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Abstract

Increased oxidative stress contributes to the functional impairment of endothelial progenitor cells (EPCs), the pivotal players
in the servicing of the endothelial cell lining. Several evidences suggest that decreasing oxidative stress by natural
compounds with antioxidant properties may improve EPCs bioactivity. Here, we investigated the effects of Lisosan G (LG), a
Triticum Sativum grain powder, and Lady Joy (LJ), a bean lysate, on function of EPCs exposed to oxidative stress. Peripheral
blood mononuclear cells were isolated and plated on fibronectin-coated culture dishes; adherent cells, identified as early
EPCs, were pre-treated with different concentrations of LG and LJ and incubated with hydrogen peroxide (H2O2). Viability,
senescence, adhesion, ROS production and antioxidant enzymes gene expression were evaluated. Lysate-mediated Nrf-2
(nuclear factor (erythroid-derived 2)-like 2)/ARE (antioxidant response element) activation, a modulator of oxidative stress,
was assessed by immunocytochemistry. Lady Joy 0.35–0.7 mg/ml increases EPCs viability; pre-treatment with either LG
0.7 mg/ml and LJ 0.35–0.7 mg/ml protect EPCs viability against H2O2-induced injury. LG 0.7 and LJ 0.35–0.7 mg/ml improve
EPCs adhesion; pre-treatment with either LG 0.35 and 0.7 mg/ml or LJ 0.35, 0.7 and 1.4 mg/ml preserve adhesiveness of
EPCs exposed to H2O2. Senescence is attenuated in EPCs incubated with lysates 0.35 mg/ml. After exposure to H2O2, LG pre-
treated cells show a lower senescence than untreated EPCs. Lysates significantly decrease H2O2-induced ROS generation.
Both lysates increase glutathione peroxidase-1 and superoxide dismutase-2 (SOD-2) expression; upon H2O2 exposure, pre-
treatment with LJ allows higher SOD-2 expression. Heme oxigenase-1 increases in EPCs pre-treated with LG even upon H2O2

exposure. Finally, incubation with LG 0.7 mg/ml results in Nrf-2 translocation into the nucleus both at baseline and after the
oxidative challenge. Our data suggest a protective effect of lysates on EPCs exposed to oxidative stress through the
involvement of antioxidant systems. Lisosan G seems to activate the Nrf-2/ARE pathways.
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Introduction

Bioactive compounds in food might have beneficial effects on

human health relieving complex disorders such as obesity, type 2

diabetes, dyslipoproteinaemias, hypertension, heart and vascular

diseases and cancer. Recent studies indicate a very high potential

of tailored nutritional intervention strategies in preventing all these

disorders [1]. The characterization of bioactive compounds of

staple foods represents an essential step in the process of validation

of such nutritional strategies and is central for specific ‘‘functional’’

food definition [2].

‘‘Nutraceutical’’, a combination of nutrition and pharmaceuti-

cal, indicates a food component that provides health benefits,

including the prevention of diseases. Different experimental

approaches are commonly used for the assessment ot the

nutraceutical value of foodstuff and ingredients. In particular,

the use of in vitro cell models represents a powerful and

informative tool for the definition of their antioxidant capacity

and related cytoprotective effects [3].

Bone marrow (BM)-derived endothelial progenitor cells (EPCs)

play an important role in endothelium maintenance by means of

reparatory mechanisms such as re-endothelialization and neoan-

giogenesis. Representing an emerging actor directly involved in

vascular competence, EPCs offer a cell model of great interest [4],

[5]. All atherosclerotic risk factors adversely affect circulating

EPCs number, functional properties and senescence [6], [7].

These are prominent contributors to the onset and progression of

cardiovascular disease in many clinical conditions [8].

Recent technological advances have challenged and redefined

several aspects of the biology and function of EPCs. First of all, the

contribution to endothelial repair and angiogenesis made by these

BM-derived cells by integrating into the endothelial layer seems

smaller than traditionally believed [9]. Furthermore, methods
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commonly (and herein) used for isolating EPCs in short-term

cultures generate a mixed population of myeloid cells, also termed

early EPCs, which are not truly endothelial precursors even if they

assume and endothelial-like phenotype by virtue of the expression

of endothelial markers such as vascular endothelial growth factor

receptor-2 (VEGF-R2), CD31 and von Willebrand factor (vWf).

Nonetheless, these cells, mainly representative of the hematopoi-

etic lineage rather than EPCs, though not able to give rise directly

to patent vessels in vivo as well as tubular structures in vitro, can

contribute to vascular repair depending on their ability to release

in a paracrine manner several growth factors and cytokines

[10,11].

Early EPCs have already been studied in the nutraceutical field;

examples of food-derived bioactive compounds with beneficial

effect on function and number of early-EPCs include resveratrol

and Ginkgo biloba extract.

