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Abstract
Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active

component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which

modifies Arg177 of actin. The previously determined crystal structure of the actin-Ia com-

plex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain

more insights into the structural requirements of actin to serve as a substrate for toxin-cata-

lyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild

type actin was replaced by actin variants with substitutions in residues located on the Ia-

actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance

towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and

growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the

toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human

β-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia.

Introduction
A group of Gram-positive microorganisms, including Clostridium botulinum, C. difficile, C. per-
fringens, C. spiroforme, and Bacillus cereus, produces actin-ADP-ribosylating “binary toxins”.
These toxins consist of a binding component, which is involved in toxin up-take, and an enzy-
matically active component, which harbors ADP-ribosyltransferase activity. Both components
are secreted as separated proteins [1,2]. The binding component of binary toxins is proteolytically
activated, forms heptamers, and binds to membrane receptors of eukaryotic target cells. After
docking of the enzyme component to the binding component, the toxin complex is endocytosed
[1,3–7]. In an acidic endosomal compartment, the toxin heptamer inserts into membranes and
forms a pore, which allows the translocation of the enzyme component into the cytosol.

In the cytosol, the enzyme component ADP-ribosylates monomeric G-actin at Arg177.
Thereby, actin polymerization is blocked by steric hindrance [8,9]. Moreover, ADP-ribosylated
actin acts as a capping protein at the barbed ends of F-actin to inhibit polymerization of non-
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modified actin molecules [10]. Altogether, these effects cause depolymerization of the actin cyto-
skeleton, major morphological changes of target cells and inhibition of motile and signaling func-
tions, which depend on the intact actin cytoskeleton [1,2,11]. Moreover, it was shown recently
that destruction of the actin cytoskeleton by toxin-catalyzed ADP-ribosylation induces formation
of microtubule-based protrusions, which are involved in increased adhesion of bacteria [12].

Arg177 of actin, which is modified by the toxins, is essential for actin functions. This residue
is changed in the zebrafish cardiofunk actin mutation (Arg177His), which causes major defects
in embryonic cardiac development and function [13]. Biochemical studies with yeast actin
showed that the Arg177His mutation results in increased critical concentration, a prolonged
nucleation phase and a faster elongation process of actin polymerization, suggesting increased
fragmentation of actin filaments [14].

In a recent study, the crystal structure of the enzyme component (Ia) of iota toxin was ana-
lyzed in complex with its protein substrate skeletal muscle α-actin at high resolution [15,16].
Several structural “snapshots” were determined showing the actin-Ia complex in the course of
the ADP-ribosylation reaction. Moreover, essential amino acid residues of the ADP-ribosyl-
transferase and of actin involved in catalysis were identified. These data resulted in a strain-
alleviation model of ADP-ribosylation of actin by iota toxin [15].

However, in spite of recent progress in the understanding of the ADP-ribosylation of actin
catalyzed by Ia, the available data lack biochemical confirmation of the proposed molecular
mechanism of the reaction. In previous studies, site-directed mutagenesis was restricted to the
iota toxin molecule [17,18] but amino acids of actin, suggested to be crucial for the toxin-cata-
lyzed ADP-ribosylation reaction, were not analyzed so far.

To gain more insights into the Ia-actin interactions, we used the yeast Saccharomyces cerevi-
siae as a model. In amino acid sequence, yeast actin is ~90 and 87% identical with mammalian
β/γ- and skeletal muscle actin, respectively [19]. Moreover, yeast actin is readily modified by
iota toxin. We substituted yeast wild-type actin by site-specific amino acid variants in S. cerevi-
siae and analyzed the functional role of specific amino acid residues proposed to be crucial for
iota toxin-catalyzed ADP-ribosylation of actin, using engineered yeast cells. Our findings indi-
cate that Asp179 of actin, which was proposed to play an important role in toxin-induced
ADP-ribosylation [15,16], is not essential for ADP-ribosylation by iota toxin. However, we
identified Glu270 as an essential amino acid for modification by iota toxin.

