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Abstract: The paper discusses the issues of morphofunctional variability of causative agents of 
sapronoses under stressful environmental conditions. In the current century, sapronoses infections 
attract more and more attention. Under unfavorable habitat conditions, their pathogens use a strategy 
for the formation of resting (stable) states: viable but non-cultured cell forms and the persistence of 
bacteria, which are characterized by reduced metabolism, changes in the morphology and physiology 
of microorganisms, and termination of their replication. With the formation of resistant forms of 
bacteria, the possibility of survival of sapronoses causative agents in the interepidemic period, the 
formation of their antibiotic resistance, which plays an important role in the chronicity of infections, 
is associated. The literature widely discusses the mechanisms and conditions for the formation of 
resistant states of pathogenic bacteria, their pathogenetic significance in infectious pathology, 
whereas the ultrastructural organization and morphological variability of resistant cellular forms, as 
well as their differentiation, causing the heterogeneity of the pathogens population, are not yet well 
covered. The emergence of molecular cell biology methods and the discovery of genetic modules of 
toxin-antitoxin systems revealed a single mechanism for regulating the formation of resistant cellular 
forms of bacteria. This served as the basis for the development of fundamentally new technologies 
for the study of the mechanisms for the conservation of the pathogenic potential of resistant cellular 
forms of pathogens of natural focal sapronosis in interepidemic periods. Based on the analysis of 
current data, as well as their own experience, the authors assess the role of morphofunctional 
changes in resistant cellular forms of bacteria and their significance in the adaptation strategies of 
causative agents of sapronoses (on the example of Yersinia pseudotuberculosis). The study of the 
manifestations of heteromorphism of causative agents of sapronoses forms the paradigm of the need 
to improve methods for detecting resistant forms of these bacteria in human and animal biomaterial 
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in order to diagnose chronic recurrent and persistent infections, create effective strategies for 
monitoring and monitoring the environment. 

Keywords: sapronoses; morphology; ultrastructure and adaptive changes of pathogens; viable, but 
noncultivated (VBNC-forms) cells; persister-cells; L-transformation; Yersinia pseudotuberculosis 
 

1. Introduction 

By the end of the twentieth century, new information was accumulated on the adaptation 
mechanisms of infectious disease pathogens and the strategies for their existence in unfavourable 
environmental conditions. To a large extent, this applies to causative agents of sapronoses that can 
inhabit both in humans and warm-blooded animals, and in environmental objects. 

In accordance with the paradigm of interepidemic existence of causative agents of sapronoses 
infections, two phases of their existence are distinguished: saprophytic and parasitic [1–4]. Despite 
the long period of studying this group of bacteria, more and more information appears on their 
various adaptation strategies that underlying environmental plasticity of these microorganisms. 

At the end of the twentieth century, the stable (‘dormant’) cell forms in non-sporeforming 
pathogens of sapronoses inhabiting in soils and reservoirs, viable but non-cultured cells (VBNC), 
and also bacterial persister cells (from English–‘persister’–stable) in the body of warm-blooded 
animals and people were characterized [5–9]. 

The specific feature of resistant cellular forms of bacteria lies in their low metabolic and replicative 
activity, which complicates their detection by traditional microbiological methods [10–13]. These forms 
are of great importance in the implementation of the biological properties of a large and diverse 
group of causative agents of sapronoses: environmental plasticity, variety of resistance forms to 
external stressors, formation of resistance to antibiotics and other antibacterial agents [1,13–15]. 

In recent years, a surge of scientific interest in resistant forms of pathogens is associated with 
the increasing medical and epidemiological significance of the phenomenon of resistant cellular 
forms and morphological proximity with the already studied and well characterized phenomenon of 
the bacterial L-transformation [16,17]. 

