-FDG negative. No other patients had lung metastasis detectable by any radiological or functional imaging modality. In lung metastasis, as it is the case in our study, ceCT seems adequate enough to detect lung lesions. No significant superiority of ¹⁸F-FDOPA PET/CT was reported over other imaging modalities. However, ¹⁸F-FDG PET/CT is sometimes insufficient in the evaluation of lesions with low metabolic rate or small nodules (<1cm) (17). ¹⁸F-FDOPA was found superior to ⁶⁸Ga-DOTATATE PET/CT in the detection of liver metastasis (11). There was only one patient in our study (patient 3) who had liver metastasis shown by ¹⁸F-FDOPA PET/CT. Although no comparison with ¹⁸F-FDG or ⁶⁸Ga-DOTATATE could be possible in our study, in the follow-up liver lesions showed progression on both CT and MRI and accuracy of ¹⁸F-FDOPA PET/CT was confirmed. This result was compatible with previous data in the literature (11).

Study Limitations

The major limitation of this study is that few patients were enrolled. Further statistical analysis would be possible including subgroup analysis if a larger patient population could be achieved. Another limitation is that the study was designed retrospectively. Thus, head-to-head comparison of ¹⁸F-FDOPA with ¹⁸F-FDG and ⁶⁸Ga-DOTATATE was not possible for all patients. Although patients involved in this study were scanned at 60 min, as recommended in the guideline, in recent studies, higher detection rates with the earlier acquisition for ¹⁸F-FDOPA PET/CT in medullary thyroid cancer was reported (14,18). Calculated sensitivity could have been higher if dual time point imaging could be performed. Despite these limitations, in our opinion, clinical results of a relatively specific and hard- to- reach radiopharmaceutical in a rare patient group are still valuable and would contribute to the literature.

Conclusion

¹⁸F-FDOPA PET/CT can detect recurrence in about twothirds of the patients with elevated calcitonin levels after primary surgery for MTC. Due to variable differentiation degree, different receptor status, and clinical behavior of MTC, all three radiopharmaceuticals can be beneficial and are complementary to each other in patient management.

Ethics

Ethics Committee Approval: Ankara University Ethics Committee approval was received for this study (decision no: 17-522-21, date: 06.09.2021).

Informed Consent: The patient consent was obtained.

Peer-review: Externally and internally peer-reviewed.

Authorship Contributions

Surgical and Medical Practices: M.K.G., Concept: Ç.S., N.Ö.K., Ö.D., Design: Ç.S., M.A., Data Collection or Processing: Ç.S., M.A., Analysis or Interpretation: Ç.S., M.A., Literature Search: M.A., Writing: M.A.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- 1. Pitt SC, Moley JF. Medullary, anaplastic, and metastatic cancers of the thyroid. Semin Oncol 2010;37:567-579.
- 2. Machens A, Dralle H. Surgical treatment of medullary thyroid cancer. Recent Results Cancer Res 2015;204:187-205.
- Pacini F, Castagna MG, Brilli L, Pentheroudakis G; ESMO Guidelines Working Group. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii110vii119.
- American Thyroid Association Guidelines Task Force; Kloos RT, Eng C, Evans DB, Francis GL, Gagel RF, Gharib H, Moley JF, Pacini F, Ringel MD, Schlumberger M, Wells SA Jr. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009;19:565-612. Erratum in: Thyroid 2009;19:1295.
- Ong SC, Schöder H, Patel SG, Tabangay-Lim IM, Doddamane I, Gönen M, Shaha AR, Tuttle RM, Shah JP, Larson SM. Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med 2007;48:501-507.
- Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, Lee N, Machens A, Moley JF, Pacini F, Raue F, Frank-Raue K, Robinson B, Rosenthal MS, Santoro M, Schlumberger M, Shah M, Waguespack SG; American Thyroid Association Guidelines Task Force on Medullary Thyroid Carcinoma. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015;25:567-610.
- 7. Fialkowski E, DeBenedetti M, Moley J. Long-term outcome of reoperations for medullary thyroid carcinoma. World J Surg 2008;32:754-765.
- Klain M, Hadoux J, Nappi C, Finessi M, Ambrosio R, Schlumberger M, Cuocolo A, Deandreis D, Salvatore D. Imaging medullary thyroid cancer patients with detectable serum markers: state of the art and future perspectives. Endocrine 2022;75:330-337.
- Treglia G, Cocciolillo F, Di Nardo F, Poscia A, de Waure C, Giordano A, Rufini V. Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 dihydroxyphenylalanine positron emission tomography: a meta-analysis. Acad Radiol 2012;19:1290-1299.
- Romero-Lluch AR, Cuenca-Cuenca JI, Guerrero-Vázquez R, Martínez-Ortega AJ, Tirado-Hospital JL, Borrego-Dorado I, Navarro-González E. Diagnostic utility of PET/CT with 18F-DOPA and 18F-FDG in persistent or recurrent medullary thyroid carcinoma: the importance of calcitonin and carcinoembryonic antigen cutoff. Eur J Nucl Med Mol Imaging 2017;44:2004-2013.
- Treglia G, Castaldi P, Villani MF, Perotti G, de Waure C, Filice A, Ambrosini V, Cremonini N, Santimaria M, Versari A, Fanti S, Giordano A, Rufini V. Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2012;39:569-580.
- Treglia G, Rufini V, Salvatori M, Giordano A, Giovanella L. PET imaging in recurrent medullary thyroid carcinoma. Int J Mol Imaging 2012;2012:324686.
- Slavikova K, Montravers F, Treglia G, Kunikowska J, Kaliska L, Vereb M, Talbot JN, Balogova S. What is currently the best radiopharmaceutical for the hybrid PET/CT detection of recurrent medullary thyroid carcinoma? Curr Radiopharm 2013;6:96-105.
- Bozkurt MF, Virgolini I, Balogova S, Beheshti M, Rubello D, Decristoforo C, Ambrosini V, Kjaer A, Delgado-Bolton R, Kunikowska J, Oyen WJG, Chiti A, Giammarile F, Sundin A, Fanti S. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur J Nucl Med Mol Imaging 2017;44:1588-1601. Erratum in: Eur J Nucl Med Mol Imaging 2017.

- Chondrogiannis S, Marzola MC, Al-Nahhas A, Venkatanarayana TD, Mazza A, Opocher G, Rubello D. Normal biodistribution pattern and physiologic variants of 18F-DOPA PET imaging. Nucl Med Commun 2013;34:1141-1149.
- S. Hoegerle, C. Altehoefer, N. Ghanem, I. Brink, E. Moser, and E. Nitzsche, "18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels," European Journal of Nuclear Medicine, 2001;28:64-71.
- Tan BB, Flaherty KR, Kazerooni EA, Iannettoni MD; American College of Chest Physicians. The solitary pulmonary nodule. Chest. 2003;123(Suppl 1):89S-96S.
- Soussan M, Nataf V, Kerrou K, Grahek D, Pascal O, Talbot JN, Montravers F. Added value of early 18F-FDOPA PET/CT acquisition time in medullary thyroid cancer. Nucl Med Commun 2012;33:775-779.