Resveratrol is likely to contribute to the potential of red wine to

prevent cardiovascular disease by increasing nitric oxide (NO)

bioavailability that enhances number and function of circulating

EPCs. Wang et al. [12] showed that resveratrol delays EPCs

senescence by increasing telomerase activity. Consistently, Ginkgo

biloba extract reduces in a dose and time dependent manner EPCs

senescence by activating telomerase through the PI3k/Akt

signaling pathway [13]. In patients with type 1 diabetes, folic acid

normalizes EPCs gene expression profile suggesting that signaling

pathways modulated by folates may be therapeutic targets to

improve EPCs function [14]. Circulating EPCs increased by more

than one fold in patients with cardiovascular disease who had

higher intake of isoflavone (a major component of phytoestrogen),

suggesting that this compound may confer vascular protection

through enhanced endothelial repair [15]. Conversely, 12 weeks of

fish-oil supplemention had no beneficial effect on vascular

endothelial function and EPCs count, with no changes in

metabolic profiles, inflammation or oxidative stress in patients

with type 2 diabetes [16]. These evidences suggest controversial

effects of natural compounds on EPCs number and function.

Epidemiological studies correlate the intake of whole grain and

whole-grain products with a reduced incidence of cardiovascular

disease, diabetes and cancer [17], [18], [19], [20], [21], [22]. The

involvement of reactive oxygen species (ROS) in the aetiology of

these degenerative conditions has suggested that whole grain

phytochemicals with antioxidant activity may contribute to these

benefits on human health [23].

Lisosan G (LG) is a dry powder of grain obtained from Triticum
Sativum and registered as a nutritional integrator: it contains

vitamin B, tocopherols and polyunsaturated fatty acids. LG does

not interfere with hepatic drug-metabolizing enzymes and protects

rats against both carbon tetrachloride- and cisplatin-induced

toxicity through radical scavenging, attenuation of oxidative stress

and saving of antioxidant enzymes [24], [25]. Lady Joy is a variety

of bean viable as a source of phaseolamin, not contaminated by

toxic phytohemagglutinin [26]. As an inhibitor of alpha-amylase

with a direct negative effect on the digestion of starch,

phaseolamin has been proposed as a remedy against obesity and

diabetes [27], [28]. From this variety of bean the Lady Joy (LJ)

lysate has been prepared.

To counteract ROS-induced damage, several genes encoding

detoxifying and antioxidant proteins are expressed in human cells

[29], [30]. This response is regulated through a cis-acting element,

antioxidant responsive element (ARE) or electrophile responsive

element (EpRE), within the regulatory region of target genes [31],

[32]. Nrf-2, nuclear factor (erythroid-derived 2)-like 2 [33], has

been recently identified as the major regulator of ARE-mediated

gene expression [34]; this factor regulates the expression of several

genes encoding drug metabolizing enzymes and anti-oxidant

proteins, including heme oxigenase-1 (HO-1) and superoxide

dismutase-2 (SOD2) [35]. Recent data show that dietary

polyphenols are able to induce detoxifying and antioxidant

defenses through ARE/Nrf-2 pathway activation; for instance,

resveratrol increases cellular antioxidants and phase II enzymes

activity by Nrf-2 induction [36].

Here, we have first evaluated total content of polyphenols and

flavonoids, a class of polyphenols, in Lisosan G and Lady Joy

lysates; then we have investigated the effects of LG and LJ on the

functional properties of EPCs in basal conditions and upon

exposure to oxidative stress injury induced by hydrogen peroxide

(H2O2). Furthermore, we have assessed the expression of several

enzymes representing the endogenous intracellular antioxidant

defense system. Finally, the role of Nrf-2, a transcription factor

that functions as the key controller of the redox homeostatic

regulatory network, has been preliminary explored.

Materials and Methods

Ethics Statement
Blood samples were obtained from healthy volunteers under

written consent according to the Declaration of Helsinki, and

protocol was approved by local Ethics Committee.

Study Protocol
To evaluate the effect of Lisosan G (supplied by Agrisan

Company, Pistoia, Italy) and Lady Joy lysates (supplied by Institute

of Agricultural Biology and Biotechnology, IBBA, CNR Milano,

Italy) on endothelial progenitor cells bioactivity, early EPCs were

incubated for 4 hours at increasing doses of each compound (0,

0.35, 0.70 and 1.4 mg/ml); further, in a new set of experiments,

each compound was added to the medium before the treatment

with 1 mM hydrogen peroxide (H2O2).