In addition, the development of molecular-cell biology methods and the recent discovery of 
genetic modules of toxin-antitoxin systems (TAS) revealed a single mechanism for regulating the 
formation of resistant cellular forms of bacteria [18–20]. This served as the basis for the development 
of fundamentally new technologies for the study of the mechanisms for the conservation of the 
pathogenic potential of resistant cellular forms in the causative agents of natural focal sapronoses in 
interepidemic periods [15,21–23]. 

The border position of this peculiar and extensive group of bacteria capable of both parasitic 
and saprophytic existence has led to insufficient knowledge of the ways and methods of reserving 
pathogens, as well as the importance of the morphological signs of resistant cellular forms causing 
the heterogeneity of populations [2,24–26]. It is possible that the disclosure of specific 
morphofunctional signs of resistant forms of bacteria will become the missing link in the study of 
general strategies for the survival of pathogens of natural focal sapronoses both in humans and 
animals, and in the external environment. 

The purpose of this report is to analyze the available data and new information on the role of 
morphofunctional changes in resistant cellular forms in bacteria and their significance in the 
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adaptation strategies of causative agents of sapronoses. 

2. Ultrastructural organization of bacteria 

There is no doubt that the ultrastructural organization of pathogens characterizes the 
physiological state of bacterial cells in different habitats. For a long time, ideas about the 
morphology of bacteria were based on data obtained when they were cultivated in a thermostat at a 
temperature of 37 ℃ [27,28], which characterized the state of pathogens only in warm-blooded 
human or animal body. The study of the ultrastructure of sapronoses causative agents (Yersinia 
pseudotuberculosis, Listeria monocytogenes) in various trophic and temperature conditions of 
cultivation [28] allowed us to identify their morphofunctional state not only in the parasitic phase of 
existence, but also in the saprophytic phase—in the environment. The morphological changes of 
bacteria were evaluated during their periodic cultivation and during long-term habitat in the soil.  

2.1. Ultrastructure of sapronoses causative agents in model microecosystems 

As is known, the periodic culture of microorganisms is actually a model close to the natural 
conditions, since in any of its phases the bacteria are in a state of restructuring their metabolism in 
accordance with changing parameters of the habitat [1,29]. In experiments with periodical cultivation 
of bacteria [28], a medium rich in nutrients medium limited in the main bioelements of nutrition 
were used at temperature conditions creating conditions close to a warm-blooded organism or the 
environment. 

Studies in model microecosystems (periodic and soil cultures of Y. pseudotuberculosis and L. 
monocytogenes) provided an idea of the adaptive variability in populations of causative agents of 
saprozoonoses in their characteristic, changing habitat conditions [16,28]. Both under the conditions 
of the parasitic phase of existence (periodic cultivation) and under the conditions of the saprophitic 
phase (soil cultures), the similar morphological changes of adaptive nature were established, namely: 
the formation of cytoplasmic outgrowths (prostakes), the accumulation of reserve substances, 
increased tortuosity and change in cell wall thickness, changes in the ribosomal saturation of the 
cytoplasm and the state of the nucleoid associated with a conformational change in bacterial DNA. 
All these changes are aimed at preserving populations of causative agents of sapronoses in various 
habitats [28].  

2.2. Pathogenic bacteria under stress 

An important stage in the development of ecological and epidemiological trends in 
microbiology has become research relating to the study of bacterial populations under stressful 
environmental conditions, in which bacteria are able to enter a state of rest with a severe decrease in 
their metabolic activity and temporary loss of their ability to reproduce [1,30–32]. It has been 
established that bacteria have original ways to survive during stress [33–35], for example, caused by 
the inevitable depletion of nutrients, as well as the effects of antibiotics. Two different phenotypes 
are described in which cells enter into a non-inherited, reversible, inactive state: viable, but 
non-culturable (VBNC) cells and persistent cells [7,14,15,36]. The Persistent cells (persister-cells) 
were discovered as early as 1942 Hobby et al. [37], who established that 1% of cells in the 
population of Staphylococcus aureus were not killed by high doses of penicillin and were 
characterized by metabolic and replicative dormancy. 
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Forty years later, VBNC cells were first described in Escherichia coli and Vibrio cholerae, 
appearing after a long period (two weeks) in saltwater microcosms, but non-culturable in the 
selective and accepted media in which they are usually capable of growing, but several stimuli such 
as nutrients and temperature shifts, lead to the recultivation of VBNC forms [8,13,38,39]. 