Results

Actin engineering in S. cerevisiae
Budding yeast S. cerevisiae is a single-cell eukaryotic organism, which is used for studies on
molecular mechanisms of bacterial virulence factors [20]. We employed the yeast model to
engineer S. cerevisae by substituting wild type actin with its sequence variants, containing site-
specific changes of amino acids suggested to play a role in toxin-induced ADP-ribosylation.

At first, we engineered a haploid S. cerevisiae strain with an inactivated ACT1 gene and with
functional ACT1 on an URA3-bearing plasmid (S. cerevisiae act1::LEU2 + pACT1 [URA3], see
S1 Results and S1 and S2 Figs). This strain was transformed with plasmids coding for different
actin variants and aHIS3 auxotrophic marker. Subsequently, we used 5-FOA to eliminate the
URA3-containing plasmid, resulting in cells, which contained only theHIS3-plasmid encoding
the actin variants [21]. Deduced from the crystal structure of the Ia-actin complex [15], we
studied actin mutations of Asp179 and Glu270, which are located close to the ADP-ribose
acceptor Arg177 and at the interface between Ia and actin (Fig 1).

Yeast cells, containing Arg177 and Asp179 actin variants, were viable and did not demon-
strate major growth defects during cultivation on YPD medium (Fig 2). This result indicates
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that the amino acid substitutions did not affect functional activity of the proteins under these
conditions. Exchange of Glu270 (E270D and E270Q) resulted in minimally reduced growth of
S. cerevisiae.

Toxicity of Ia for S. cerevisiae
Next, we expressed the Ia-coding gene in yeast, containing different actin variants and studied
the toxin-provoked growth phenotypes of S. cerevisiae. As shown in Fig 3A, induction of the

Fig 1. Structural representation of actin-Ia interaction.Upper panel, general view of Ia interaction with actin (pdb code 3BUZ). Lower panel, detailed
representation of the region around R177 of actin. Amino acid residues R177, D179, E270, E72 of actin, K351R352K353 motif of Ia and the nonhydrolyzable
NAD analog TAD (β-thiazole-4-carboxamide adenine dinucleotide) are shown as sticks. Images were prepared using PyMOL (www.pymol.org).

doi:10.1371/journal.pone.0145708.g001
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Ia-coding sequence by cultivation of transformed yeast on galactose-containing agar medium
was accompanied by dramatic reduction in viability of yeasts containing wild type and
Asp179Ala/Glu actin variants. In contrast, replacement of the ADP-ribose acceptor amino acid
Arg177 by lysine rescued the corresponding S. cerevisiae strain from intracellularly expressed
Ia. Yeast cells producing Ia in S. cerevisiae actin-Asp179Lys background demonstrated a mini-
mally increased survival rate in comparison to the wild type S. cerevisiae. Surprisingly, we
observed that Glu270Asp and Glu270Gln actin variants were largely resistant to the expression
of Ia (Fig 3B).

To confirm that the observed alterations in yeast growth were indeed linked to Ia produc-
tion and ACT1mutagenesis, we performed additional experiments. Firstly, we prepared
extracts from S. cerevisiae, expressing the actin variants Arg177Lys, Glu270Asp and
Glu270Gln, which additionally expressed the enzyme component of iota toxin. These extracts
were tested in a 32P-ADP-ribosylation assay after addition of purified yeast wild type actin and
32P-NAD. Protein separation by SDS-PAGE and autoradiography revealed radiolabeling of
actin (~40 kDa) only with yeast transformed with the Ia-coding sequence followed by induc-
tion with galactose (Fig 4A). Secondly, we performed a “post-ADP-ribosylation” assay to con-
firm actin ADP-ribosylation in intact cells. To this end, the S. cerevisiae strain, producing wild
type actin, was transformed with the Ia-expressing plasmid or the vector control and incubated
in galactose-containing medium. After 9 h, yeast cells were lysed and used in a 32P-ADP-ribo-
sylation assay in the presence of exogenous recombinant Ia purified from E. coli (“post-ADP-
ribosylation”). ADP-ribosylation of intracellular endogenous actin by Ia, which was produced
in intact yeast cells, resulted in reduced 32P-ADP-ribosylation in the second in vitro reaction