Cell culture
Following overnight fasting, venous blood from healthy

volunteers was drawn in EDTA tubes and processed within

2 hours from collection. Peripheral blood mononuclear cells

(PBMCs) were fractionated using Biocoll density-gradient centri-

fugation (Biochrom AG; density = 1.077 g/ml). PBMCs

(16106 cells/cm2) were seeded on 2 mg/cm2 fibronectin coated

culture dishes (BD Falcon) or Lab-Tek II chamber slides system

(Sigma-Aldrich Ltd, Poole, Dorset, UK) after red cell lysis. Cells

were cultured in endothelial basal medium (EBM-2, Lonza Sales

AG, Basel, Switzerland) supplemented with EGM-2-MV-Single-

Quots containing human endothelial growth factor, hydrocorti-

sone, insulin-like growth factor, fibroblast growth factor, vascular

endothelial growth factor (VEGF), antibiotics and 5% fetal bovine

serum (FBS, Lonza Sales AG). After 3 days culture, non-adherent

cells were discarded by washing with PBS and the culture medium

replenished daily. On day 5, adherent cells, displaying an

elongated spindle-shaped morphology, were identified as early

EPCs.

EPCs characterization
Early EPCs were characterized for the uptake of 1,19-

dioctadecyl-3,3,39,39-tetramethylindocarbocyanine-labeled acety-

lated Low-Density Lipoprotein (DiI-Ac-LDL) and lectin binding.

The staining was performed by incubating EPCs with 10 mg/ml of

DiI-Ac-LDL (Invitrogen, Life Technologies Ltd, Paisley, UK) for

2 hours at 37uC. Cells were fixed in 4% paraformaldehyde for

30 min and counterstained with 1 mg/ml FITC-labelled lectin

from Ulex europaeus (Sigma-Aldrich Ltd) for 2 hours at 37uC in
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dark. Images of the stained cells were viewed with a fluorescence

microscope and double positive DiI-Ac-LDL/Lectin cells were

preliminary identified as early EPCs. As previously described [37],

cells were further characterized by demonstrating the expression of

CD31, vWf, KDR, VE-chaderin and CD14 by flowcytometry

(data not shown).

Total polyphenol and flavonoid contents
To estimate total polyphenols concentration we used a modified

Folin-Ciocalteu assay. A standard curve was generated using gallic

acid [38], [39]. The powders of LG and LJ lysate were sonicated

in water (three cycles: 10s on/10s off); after centrifugation, Folin-

Ciocalteu reagent was added to supernatants and to different

concentrations of gallic acid. After 8 min incubation, a solution of

sodium carbonate 0.7 M was added for 2 hours in dark, followed

by measurement of the optical density at 750 nm. Results are

expressed as mg of gallic acid equivalent (GAE) per 1 g of dry

weight (dw) powder (mg GAE/g dw powder).

Total flavonoid content was determined according to the

colorimetric methods described by Lee et al. [40]. Briefly,

appropriate dilutions of sample extracts were reacted first with

sodium nitrite, then with aluminium chloride to form a flavonoid-

aluminium complex. Solution absorbance at 430 nm was imme-

diately measured and compared to quercetin standards. Flavonoid

content was expressed as mg of quercetin equivalent (QE) per 1 g

of powder (mg QE/g dw powder).

Finally, we evaluated total antioxidant activity of both lysates by

oxigen radical absorbance capacity (ORAC) method. ORAC was

measured accordingly to the procedure by Huang et al. [41] and

expressed as mmol trolox equivalent (TE) for 1 g of powder (mmol

TE/g dw powder).

Assessment of cell viability
The MTT assay was performed to evaluate viability of cultured

EPCs. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide) measures mitochondrial activity in living cells. Briefly,

after 5–7 days of culture, EPCs were incubated with MTT (Sigma,

St. Louis, MO, USA) (1 mg/mL) for 3 hours at 37uC, 5% CO2.

Upon incubation, the medium was removed and the cells

solubilized in 10%DMSO/90%Isopropanol. Then, the amount

of the dye released from the cells was quantified by measuring the

optical density at 540 nm (reference wavelength: 620 nm) by use

of a multiplate reader (Multiskan EX, THERMO). The optical

density is directly correlated with the amount of metabolically

active cells. Since the MTT assay does not readily discriminate

between an increase in cell proliferation and an higher resistance

to apoptosis, we assessed whether both lysates stimulate EPCs

proliferation. To this purpose, cells have been expanded by adding

several concentrations of lysates to the complete EGM-2 medium.

The Trypan Blue staining, a dye exclusion procedure, was

employed for viable cells counting.

EPC adhesion assay
After being treated with lysates for 4 hours, EPCs were washed

with PBS, and then gently detached with 0.25% trypsin/EDTA.

After centrifugation and re-suspension, equal cell numbers were

seeded on fibronectin coated culture dishes, and incubated for

30 min at 37uC in a medium free of EGM-2. Adherent cells were

counted in five random high-power (x 200) microscope fields

(HPF)/well by two independent observers unaware of the

treatments.

Senescence
Senescent cells were identified using the Senescence Cells

Histochemical Staining kit (Sigma). Briefly, EPCs were washed in

PBS, fixed for 7 minutes at room temperature, washed again and

incubated for 16–18 hours at 37uC (no CO2) with X-gal

chromogenic substrate. The cells were then washed with PBS,

added with DMSO for dissolving the stain, and incubated at 37uC
for 30 min, followed by measurement of absorbance at 620 nm.