The two resting states of bacteria revealed a lot in common. Both persistеr-cells and VBNC forms 
are associated with chronic infections, both conditions of bacteria are present in biofilms [15,40–42], and 
also form under more than one type of stress, for example, oxidative or acidic [15,43]. The genetic 
basis for both cell types has not been well characterized. The role of toxin-antitoxin systems (TAS) in 
the induction of the VBNC state is described [7,18–20]. It is reported that these systems, which are 
classically involved in the formation of the cell wall, also induce the formation of persistent cells 
during incubation in human serum [7,15,44], which has clinical significance [45]. 

The most important role in the formation of persistent cells is played by guanosine 
tetraphosphate (ppGpp) [39] and the sigma factor of the stationary phase RpoS [9]. RpoS [8,43], the 
OxyR transcriptional regulator that controls genes associated with oxidative stress [15], and TAS 
[7,18–20] are associated with VBNC cells. Consequently, it has been suggested that these two states 
of bacterial survival may be part of a ‘rest continuum’ [7,15,20]. 

The key feature that distinguishes persister-cells from VBNC forms is that they cannot be 
reanimated (recultivated) under normal conditions, while persisters can easily be converted to a 
vegetative state sensitive to antibiotics or other stresses [21]. VBNC forms and persister-cells have 
many similarities, and they can coexist [20,32,38], but the authors have not conducted any studies to 
compare these two stages of resting cells in their physiology and morphology. 

So, now it is proved that bacteria have two resistant phenotypes: VBNC and state of persistence. 
Both resting forms occur without mutation, and both are associated with chronic infections; however, 
a subpopulation of persistent cells is capable of rapid recultivation upon the occurrence of favorable 
growth conditions, while cells that are in a state of VBNC can be in this form for years. 
VBNC-forms were present in experimental samples with isolation of persisters, which again 
confirms the fact that these cellular forms coexist, are induced by the same conditions and are 
regulated by TAS [12]. 

A recent study [28] traced the relationship between these two stress-induced phenotypes of 
bacteria using transmission electron microscopy and fluorescence microscopy with the study of cell 
morphology and quantitative determination of reanimated (surviving) cells. The authors found that 
the viable proportion of VBNC cells formed resulting nutrient depletion is represented by persistent 
cells based on a comparison of their antibiotic tolerance, reanimation rate, morphology, and 
metabolic activity. The rest of the cell fraction VBNC was not viable. The authors concluded that the 
phenotype of a resting cell, known as VBNC, is the same, known as persistent cells. 

As already mentioned, the state of resistance in enteropathogenic bacteria is expressed in the 
temporary loss of the replicative and metabolic activity of microorganisms [12,14,15,20]. 
Phenomenon of resting states in bacterial cells is of great importance in the chronization of the 
infectious process in humans and animals, since it has been established that resistant forms are able 
to reanimate in vivo and restore their virulence [13,31,36]. 

2.3. Dormant forms of bacteria as infectious agents 

Bacteria constantly encounter with the problems of potentially dangerous environmental 
uncertainty and, to avoid such constant instability of their existence, many microorganisms maintain 
subpopulations with the possibility of transition to a temporary state of rest, during which cells show a 
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decrease in growth rates and metabolic activity [33]. When the environment becomes favorable, resting 
cells can be reanimated and subsequently to restore the growth [7,15,21]. The evolutionary role of 
maintaining such heterogeneity of the bacterial population is due to the fact that the emergence of 
different cells phenotypes increases the probability of pathogen survival in an unstable environment [33]. 