Fig 2. Analyses of agar growth phenotypes of S. cerevisiae containing different actin variants. Five-
fold serial dilutions of yeast cultures were spotted onto YPD agar. Plates were incubated for 3–4 days at
30°C. Actin variants produced by the corresponding S. cerevisiae strains are shown on the left. Control yeast
strain representing wild type S. cerevisiae is indicated as “WT strain”.

doi:10.1371/journal.pone.0145708.g002
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after addition of recombinant Ia (Fig 4B, upper panel). It should be noted that actin from cell
extracts containing intracellularly expressed Ia was readily ADP-ribosylated by Photorhabdus
luminescens toxin TccC3, which modifies actin at Thr148 [22] independently of an ADP-ribo-
sylation by Ia (Fig 4B). Moreover, addition of muscle actin to the in vitro ADP-ribosylation
reaction showed radiolabeling of actin with Ia-producing yeast cells but not in control samples,
although yeast cell densities in both cultures were similar at this time point (Fig 4B, lower 2
lines). Thirdly, we purified actin from S. cerevisiae cells, possessing wild type actin or actin-
Arg177Lys (i.e. demonstrating Ia-sensitive and Ia-resistant phenotypes, respectively), and sub-
jected the isolated proteins to MALDI-TOF mass spectrometry. Obtained spectra showed the
successful substitution of Arg177 by lysine in the corresponding Ia-insensitive strain by disap-
pearance of Arg177- and appearance of Lys177-containing peptides in mass analysis data (Fig
4C and 4D). All these data corroborated our hypothesis that the reduced survival rate of S. cere-
visiae strains is caused by the toxic action of intracellularly produced Ia, while yeast growth in
the presence of intracellular Ia is evoked by change of the target Arg177 to lysine and by
changes of Glu270 to glutamine and aspartate.

Fig 3. Susceptibility of S. cerevisiae containing different actin variants towards iota toxin component Ia. Yeast strains containing wild type actin or
actin variants with substitutions R177K, D179E, D179A, and D179K (panel A) or E270D and E270Q (panel B) were transformed with the vector alone or the
Ia-expressing plasmid, and were analyzed by the drop-test under ia-repressing (glucose) or -inducing (galactose) conditions. Plates were incubated for 3–4
days at 30°C.

doi:10.1371/journal.pone.0145708.g003
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Fig 4. Analysis of Ia production by engineered S. cerevisiae. (A) Analysis of the synthesis of Ia in S. cerevisiae strains, producing actin-R177K, E270D
and E270Q. Yeast strains, producing actin-R177K, E270D or E270Q and transformed with the Ia-containing plasmid (Ia) or the vector alone (Vector), were
cultivated in SGal for 20 h at 30°C. Cells were broken by glass beads treatment and analyzed by 32P-ADP-ribosylation in the presence of additionally added
purified wild type yeast actin (1 μg). Labeled bands represent modified yeast actin and confirm intracellular production of functionally active Ia by the S.
cerevisiae strains. (B) Production of Ia by the wild type S. cerevisiae strain. Wild type yeast strains harboring the Ia-containing plasmid (Ia) or the control
vector (vector) were cultivated in glucose-containing liquid medium until OD595 = 0.5. Afterwards, glucose was replaced by galactose and cultivation
continued for 9 h at 30°C. Cells were lysed and the resulting extract preparations were ADP-ribosylated in the presence of Ia (+ Ia), TccC3 toxin of P.
luminescens [42] (+ TccC3), purified muscle actin (+α-actin) or tested in Western blotting with the anti-actin serum to show equal actin concentrations in the
samples. (C, D) Mass spectrometry of actin variants. MALDI-TOF MS of wild type (C) and actin-R177K (D) protein variants isolated from S. cerevisiae.
Spectra demonstrate disappearance of R177- and appearance of K177-containing peptide in mass analysis (substituted amino acid residue within identified
peptides is shown in red).