ROS production
ROS production was evaluated by ROS-sensitive fluorescent

probe 5-(and-6)-chloromethyl-29,79-dichloro-di-hydro-fluorescein

diacetate, acetyl ester (CM-H2DCFDA) (Invitrogen, Life Tech-

nologies Ltd). Briefly, EPCs were incubated with CM-H2DCFDA

(10 mM/well) for 30 min at room temperature in the dark and

ROS production was detected by measuring the increase in

fluorescence, by a microplate reader. Fluorescence was measured

by excitation at 495 nm and emission at 527 nm.

RT-PCR and TaqMan real-time PCR
EPCs were trated with LG 0.7 mg/ml and LJ 0.35 mg/ml.

RNA was extracted using TRIzol reagent (Gibco, Life Technol-

ogies Inc., Carlsbad, CA, USA). The quantity and purity of the

isolated RNA were measured by optical density; the extracted

RNA showed an OD280/260 ratio between 1.8 and 2.0. For RNA

purification we used deoxyribonuclease I (Invitrogen, Life

Technologies Ltd) which digests single and double stranded

DNA to oligodeoxy-ribonucleotides containing a 5-phosphate.

One microgram of total RNA from each sample was reverse

transcribed to cDNA with an iScript cDNA Synthesis kit (Bio-Rad,

Richmond, CA, USA) according to manufacturer’s protocol. Real-

time quantitative PCR was carried out using the Applied

Biosystem Step One Plus (PE Applied Biosystem, Warrington,

UK). For gene expression analysis of catalase (CAT), superoxide

dismutase 2 (SOD2), glutathione peroxidase type 1 (GPx-1) and

heme oxygenase-1 (HO-1) the pre-developed TaqMan gene

expression assays (PE Applied Biosystems) and the TaqMan

Universal PCR Master Mix (PE Applied Biosystems) have been

employed. We quantified gene expression using a comparative

critical threshold (Ct) method; Ct numbers were used to calculate

the expression levels of genes normalized to housekeeping, which

consists of endogenous cellular 18S rRNA (PE Applied Biosys-

tems). All samples were assayed in triplicate and means were

presented as fold-increase compared to control.

Activation of Nrf-2
We explored the role of transcription factor Nrf-2 [Nuclear

factor (erythroid-derived 2)-like 2] which promotes mRNA

expression and activity of antioxidant enzymes. Translocation of

Nrf-2 to the nucleus was evaluated by fluorescence microscopy.

Briefly, EPCs were washed in PBS, fixed with 4% (wt/vol)

formaldehyde in PBS for 30 min at room temperature. After

washing with PBS, the chamber slides were incubated with 0.2%

TRITON X-100 in PBS for 10 min and then blocked with 1%

BSA in PBS for 1 hour, followed by overnight incubation with

anti-Nrf-2 (H-300) (Santa Cruz Biotechnology, Santa Cruz, CA,

USA) at room temperature. The chamber slides were washed

extensively before incubation for 1 hour with a secondary mouse

anti-rabbit IgG-FITC antibody (Santa Cruz Biotechnology) in

dark. The cells were washed with PBS and viewed with a

fluorescence microscope. We used DAPI as nuclei-specific dye.

Grain and Bean Lysates and Endothelial Progenitor Cells
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Statistical analysis
Statistical analysis were carried out using SPSS 13.0 software

(SPSS Inc., Chicago, I, USA) for Mac OS X. All data are

expressed as means 6 SE of at least 3 independent experiments.

Unpaired Student’s t-test (two-tailed) was used for single compar-

isons, while one-way ANOVA with Fisher’s Least Significant

Difference (LSD) post-hoc test was carried out for multiple

comparisons. P values,0.05 were considered statistically signifi-

cant.

Results

Total polyphenol and flavonoid contents of lysates
LG lysate showed a slightly higher level of polyphenols content

than LJ lysate (5.20960.298 vs 2.29060.050 mg GAE/g dw

powder; means6SE), while flavonoids concentration was higher in

LJ than LG lysate (0.28160.006 vs 0.11060.005 mg QE/g dw

powder). Total polyphenol and flavonoid content of lysates did not

change significantly after increasing sonication time and cycles

number of powders treatment. Consistently, ORAC was higher in

LG as compared with LJ (16.7760.84 vs 7.4360.353 mmol TE/g

dw powder), and there was a significant linear correlation between

the concentration of total polyphenols and ORAC in the

investigated powders (r = 0.963).

EPCs viability
EPCs were treated with different doses of LG and LJ lysates

(0.35, 0.7 and 1.4 mg/ml) for 4 hours. Compared to control cells

(CNT), EPCs viability tested by MTT significantly improved after

treatment with LJ at 0.35 mg/ml (p,0.001) and after exposure to

both lysates at 0.7 mg/ml (p,0.01 for LJ; p,0.05 for LG). The

highest doses of both lysates (1.4 mg/ml) showed no effect on cell

viability (Figure 1, panel A). Cell counting by Trypan Blue

somehow mimics results obtained with the MTT assay, but the

number of viable cells per ml of culture resulted significantly

increased (p,0.05) only for LJ 0.35 mg/ml, not for LG and LJ at

0.7 mg/ml (data not shown). Thus, the increased metabolic

activity demonstrated by MTT seems not related to an increased

number of viable cells.