It is important to note that the resting state, which allows bacteria to confront environmental 
stress, can also make them tolerant to antibiotics [23,36,44], which emphasizes the clinical 
significance of this physiological state. It has been found that at least 85 species of bacteria enter the 
VBNC state [15]. This condition was alternatively referred to by other authors as conditionally 
viable ecological cells (CVEC) [9], active but non-cultured cells (ABNC) [22] and dormant cells [45]. 
It turned out that these cells are viable due to their intact cell membrane, low-level metabolic activity 
and the continuation of gene expression [31,36]. The state of VBNC is considered an effective 
survival strategy for the bacterium, as it allows cells to withstand unfavourable environmental 
conditions and reanimate the replicative form while improving environmental conditions. 

Thus, bacterial cells in a state of VBNC appear to be the same as persistent cells based on antibiotic 
resistance, morphology, reanimation rate, and metabolic activity. To date, it has been suggested [14] that 
the terms ‘VBNC’ and ‘persisters’ describe the same phenotype for resting (dormant) cells and that the 
term VBNC should be replaced by persistent cells, since VBNC cells are not a separate phenotype. 

Attracts attention that most of the studies on this problem are devoted to the study of the 
detection of non-cultivated forms and the induction of VBNC state in causative agents of bacterial 
infections, while the ultrastructural organization and morphological variability of VBNC and 
persistent cells are still not well covered. 

In Russia, the intensive research on the study of uncultivated forms of causative agents of 
sapronoses was carried out in the N.F. Gamaleia Institute of Epidemiology and Microbiology RAMS 
in the 1980–1990s. Based on the results of the studies, the presence of VBNC forms in Yersinia and 
Listeria was found in experimental animals and soil populations of bacteria [1–3,26]. The authors 
concluded that these forms are important for the reservation and adaptation of pathogens to 
unfavorable environmental conditions. 

When studying the ultrastructure of sapronoses causative agents in various environmental 
conditions [28], attention was paid to the morphology of Y. pseudotuberculosis with long-term 
habitat in the soil and with periodic cultivation in the stationary phase / the die-off phase, when 
bacteria can become non-cultivated. 

It should be noted that during periodic cultivation of Y. pseudotuberculosis, the number of bacterial 
populations and the period of onset of the die-off phase depended on trophic and temperature factors. So, 
according to Somova et al. [28]. The largest population of Yersinia in the stationary phase was observed 
when cultivated at a temperature of 18–20 ℃, the death of bacteria began after 3 days. When the 
cultivation temperature was 37 ℃, the death of the bacteria began after 15 days. Since Y. 
pseudotuberculosis has psychrophilic properties, the cultivation temperature of 6–8 ℃ is most favorable 
for them, during which the active proliferation of bacteria (exponential phase) lasted up to 5 days, and the 
death phase of bacteria was not observed during the entire observation period (40 days) [28]. 

Taking into account the dynamics of reproduction of Y. pseudotuberculosis in different nutrient 
conditions, attention was paid to the appearance of dormant bacterial forms grown at different 
temperatures (37, 18–20 and 6–8 ℃) in the dying off phase. Changes in the spheroplastic type were 
revealed in these cell forms: signs of partial lysis with dark areas of the cytosol, but the cell wall and 
the main ultrastructural intracellular elements remained. The nucleoid in such cells had the 
appearance of coarse chromatin fibrils and agglomerates, while in the nucleoid zone, bacterial cells 
with electron-dense chromatin fibrils remained.  
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Thus, during the periodic cultivation of Y. pseudotuberculosis in the die-off phase, in a bacterial 
population cells were identified that resembled non-cultuvated forms, similarly to that described by 
Kim et al. [14]. An empty cytosol in part of the cells is regarded as a sign of their death [14,30]; 
therefore, we can assume that the population of Y. pseudotuberculosis in the die-off phase contains 
VBNC cells, some of which were not viable (Figures 1 and 2). 