doi:10.1371/journal.pone.0145708.g004
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In vitro ADP-ribosylation of actin
As shown above (Fig 3A), S. cerevisiae strains, containing actin with substitution of Asp179
(but not Arg177 and less Glu270) were sensitive towards the toxic action of Ia. These results
indicated that Ia was able to ADP-ribosylate the corresponding actin variants in the cell. To
directly study the substrate properties of engineered actin variants, we employed in vitro
32P-ADP-ribosylation assays. To this end, we prepared crude cell extracts from S. cerevisiae
strains, producing wild type actin or the actin variants Arg177Lys, Asp179Ala, Glu270Gln and
Glu270Asp and tested them in ADP-ribosyltransferase assays with Ia or the highly related
enzyme component CDT-A from C. difficile toxin CDT [23] (as an additional control). As
demonstrated in Fig 5A, substitution Asp179Ala did not influence modification of the corre-
sponding actin variants as compared to wild type actin. Whereas actin-Glu270Asp was less effi-
cient modified than wild type actin, the Glu270Gln mutant was a very poor substrate. As

Fig 5. In vitroADP-ribosylation of actin variants produced by S. cerevisiae. (A) Yeast extracts were prepared from strains producing wild type actin or
actin variants with substitutions R177K, D179A, E270D or E270Q and were tested in 32P-ADP-ribosylation with Ia or C. difficile transferase CDT-A. (B) Time
course of 32P-ADP-ribosylation performed in the presence of Ia with wild-type actin (◆) or actin variants D179E (4), D179A (□), D179K (�) or R177K (●).
Means of three measurements with standard deviation are shown. (C) Time course of 32P-ADP-ribosylation performed in the presence of Ia with wild type
actin (◆) or actin variants E270Q (4), E270D (□). Means of three measurements with standard deviation are shown.

doi:10.1371/journal.pone.0145708.g005
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expected, mutation of Arg177 made actin completely resistant to the enzymatic action of both
Ia and CDT-A.

Next, we isolated the actin mutants by DNAse I affinity chromatography and studied puri-
fied actin preparations in a 32P-ADP-ribosylation assay. While rates of toxin-catalyzed ADP-
ribosylation with the actin variants Asp179Ala or Asp179Glu did not differ from that of wild
type actin, Asp179Lys replacement decreased the modification level of the target (Fig 5B). By
contrast, the actin variants Glu270Asp and Glu270Gln exhibited very low or only marginal
modifications, respectively (Fig 5C).

Moreover, we tested the functional consequences of amino acid exchanges for Ia-induced
ADP-ribosylation with human β-actin in an in vitro transcription/translation assay. Therefore,
we employed native gel electrophoresis that allows separation of ADP-ribosylated actin from
non-modified actin by the increased migration velocity of ADP-ribosylated proteins (Fig 6).
The studies confirmed that wild type actin and Asp179Ala mutants of human β-actin were

Fig 6. In vitroADP-ribosylation of human β-actin variants. Actin variants were produced in in vitro
transcription/translation reaction, using as a matrix plasmids coding for human β-actin gene with the
corresponding amino acid substitutions (wild type (WT), R177K, D179A, E270D and E270Q). Afterwards, 1 μl
of the in vitro transcription/translation mix was ADP-ribosylated with Ia (150 ng/10 μl in Panel A; 15 and 50 ng/
10 μl in Panel B; and 15, 50 or 150 ng/10 μl in Panel C) or left untreated, without toxin (w/o). Reaction mixes
were subjected to non-denaturing polyacrylamide gel electrophoresis and autoradiography (shown) to detect
35S-methionine-labelled actin variants. Arrows on the left indicate position of shifted ADP-ribosylated actin.

doi:10.1371/journal.pone.0145708.g006
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readily ADP-ribosylated by Ia (150 ng/ml) under these conditions (Fig 6A). Also at low con-
centration of Ia (15 ng/ml and 50 ng/ml), Asp179Ala actin was readily modified. The
Glu270Asp actin mutant was less modified at low toxin concentrations (15 ng/ml), while most
of the protein was shifted at 50 ng/ml (Fig 6C). However, ADP-ribosylation of the Glu270Gln
actin mutant was clearly reduced even at high concentration of Ia (150 ng/ml). Thus, the data
obtained with human actin confirmed results from studies with yeast actin.

Discussion
The yeast S. cerevisiae is a well-established eukaryotic model used to study mechanisms of
action of different bacterial products, including effectors of virulence-associated secretion sys-
tems and toxins [24–28]. Feasibility of this model relies on high structural conservation of cel-
lular key components targeted by the microbial toxins or effectors [29,30].