Exposure to H2O2 (CNT + H2O2) halved EPCs viability of cells

untreated with lysates (p,0.01 vs CNT). Pre-treatment with LG

0.7 mg/ml (p,0.05) and LJ 0.35 and 0.7 mg/ml (p,0.05 for

both) protected cells by H2O2-induced toxicity (Figure 1, panel B).

Both LG and LJ at 1.4 mg/ml did not preserve viability of EPCs

exposed to H2O2 that was superimposable to the viability of the

H2O2-treated control cells (Figure 1, panel B).

EPCs adhesion capacity
Compared to CNT, pre-treatment with LG 0.7 mg/ml (p,

0.01) and both LJ 0.35 (p,0.001) and 0.7 mg/ml (p,0.01)

improved EPCs adhesion, while pre-treatment with LG and LJ at

1.4 mg/ml did not affect this property (Figure 2, panel A).

The exposure to 1 mM H2O2 decreased adhesion in untreated

EPCs (p,0.01 compared to CNT; Figure 2, panel B). Pre-

treatment with LG at both 0.35 and 0.7 mg/ml (p,0.01) and with

LJ at 0.7 mg/ml (p,0.01), 1.4 mg/ml (p,0.05) and to a larger

extent at 0.35 mg/ml (p,0.001) restored almost completely cell

adhesion of EPCs exposed to H2O2 (Figure 2, panel B).

EPCs senescence
EPCs senescence (normalized for viability) was unaffected by

both LG and LJ at 0.7 and 1.4 mg/ml and slightly reduced by

both LG and LJ at 0.35 mg/ml compared to CNT, (p,0.05 and

p,0.01, respectively) (Figure 3, panel A).

Exposure to 1 mM H2O2 significantly increased senescence of

untreated EPCs (p,0.01 compared with CNT; Figure 3, panel B).

Pre-treatment with LG at 0.35 and 0.7 mg/ml (p,0.01 for both)

and LJ at 0.35 mg/ml (p,0.05) and 0.7 mg/ml (p,0.01)

significantly attenuated senescence of EPCs exposed to H2O2

(Figure 3, panel B). Finally, pre-treatment with both LG and LJ at

1.4 mg/ml did not affect senescence of EPCs exposed to H2O2

(Figure 3, panel B).

ROS production
Compared to CNT, pre-treatment with both lysates at 0.35, 0.7

and 1.4 mg/ml, in the absence of oxidative stress induced by

H2O2, did not change intracellular ROS production (Figure 4,

panel A). ROS generation, as determined by CM-H2DCFDA, a

cell-permeable indicator for these compounds, increased signifi-

cantly in EPCs exposed to H2O2 (p,0.05 compared to CNT)

(Figure 4, panel B). Pre-treatment with both lysates normalizes

ROS production in EPCs exposed to H2O2. Indeed, ROS

generation decreased significantly in EPCs exposed to H2O2 and

pre-treated with both LG and LJ at all the concentrations tested

(p,0.05 versus CNT + H2O2), with LG 0.7 mg/ml showing an

higher efficacy (p,0.01 vs CNT + H2O2) (Figure 4, panel B).

Figure 1. Effects of Lisosan G (LG) and LJ lysate (LJ) on viability
of EPCs in absence (panel A) or presence of oxidative stress
induced by H2O2 (panel B). Data are expressed as means 6SE; n$3.
*p,0.05, **p,0.01, ****p,0.001 vs control (CNT); #p,0.05 vs CNT +
H2O2.
doi:10.1371/journal.pone.0109298.g001
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Antioxidant enzymes gene expression
Respect to controls, GPx-1 expression was higher in EPCs pre-

treated with LG 0.7 mg/ml and LJ 0.35 mg/ml (p,0.05 for both).

Also SOD2 expression was affected by lysates: pre-treatment with

LG 0.7 mg/ml and LJ 0.35 mg/ml induce a significant increase in

SOD2 expression (p,0.01 vs CNT for both). HO-1 expression

increased only in EPCs pre-treated with LG 0.7 (p,0.05), while

no effects were observed for both lysates on CAT expression

(Figure 5, panel A).

In EPCs untreated with lysates, exposure to H2O2 increased by

two fold and 1.5 fold the expression of GPx-1 and SOD2,

respectively (p,0.05 vs CNT for both), while significantly reduced

the expression of CAT (p,0.05 vs CNT) and had no effect on

HO-1 expression (Figure 5, panel B). Pre-treatment with lysates of

EPCs exposed to H2O2 did not affect GPx-1 and CAT expression,

while increased SOD2 expression (to a larger extent LJ 0.35 mg/

ml, p,0.01 vs CNT + H2O2); finally, only LG 0.7 mg/ml

significantly increased HO-1 expression (p,0.05) (Figure 5, panel

B).