 

Figure 1. The Y. pseudotuberculosis periodic culture in the stationary phase/the die-off 
phase [28]. Designations: LB: lysed bacterium; BADC: bacteria with areas of dense 
cytosol; ChF: chromatin fibrils in the nucleoid zone. 
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Figure 2. The Y. pseudotuberculosis periodic culture in the stationary phase/the die-off 
phase [28]. Designations: CW: cell wall; LBEC: lysed bacterium with empty cytosol; 
BDC: bacteria with dense cytosol and cell wall detachment. 

2.4. Heteromorphism of Yersinia pseudotuberculosis in soil habitat 

The study of the morphofunctional state of Y. pseudotuberculosis when habituating in soil at 
different temperatures was carried out in long-term experiments on model microecosystems—a soil 
reservoir and flow-through soil columns [28].  

Three months later, the soil population of Y. pseudotuberculosis consisted mainly of 
ovoid-shaped bacteria, but occasionally isolated giant cells were divided into several irregular 
segments. A rarefied nucleoid zone was detected in bacterial cells. Some of these bacteria were in a 
state of binary division. A fine granular component remained on the outer membrane of the cell wall. 

Bacterial cells of a 7-month soil culture were distinguished by significant heteromorphism. A 
large number of deformed bacteria attracted attention; however, they, as a rule, did not have changes 
in the spheroplastic type, retaining the main ultrastructures. Thinning of the cell wall was observed in 
such cells, in some of them the nucleoid was not detected. The surface of bacterial cells often had a 
scalloped appearance due to the formation of prostakes, which increase the surface of the cell wall 
and, accordingly, the consumption of nutrients. The appearance of fibrillar electron-dense chromatin 
structures, having a curl shapes and parallel to each other, attracted the attention. Some bacterial cells 
had up to 2–3 such structures, reflecting the conformational changes in DNA [14,27,28]. Similar 
chromatin condensation zones were also found in dividing bacteria in the region of the formation of 
transverse waist. Heteromorphism of cells in the cytosol ribosomal saturation was also observed, 
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which indicated differences in metabolic activity in cells of the bacterial population. The ribosomes 
and polyribosomes were practically not detected; to a greater or lesser extent the cell was filled with 
ribonucleoprotein agglomerates [28].  

In samples of a 9-month soil culture of Y. pseudotuberculosis, the bacterial cells had a 
significant rarefaction and defects in the nucleoid zone. The colonization of cells was observed by 
means of an intercellular amorphous matrix tightly connecting them with each other. Intercellular 
bridges could be seen between the bacteria. Bacteria-revertants of this culture were similar in size 
and ultrastructure to bacteria of a one-month soil culture, but in the area of the nucleoid they retained 
coarse chromatin fibrils. 

Thus, when habitating under the conditions of a soil reservoir, exposed to weather conditions, 
the Y. pseudotuberculosis bacteria underwent changes in the morphofunctional state. Apparently, 
these changes were adaptive in nature and indicated a high ability to adapt the causative agent of Y. 
pseudotuberculosis infection to unfavorable environmental conditions. 

When habitating in soil, a common feature for Y. pseudotuberculosis strains was a 
temperature-independent increase in the number of bacteria with a thickened cell wall, with an 
increase in the observation period. The cell wall thickness in the two studied bacterial strains 
increased on average to 830 Å compared to the control (75 Å). By the two years of observation, this 
feature was characteristic of all bacteria of the studied soil variants of Y. pseudotuberculosis. The 
bacteria of the Y. pseudotuberculosis culture (strain H-2781), which had been in soil columns for 
three months at a temperature of 6–8 ℃, were represented mainly by rounded (coccoid) and, in a 
smaller amount, ovoid forms. At all periods of observation, the presence of coarse fibrils and 
chromatin agglomerates was characteristic of bacteria of ‘cold’ cultures. As noted above, the 
chromatin condensation in a bacterial cell indicates that DNA is in the composition of the 
nucleoprotein and is best protected from external influences [1,2]. Therefore, it can be assumed that 
the electron-dense structures of nucleoproteins are the morphological sign of causative agents of 
sapronoses in the saprophytic phase of existence. 