Actin is a highly conserved protein. The only actin-coding gene ACT1 of S. cerevisiae is
located on chromosome VI and is translated into a protein, which is ~87–90% identical to
human actin isoforms. This high degree of conservation allows its modification by C. perfrin-
gens iota toxin and suggests the usage of yeast actin as an appropriate model for actin-modify-
ing toxins [31]. At the same time growth behavior of the resulting yeast directly correlates with
the functionality of the synthesized proteins. Thus, only functional actin variants produces via-
ble yeast cells. It should be noted that following genetic manipulations only actin variants
coded by the transforming plasmids but not the wild type actin is produced by S. cerevisiae.

We focused on amino acid Asp179 of actin, which is in the vicinity of Arg177, the amino
acid target of iota toxin [15]. Tsurumura and coworkers highlighted the possible role of this
aspartate residue in the control of the transition state of the Ia-catalyzed ADP-ribosylation
reaction. They showed that Asp179 interacts with Arg177 and also proposed that Asp179 has a
stabilizing function by contacting the N-ribose moiety of NAD by forming a hydrogen bond
[15]. Earlier and in line with this model, Jørgensen et al. suggested a substrate-assisted mecha-
nism of ADP-ribosylation of elongation factor eEF2 catalyzed by Pseudomonas aeruginosa exo-
toxin A and diphtheria toxin. In addition to the targeted diphthamide-699 residue of eEF2, the
authors stressed the importance of Asp696, which, according to the crystal structures, forms a
hydrogen bond with the N ribose hydroxyl group during or after ADP-ribosylation of eEF2
[32]. Furthermore, by in silico analysis of the region around the acceptor residues of four differ-
ent ADP-ribosylated targets (Gαs modified at Arg201 by cholera toxin, RhoA modified at
Asn41 by C. botulinum C3 exoenzyme, Gαi ADP-ribosylated at Cys351 by pertussis toxin and
actin modified at Arg177 by C. perfringens iota toxin) they predicted similarly located aspartic/
glutamic acids that might react in analogy to the Asp696 of eEF2 (i.e. Glu50, Glu40, Asp350
and Asp179 in Gαs, RhoA, Gαi and actin, respectively). However, according to our results,
substitution of actin Asp179 by glutamic acid or alanine failed to produce strong effects on the
viability of Ia-producing yeast and on ADP-ribosylation of actin. Thus, Asp179 does not seem to
play a major role in the Ia-catalyzed ADP-ribosylation of actin. Only change of Asp179 to lysine
decreased the ADP-ribosylation of actin and slightly improved yeast survival under Ia gene-
inducing conditions. This effect, however, is most likely caused by the introduction of opposing
charge, which might interfere with the interaction of actin and Ia involving residues Arg248,
Asn255 and Asn256 of the ADP-ribosyltransferase. In this respect, the recent crystal structure
analysis of the complex of ADP-ribosyltransferase C3cer with RhoA is of interest [33]. In this
study, Glu40 of RhoA was changed to alanine without major effect on ADP-ribosylation, again,
indicating that the previous model proposed by Jørgensen et al. has to be modified [32].

Another acidic amino acid residue located near Arg177 of actin is Glu72. Exchange of this
residue had no effects on Ia-induced toxicity and ADP-ribosylation (not shown). However, we
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found that change of Glu270 of actin has major inhibitory effects on toxicity of Ia and toxin-
catalyzed ADP-ribosylation. Glu270 is located in the so-called hydrophobic plug, which con-
nects three actin molecules with each other in interstrand interaction of actin filaments [9,34].
Glu270 seems not to be directly involved in the ADP-ribosylation reaction catalyzed by Ia,
because the amino acid is too far away from the catalytic site. In the actin-Ia complex, Glu270
is located near the basic amino acid triad of Lys351, Arg352 and Lys353 (KRK motif) of Ia.
KRK of Ia is probably an important interaction site, which allows and stabilizes the docking of
the toxin to the actin molecule. Therefore, it is plausible that exchange of this residue in actin
largely impairs the interaction with iota toxin. In line with a charge dependent effect, we
observed that the Ia-induced ADP-ribosylation of the Glu270Gln mutant of actin was stronger
inhibited than that of actin Glu270Asp. Both mutations caused only slight reduction in yeast
growth. It is worth to note that Glu270 of actin is targeted by the actin-crosslinking domain
(ACD) of multifunctional-autoprocessing RTX toxins (MARTX) of Vibrio cholerae, Vibrio vul-
nificus and Aeromonas hydrophila. The ACDs of these toxins form actin oligomers by cross-
linking amino acid Glu270 of one actin molecule with Lys50 of another actin molecule [35–
37]. Thus, Glu270 of actin plays a crucial role as a target amino acid for crosslinking MARTX
toxins and probably as a docking site for iota toxin.