Activation of Nrf-2
To evaluate the activation of Nrf-2, the EPCs were exposed to

lysates for 1.5-, 3- and 4-hour periods and immunocytochemistry

of this nuclear factor was performed. EPCs pre-treatment with LG

0.7 mg/ml for 3 hours resulted in Nrf-2 translocation from the

cytoplasm into the nucleus both in basal conditions (Figure 6,

panel B) as well as in presence of the H2O2-induced oxidative

insult (Figure 6, panel D); however, after 4 hours, Nrf-2 was

localized in the cytosol again and no more into the nucleus.

Exposure to H2O2, per se, is not able to activate Nrf-2

translocation into the nucleus in untreated cells (Figure 6, panel

C). Furthermore, Nrf-2 translocation became apparent, thought

weakly, after LJ 0.35 mg/ml pre-treatment for 4 hours (data not

shown).

Discussion

Endothelial progenitor cells participate to vascular homeostasis

and are actively involved in maintaining an intact and functional

endothelium [42]. EPCs are very rare in the peripheral circulation

and are further reduced in subjects with cardiovascular diseases.

Moreover, decreased number and impaired function of EPCs may

contribute to endothelial dysfunction and susceptibility to cardio-

vascular events. It has become increasingly evident that these

changes in EPCs may be due to enhanced oxidative stress, possibly

as a result of systemic or localized inflammation [43]. ROS exert

direct cytotoxic effects on the vascular endothelium and on EPCs.

Indeed, conditions associated with increased generation of ROS

Figure 2. Effects of Lisosan G (LG) and LJ lysate (LJ) on EPCs
adhesion in absence (panel A) or presence of oxidative stress
induced by H2O2 (panel B). Data are expressed as means 6SE; n$3.
**p,0.01, ****p,0.001 vs control (CNT); # p,0.05, ## p,0.01,
#### p,0.001 vs CNT + H2O2.
doi:10.1371/journal.pone.0109298.g002

Figure 3. Effects of Lisosan G (LG) and LJ lysate (LJ) on EPCs
senescence in absence (panel A) or presence of oxidative stress
induced by H2O2 (panel B). Data are expressed as means 6SE; n$3.
*p,0.05, **p,0.01 vs control (CNT); # p,0.05, ## p,0.01 vs CNT +
H2O2.
doi:10.1371/journal.pone.0109298.g003
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are characterized by reduced circulating EPCs levels and lead to

the release of functionally defective EPCs.

Recently EPCs number and function have become the target of

pharmaceutical compounds such as statins, renin-angiotensin

system blockers, and some classes of glucose-lowering agents

(thiazolidinediones and dipeptidyl peptidase-4 inhibitors) [44],

[45]; furthermore, several natural anti-oxidative compounds with

anti-inflammatory properties have also been found to enhance

EPCs bioactivity, even if large clinical trials testing the effects of

antioxidants on cardiovascular risk resulted in systematic failures

[46], [47]. These disappointing results are probably related to the

limited effects of traditional antioxidants on intracellular ROS

production, while they exert a scavenging action on already

formed ROS [48].

Nevertheless, several antioxidant agents identified among

nutraceuticals have been reported to restore EPCs bioactivity.

Among them there are puerarin [49], resveratrol/red wine [12],

[50], Ginkgo biloba [13], berberine [51], salvianolic acids [52],

ginsenoside [53], fish oil (rich in long-chain n-3 polyunsaturated

fatty acids, PUFAs) [54], and salidroside (the major phenylpropa-

noid glycoside derived from Rhodiola) [55].

For the first time, the present study demonstrated that grain and

bean lysates, LG and LJ respectively, enhance viability and

adhesion capacity of EPCs while reducing their senescence.

Overall, in basal conditions, i.e. with no exposure to oxidative

stress, both lysates promote viability and adhesiveness and reduce

senescence at low (0.35 mg/ml) and medium concentrations

(0.7 mg/ml), but not at the highest levels (1.4 mg/ml). Thus, it

appears that both lysates do not affect EPCs functional activities in

a dose dependent manner, while the largest effects of LJ on

viability and adhesion capacity occur at the lowest concentrations

(Figures 1–3, panels A). A double-edged or biphasic action on

EPCs with no or detrimental effects at higher-doses has been

reported for several compounds including statins, thiazolidine-

diones and even insulin [44], [56]. Also resveratrol, at low doses

promotes antioxidant effects while at higher doses can have a dose-

dependent pro-oxidant role followed by cell damage and apoptosis

[57]. Based on the aforementioned results, it is possible to

speculate that, through improvement in viability, adhesiveness and

senescence, both lysates at low concentrations could improve

EPCs performance in the maintenance of the endothelium

homeostasis.