Based on the above, it can be concluded that, when habitating in open-type soil ecosystems, 
ultrastructural changes occur in the studied bacteria (capsule and microcapsule formation, total cover, 
mucus, intercellular contacts, prostakes, reserve substances, increased tortuosity and change in cell wall 
thickness, changes in cell size , ribosomal saturation of the cytoplasm and the state of DNA), contributing 
to the survival of bacterial cells under constant exposure to biotic and abiotic factors of the environment. 
Such changes are characteristic of R-and transitional forms of bacteria [11,14,20,26, 28]. 

Thus, it can be assumed that the appearance of a changes complex in the ultrastructure of Y. 
pseudotuberculosis bacteria should be regarded as a natural adaptive response to changing habitat 
conditions in the corresponding ecological niche. The appearance in periodic and soil cultures of 
bacteria the similar changes in ultrastructures that perform the same function in the bacteria indicates 
the universality of adaptation mechanisms. 

2.5. L-transformation as a form of bacteria persistence 

L-transformation of bacteria is considered as one of the important factors creating the 
possibility of pathogens persistence and recurrence of infectious diseases [1,2,16,17]. In these studies, 
the L-transformation of bacteria was characterized as a regular peculiar form of their adaptation to 
the changed conditions of the habitat. At the moment, the unambiguity of this phenomenon and other 
manifestations of the bacteria heteromorphism is not determined. It is known that L-transformation is 
characteristic of many bacteria and in vivo can occur under the influence of various endogenous 
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factors, primarily lysozyme, lysosomal enzymes and amino acids. Bacterial enzymes of phagocytes 
that affect the phospholipids and peptidoglycans of bacterial walls have a damaging effect on 
bacteria [17]. 

In 7–14 days after infection in animals, infected with virulent Y. pseudotuberculosis strains, in 
the organs, along with typical and destructively altered bacterial cells, forms of protoplastic and 
spheroplastic types were detected [16] with the presence of myelin-like structures around bacteria, 
similar to those in cell culture, infected with Y. pseudotuberculosis [27]. The formation of such 
structures is most often associated with lipid peroxidation of cell membranes under the influence of 
various damaging factors. Similar changes in the ultrastructure of Y. pseudotuberculosis were also 
noted when its interacting with infusoria [26], and it was suggested that bacteria surrounded by 
myelin-like membranes may remain viable for a long time. In our opinion, the formation of 
myelin-like structures characterizes the picture of incomplete phagocytosis peculiar to Y. 
pseudotuberculosis infection and some other infections caused by facultative intracellular bacteria, 
which also agrees with the data of Pushkareva et al. [26] in regard to bacteria of the Yersinia genus. It 
is possible that the identified in experimental studies the ultrastructural changes in Y. 
pseudotuberculosis are in close connection with changes in the virulence of bacteria during infection. 

Further studies of the morphofunctional variability of pathogenic bacteria will help to come 
closer to solving the sacramental issue of academician Somov: where, how and when the virulence of 
causative agents of sapronoses recovery occurs in the environment, initiating the emergence of the 
epidemic (epizootic) and infectious processes [4]. 

The uncovering new mechanisms for the induction of an non-cultured state in causative agents 
of sapronoses in the parasitic and saprophytic phases of their existence, as well as identifying 
previously unknown conditions for the reversal of non-cultivated forms into vegetative forms 
determining the development of the infectious process, has the fundamental and applied importance. 
An indepth study of the heteromorphism manifestations of bacteria under stressful conditions should 
be aimed at improving the methods for detecting non-cultivated forms of the causative agents of 
sapronoses in biomaterial from humans and animals in order to diagnose chronic-recurrent and 
persistent infections. 
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