Taken together, our data indicate that Asp179 of actin plays no major role in iota toxin-cat-
alyzed ADP-ribosylation of actin. Moreover, we identified Glu270 of actin as an essential
amino acid, which is most likely involved in the productive interaction of iota toxin with its
substrate.

Materials and Methods

Strains, vectors and culture conditions
Gene cloning and expression were performed in Escherichia coli DH10B (Invitrogen, Grand
Island, NY, USA) and BL21 Codon Plus (Stratagene, Santa Clara, CA, USA) strains respec-
tively. Genomic DNA from S. cerevisiae D273-10B [38] was used for the amplification of the
LEU2marker gene. S. cerevisiaeMH272–3fα (ura3, leu2, his3, trp1, ade2) or the diploid
MH272–3fα/a (ura3/ura3, leu2/leu2, his3/his3, trp1/trp1, ade2/ade2) [39] are the “wild type”
strains used in gene engineering work. Plasmids used for cloning of deleting genetic constructs
are based on pUC19 vector (New England Biolabs, Frankfurt am Main, Germany) or pBlue-
script II KS+ (Stratagene). Yeast expression plasmids were constructed using pRS313 [40],
YCplac33 [41], YEplac555 [42] and pESC-His (Stratagene) vectors. For Ia production pET28a
vector (Novagen, Billerica, MA, USA) was used. A list of used strains, plasmids and PCR prim-
ers is presented in Tables A-D in S1 File. Muscle actin was a generous gift from Prof. H.G.
Mannherz (Ruhr-University, Bochum, Germany). CDT-A of C. difficile and TccC3 of Photo-
rhabdus luminescens were purified as described previously [22,43].

Construction of S. cerevisiae strain containing modified actin
S. cerevisiae strains were grown on rich medium containing glucose (YPD: 1% yeast extract, 2%
peptone, and 2% glucose) or on minimal medium containing 0.67% yeast nitrogen base with-
out amino acids (Difco, Franklin Lakes, NJ, USA) with 2% glucose (SGlc) or 2% galactose
(SGal). SGlc and SGal media were enriched with the appropriate supplements (i.e. uracil, leu-
cine, histidine, tryptophan or adenine) based on specific S. cerevisiae strain requirements. Yeast
transformations were performed by the lithium acetate method [44]. To generate functional
LEU2marker gene used for ACT1 gene disruption the corresponding coding sequence with
minus-312 bp promoter- and plus-293 bp terminator-containing regions was amplified by
PCR and cloned into pUC19 vector. act1::LEU2 (i.e. Δact1) was constructed by replacing
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nucleotides from minus-37 to 721 of ACT1 with functional LEU2 gene. The deleting construct
based on pUC19 vector was delivered into diploid S. cerevisiaeMH272a/α strain, and transfor-
mants were selected using minus-leucine minimal medium [29]. Disruptions were confirmed
with the primers annealing outside recombination area by PCR with chromosomal DNA iso-
lated from the engineered yeast. Since act1 deletion is lethal in haploid strain [45], before been
sporulated and dissected, the obtained [ACT1/act1::LEU2] yeast variant was transformed with
YCplac33 vector containing ACT1 gene with the minus-827 promoter- and plus-274 termina-
tor-containing regions. The resulting strain was subsequently sporulated and dissected (Singer
Instruments, Somerset, UK). After tetrad analysis a haploid [Δact1 + YCplac33-ACT1] isolate
was selected and used for subsequent experiments. YCplac33-ACT1 was replaced by
pRS313-based plasmids encoding different ACT1mutants via 5-fluoroorotic acid (5-FOA,
Thermo Scientific, Pittsburgh PA, USA) plasmid shuffling method [21].