It is interesting to observe that under the conditions used in the

first step of the present study (no exposure to oxidative stress) all

these effects occur with no changes in ROS production (Figure 4,

panel A). On the other hand, compared to control EPCs,

expression of GPx-1 increased in cells treated with both LG and

LJ, expression of HO-1 increased only in cells treated with LG,

while expression of SOD2 was largely increased by both, with no

changes in CAT expression (Figure 5, panel A).

Although several possible mechanisms such as impairment of

NO production, activation of inflammatory pathways, telomere

lenght and telomerase activity have been postulated as causes of

endothelial dysfunction and vascular aging, increased production

of ROS leading to accumulation of senescent cells is largely in

charge of the regulation of vascular homeostasis [58]. In

particular, increased oxidative stress has been suggested to

contribute to the functional impairment of EPCs, by accelerating

the rate of telomere shortening, inducing premature cells

senescence, and increasing the formation of microparticles that,

through a ‘‘feed-forward’’ mechanism, further increase ROS

production. Oxidative stress is caused by the imbalance between

the production of reactive oxygen species and a network of

biological systems that form the antioxidant endogenous capability

[59]. Previous studies from our group [37] and others [60], [61]

demonstrated that human EPCs express high levels of antioxidant

enzymes and are, as a result, more resistant to oxidative stress as

compared to mature endothelial cells. For instance, in our

experience, a significantly lower ROS production and a parallel

marked increase in GPx-1 expression and activity were observed

in human EPCs compared to HUVECs upon exposure to high

constant D-glucose [37]. Consistently, Dernbach et al. [61]

showed that EPCs exhibit a significantly lower basal ROS

concentration as compared with HUVECs. Furthermore, addition

of H2O2 resulted in a massive increase of ROS production and

apoptosis in HUVECs, with only a minor increase in EPCs. The

expression of CAT, GPx-1 and SOD was significantly higher in

EPCs as compared with HUVECs. Thus, EPCs from healthy

subjects seem well equipped with antioxidative defenses effective in

providing resistance against oxidative insult [37], [61].

Resveratrol protects endothelial cells against oxidized low-

density lipoprotein (oxLDL)-induced apoptosis [62]. Consistently,

we have recently reported that LG has protective effects on human

microvascular endothelial cells exposed to ox-LDL through

reduction of oxidative/inflammatory processes [63]. Here, we

highlight that LG and LJ protect EPCs against oxidative injury

induced by H2O2. Cell viability, adhesiveness and senescence were

significantly impaired under H2O2 stress (Figures 1–3, panels B);

ROS production increased by about 60% (Figure 4, panel B);

Figure 4. Effects of LG and LJ on ROS production in absence
(panel A) or in presence of oxidative stress induced by H2O2

(panel B). Data are expressed as means 6 SE; n$3. # p,0.05, ## p,
0.01 vs CNT + H2O2.
doi:10.1371/journal.pone.0109298.g004
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antioxidant protein expression showed eterogenous behaviour

with increasing GPx-1 and SOD2, unchanging HO-1 and

decreasing CAT (Figure 5, panel B). Pre-treatment of EPCs with

LG or LJ at both 0.35 and 0.7 mg/ml concentrations protected

the viability, adhesiveness and senescence level of EPCs exposed to

H2O2, with all functional aspects almost completely restored by LJ

(Figure 1–3, panels B). Both lysates showed only marginal effect at

1.4 mg/ml concentration. ROS production was reduced by both

lysates at different concentrations, with an higher efficacy of

0.7 mg/ml LG (Figure 4, panel B). LG increased both SOD2 and

HO-1 expression while LJ strongly improved SOD2 expression;

finally no significant changes were observed for GPx-1 and CAT.

These results are consistent with an extensive literature showing

that H2O2 induces oxidative damage, loss of cell viability,

senescence and apoptosis of EPCs even in presence of a complex

activation of the endogenous antioxidant defenses [43]. Here, we

report for the first time that the enhanced activation of these

systems might contribute to explain the ability of lysates to restore

viability, adhesiveness and senescence of EPCs exposed to H2O2.

Beneficial effects of EPCs functionality have been reported by

treatment with several nutraceutical compounds. Extracts from

Ginkgo biloba (ginkgolide B) protected EPCs from H2O2-induced

cell death with involvement of Akt/endothelial NO synthase and

MAPK/P38 signaling pathways [64]. Furthermore, Ginkgo biloba

extract significantly improved SOD activity and decreased

apoptosis in a dose-dependent manner in EPCs from diabetic

subjects [65]. Also Salidroside significantly abrogated H2O2-

induced EPCs apoptosis suppressing the H2O2-induced produc-

tion of intracellular ROS [55]. Pre-treatment with Ecklonia cava-

derived antioxidant dieckol suppressed the H2O2-induced ROS

increase and drastically reduced the ratios of apoptotic EPCs [66].

Also some drugs exert cytoprotective effects in conditions of

oxidative stress. One for all, trimetazidine, an anti-ischemic

metabolic agent, protected the proliferation, adhesion, migration,

and apoptosis of EPCs against H2O2 by an increase in both eNOS

and SOD activities [67].

Nrf-2 is an essential transcription factor that plays a crucial role

in cellular defense against oxidative stress. Nrf-2 serves as a

‘‘master regulator’’ of cell survival through the coordinated

induction of phase II and antioxidant defense enzymes to

counteract redox signaling events. In basal redox states, Nrf-2 is

kept inactive into cytosol; otherwise, Nrf-2 translocates into the

nucleus where activates ARE-containing genes encoding for

antioxidant proteins. Expression of Nrf-2 in human aortic

endothelial cells (HAECs) resulted in a marked increase in ARE-

driven transcriptional activity and protected HAECs from H2O2-

mediated cytotoxicity through upregulation of HO-1 and GPx-1

[68], [69]. Furthermore, hypoxic preconditioning increased

nuclear translocation and ARE binding of Nrf2 and upregulated

the expression of the antioxidative enzymes HO-1 and SOD [70].

Figure 5. Quantitative real-time RT-PCR analysis of GPx-1, SOD2, CAT and HO-1 expression in EPCs after incubation with lysates in
absence (panel A) or in presence of oxidative stress induced by H2O2 (panel B). The bars represent mean6SE fold increase in transcript
expression relative to untreated cells (CNT); n$3. *p,0.05, **p,0.01 vs control (CNT); # p,0.05, ## p,0.01 vs CNT + H2O2.
doi:10.1371/journal.pone.0109298.g005

Figure 6. Assessment of Nrf-2 translocation into the nucleus by fluorescence microscopy. Untreated EPCs (panel A); untreated EPCs
exposed to oxidative stress induced by H2O2 (panel C). Nucleus localization of Nrf-2 (green) was present in both EPCs pre-treated with LG (panel B),
and also in EPCs exposed to oxidative stress induced by H2O2 and pre-treated with LG (panel D). DAPI was used for nuclei staining (blue).
doi:10.1371/journal.pone.0109298.g006
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Genistein, a phytoestrogen that belongs to the category of

isoflavones, increased SOD, CAT and glutathione (GSH) levels

and attenuated the decrease of these antioxidants during oxidative

stress; it promoted the nuclear translocation of Nrf2 in an

endothelial cell line [71]. To the best of our knowledge, only one

study demostrated the activation of the Nrf-2 pathway in EPCs by

nutraceuticals. Oleuropin and oleacein, present in olive oil and

olive leaves respectively, restore biological functions of EPCs

impaired by angiotensin II by reducing percentage of senescent

cells and improving migration, adhesion and tube formation. This

effect was related to Nrf-2 activation and increased HO-1

expression [72].

In our study, nuclear Nrf-2 translocation was visualized by

fluorescence microscopy. LG, and only slightly LJ, induced

nuclear Nrf-2 translocation both in basal conditions (Figure 6,

panel B) as well as after exposure to the oxidative challenge

(Figure 6, panel D). On the contrary, H2O2-induced stress, per se,

was unable to activate Nrf-2 (Figure 6, panel C). Consistently, in

our experimental setting, LG increased HO-1 expression irre-

spective of the H2O2-induced oxidative stress, whereas both LJ

and H2O2 did not affect HO-1 expression. Thus, LG is able to

activate a protective response not only before but also in the

presence of an oxidative insult. Both lysates are rich in

polyphenols, mainly LG, which are known to modulate Nrf-2/

ARE pathway. We suggest that lysates-released polyphenols can

work as ROS scavengers and can modulate gene expression

involved in endogenous antioxidant response. Lisosan G, seems to

directly activate Nrf-2 translocation into the nucleus.

The main limitations of the present study include both the lack

of pre-clinical in vivo data as well as the unavailability of gene

knockdown experiments designed to further evaluate the role of

antioxidant marker genes in the context of lysate-mediated EPCs

protection. Furthermore, in order to confirm antioxidative

response induction, also enzymes activity might be evaluated

other than other targets of Nrf-2 after lysates treatment.

In conclusion, the present study demonstrates that grain and

bean lysates, LG and LJ, respectively, enhance viability and

adhesion capacity of human EPCs thus reducing their senescence

both in basal conditions as well after exposure to H2O2-induced

oxidative stress. Expression of HO-1 and GPx-1 was increased in

EPCs treated with LG and LJ, respectively, while expression of

SOD2 was increased by both. These effects on antioxidant

enzymes expression have been observed both in basal conditions

as well after exposure to H2O2, suggesting that H2O2-induced

cytotoxicity is counteracted by lysates. Finally, these data identify

the Nrf2/ARE pathway as an endogenous system for antioxidant

protection and upregulation of the redox-sensitive genes after

treatment with Lisosan G. The inhibition of EPCs senescence by

lysates in vitro may improve the functional properties of EPCs in a

way that might be useful for potential cell therapy.
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