For site-directed mutagenesis XhoI/KpnI fragment of ACT1 was cut out from the
YCplac33-ACT1 plasmid and ligated into pBluescript vector. The resulting plasmid was used
as a matrix in QuikChange reactions (Promega, Mannheim, Germany) aimed at substitutions
of amino acid residues of interest. All mutated genes were initially subcloned back into XhoI/
KpnI endonuclease restriction sites of YCplac33-ACT1 and then transferred en bloc with the
upstream promoter and downstream terminator regions into pRS313 using EcoRI/SalI sites.

The influence of actin site-substitutions and Ia gene expression upon growth behavior of
the resulting yeast variants was analyzed on minimal agar plates by drop-test. To that end,
5-fold serial dilutions of suspensions prepared from overnight agar cultures normalized by
OD595 measurements were spotted onto agar plates containing the required supplements or
YPD. Plates were incubated for 3–4 days at 30°C.

Cloning of the gene and purification of recombinant Ia of C. perfringens
The yeast vector for cloning of the Ia-coding gene in S. cerevisiae (named YEpGal555) was con-
structed using YEplac555 backbone by introducing GAL1/10 promoter and 3’ untranslated
region from pESC-His using SacI/PstI restriction endonucleases with subsequent introduction
of NcoI site immediately following BamHI site of the plasmid. A gene coding for the A-subunit
of C. perfringens iota toxin was PCR amplified from chromosomal DNA of C. perfringens strain
E342 (collection of laboratory of molecular pathogenesis, Gamaleya Research Institute, Mos-
cow, Russia) and cloned into YEpGal555 using NcoI/SalI endonuclease sites. For protein pro-
duction Ia-coding sequence was cut out from the latter plasmid with BamHI/SalI restriction
endonucleases and ligated into pET28a.

For protein production E. coli BL-21 Codon Plus strain transformed with Ia-coding gene
within pET28a plasmid was grown on a shaker at 37°C until OD595 = 0.8. Expression of ia gene
was induced by 1 mM IPTG overnight at 28°C. Cells were collected by centrifugation and sus-
pended in a 6xHis-binding buffer (20 mM phosphate buffer (pH 7.4), 0.5 M NaCl, and 5 mM
imidazole) supplemented with 1 mM PMSF and protease inhibitor cocktail (Roche, Mann-
heim, Germany). Bacteria were lysed by sonication. Bacterial extract, clarified by centrifuga-
tion, was loaded onto a column with Ni-IDA resin (Macherey-Nagel, Duren, Germany). The
column was washed sequentially with 6xHis-binding buffer and with 6xHis-binding buffer
plus 30 mM imidazole. Ia-containing preparation was eluted with 500 mM imidazole and dia-
lyzed overnight against 20 mM Tris-HCl (pH 7.4) with 50 mMNaCl. After dialysis, the sample
was applied onto Mono Q 5/50 GL (GE Healthcare, Pittsburgh, PA, USA) column. Flow-
through fraction, containing Ia, was collected, concentrated and subjected to gel chromatogra-
phy on Superdex 75 10/300 GL (GE Healthcare) equilibrated with TBS (20 mM Tris-HCl (pH
7.4) and 150 mMNaCl).
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Isolation of yeast actin
Purification of yeast actin was performed according to the DNase I affinity method originally
described by Kron et al [46] with modifications by Goode [47]. To this end, yeast cells were
grown for 24 h in YPD-medium till OD595 = 5–7, collected by centrifugation, resuspended in a
small amount of lysis buffer (20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2 mM DTT, 1 mM
PMSF and protease inhibitor cocktail) and frozen drop-wise in liquid nitrogen. Frozen yeast
cells were lysed using Mixer Mill MM400 device (Retsch, Haan, Germany). Obtained yeast
powder was resuspended in a lysis buffer, cleared by centrifugation and applied onto a column,
containing DNase I (Sigma) immobilized on Affi-Gel 10 (Bio-Rad) according to the manufac-
turer’s protocol. After application of yeast extract, the column was washed with G-buffer
(20 mM Tris-HCl (pH 7.4), 0.5 mM ATP, 0.2 mM DTT and 0.2 mM CaCl2) and wash buffer
(G-buffer with 10% formamide). Actin was eluted with 50% formamide in G-buffer. The pro-
tein-containing fractions were immediately diluted 5-fold with G-buffer and dialyzed against it
overnight. Afterwards, samples were concentrated using Vivaspin 20 (Sartorius, Goettingen,
Germany), dispensed into aliquots, frozen in liquid nitrogen and stored at -80°C until use.

Mass-analysis of purified wild type actin and actin R177K variant was performed on 4800
MALDI TOF/TOF Analyzer (AB Sciex GmbH, Darmstadt, Germany) at TOPLAB GmbH,
(Martinsried, Germany).

In vitro ADP-ribosylation
Actin modification in vitro was performed either with crude yeast lysate (2.5 mg/ml) or with
purified actin (100 μg/ml) by recombinant Ia or CDT-A (0.25 μg/ml of Ia or CDT-A for crude
yeast extract and 1 μg/ml of Ia for the purified protein) in a total volume of 10 μl. Reaction
mixtures contained 1 μM non-radiolabeled NAD, 0.1 μCi 32P-NAD (Perkin Elmer, Hamburg,
Germany), 0.5 mMDTT, 20 mMHepes-KOH (pH 7.4), 100 mM KCl and 2 mMMgCl2 (ADP-
ribosylation with yeast extract) or 1 μM non-radiolabeled NAD, 0.1 μCi 32P-NAD, 20 mM
Tris-HCl (pH 7.4), 0.5 mM ATP, 0.2 mMDTT and 0.2 mM CaCl2 (ADP-ribosylation with
purified actin). Incubation was at 30°C for the indicated times. Reactions were stopped by the
addition of Laemmli sample buffer and heating at 95°C for 5 min. Then, the samples were sub-
jected to SDS-PAGE and autoradiography using Storm 820 phosphorimager (GE Healthcare).
Autoradiograms were quantified by ImageQuant 5.2 (Molecular Dynamics, Vienna, Austria).

Point mutations in human β-actin gene, resulting in actin variants with Arg177Lys,
Asp179Ala, Glu270Asp and Glu270Gln substitutions, were produced by QuikChange reaction
using the matrix plasmid β-actin-pET28a [22] and the corresponding primers (Table C in S1
File). Engineered actin variants were synthesized in in vitro transcription/translation reaction
(TNT Coupled Reticulocyte Lysate System, Promega) using the plasmids, coding for the pro-
teins with the amino acid substitutions, and 35S-methionine (specific activity, 37 TBq/mmol;
Hartmann Analytic, Braunschweig, Germany). Afterwards, 1 μl of the in vitro transcription/
translation mix, containing co-translationally 35S-labeled actin, was ADP-ribosylated with
0.2 mM NAD in 20 mM Tris-HCl (pH 7.4), 0.5 mM ATP, 0.2 mM DTT and 0.2 mM CaCl2
and various concentrations of Ia and subjected to polyacrylamide gel electrophoresis under
non-denaturing conditions [22]. Finally, gels were processed by autoradiography (Storm 820
phosphorimager).

Preparation and analysis of yeast extracts
Crude yeast extracts for Western blotting and enzymatic assays were prepared by glass-beads
disruption in 20 mMHepes-KOH (pH 7.4) with 100 mM KCl, 2 mMMgCl2, 0.5 mMDTT,
1 mM PMSF and protease inhibitor cocktail. Yeast extracts and purified proteins were analyzed
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by polyacrylamide gel electrophoresis in sodium dodecylsulfate buffer and Western blotting.
Protein concentrations were estimated using Coomassie Brilliant Blue G-250 dye. For actin
immunodetection monoclonal antibodies (mAbGEa, Novus Biologicals, Cambridge, United
Kingdom) were used at 1/2000 dilution.
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