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ABSTRACT

The lack of a consensus bacterial species concept
greatly hampers our ability to understand and
organize bacterial diversity. Operational taxonomic
units (OTUs), which are clustered on the basis of
DNA sequence identity alone, are the most
commonly used microbial diversity unit. Although
it is understood that OTUs can be phylogenetically
incoherent, the degree and the extent of the phylo-
genetic inconsistency have not been explicitly
studied. Here, we tested the phylogenetic signal of
OTUs in a broad range of bacterial genera from
various phyla. Strikingly, we found that very few
OTUs were monophyletic, and many showed
evidence of multiple independent origins. Using pre-
viously established bacterial habitats as bench-
marks, we showed that OTUs frequently spanned
multiple ecological habitats. We demonstrated that
ecological heterogeneity within OTUs is caused by
their phylogenetic inconsistency, and not merely
due to ‘lumping’ of taxa resulting from using
relaxed identity cut-offs. We argue that ecotypes,
as described by the Stable Ecotype Model, are
phylogenetically and ecologically more consistent
than OTUs and therefore could serve as an alterna-
tive unit for bacterial diversity studies. In addition,
we introduce QuickES, a new wrapper program for
the Ecotype Simulation algorithm, which is capable
of demarcating ecotypes in data sets with tens of
thousands of sequences.

INTRODUCTION

The question of how and whether life organizes itself into
discrete species units is key to our understanding of how
diversity originates and is maintained. This question is a
particularly challenging one for microbiologists because
unlike plant and animal biologists, we can seldom

directly observe phenotypic traits that may predict a
microorganism’s ecological niche. Indeed, of the many
millions of estimated bacterial taxa, the vast majority is
uncultivable and is known only by DNA sequences (1–4).
This greatly hampers our ability to meaningfully classify
microbes based on their phenotypes. A key step in
overcoming this challenge is developing methods to
organize bacterial DNA sequences into biologically and
ecologically meaningful taxonomic units. Even whether
bacterial species exist at all is still a matter of some
debate among microbiologists (5–8). In the absence of a
consensus species concept, the most frequently used
practice for organizing fine scale bacterial diversity is to
cluster sequences solely on the basis of DNA sequence
similarity at a conserved locus. Sequence clusters
delineated in this manner are termed operational taxo-
nomic units (OTUs).
OTUs, clustered based on the 16S rRNA gene, have

been widely used to approximate bacterial species.
Although OTUs are expedient for quickly clustering
large numbers of bacterial sequences, they have several
significant limitations as a unit of diversity. First, the simi-
larity cut-off used to define OTUs is arbitrary. Defining
species by 97% 16S identity is a commonly used rule of
thumb (9,10), but species so defined are known to encom-
pass large diversity in genome content, physiology and
ecology (4,11,12) and are expected to underestimate the
total diversity present when compared with the accepted
70% DNA–DNA hybridization threshold (13). Tighter
thresholds such as 99 or 100% identity have been
proposed (14) to address this issue, but this only serves
to highlight the fundamental problem inherent in selecting
a universal cut-off. It has been shown that regardless of
the cut-off used, OTUs will not correspond directly to
existing taxonomic units (15). This is because different
lineages evolve at different rates; therefore, no universal
cut-off will capture equivalent units of diversity across all
bacterial lineages.
Another problem with OTUs based strictly on iden-

tity is that they do not take phylogenetic informa-
tion into account, as pointed out previously (16–21).
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Because different lineages evolve at different rates,
sequence similarity alone is inadequate to infer evolution-
ary relationships. This problem has been well illustrated in
the context of gene function prediction based solely on
sequence similarity (22,23). It is therefore expected that
similarity-based OTUs will contain sequences with mixed
phylogenetic signal such that an OTU is not guaranteed to
be monophyletic. However, the extent and degree to which
this phylogenetic inconsistency exists among OTUs
remains largely unknown and has not been explicitly
investigated. Recent studies indicate that bacterial ecolo-
gical traits in general are phylogenetically conserved
(17,18,24–31). Assuming phylogenetic niche conservatism,
we hypothesize that the lack of phylogenetic consistency
among OTUs will be associated with ecological heterogen-
eity within OTUs.
These problems with OTUs have led to the development

of several alternative methods for species demarcation, all
incorporating phylogeny and having a common ground
on evolutionary theory. For example, the general mixed
Yule-coalescent (GMYC) model delineates the species
boundary by identifying the transition point from speci-
ation to coalescent events using a likelihood framework
(19–21,32). Ecotype Simulation (ES) (33) and AdaptML
(34) aim to demarcate DNA sequences into ecologically
cohesive clades (or ecotypes). ES identifies ecotypes by
comparing the observed pattern of sequence diversity in
a bacterial community to those of simulated communities
‘evolved’ based on the Stable Ecotype Model (8,35).
AdaptML, by contrast, demarcates ecotypes by inferring
the evolutionary history of habitat transitions. It identifies
an ecotype as the largest clade whose members share an
inferred habitat.
AdaptML and ES have both been successful in the past

at predicting bacterial ecotypes from environmental DNA
sequences. Ecotypes predicted by ES have been confirmed
as ecologically distinct in isolates from natural
communities of Bacillus sampled from desert canyons in
Israel (33) and Death Valley (7), communities of
Synechococcus from hot springs in Yellowstone
(11,36,37) and in clinical and environmental isolates of
Legionella pneumophila (38). AdaptML meanwhile has
been used to demarcate ecologically distinct clusters in
marine communities of Vibrio (34) and Desulfobulbus
(39), as well as desert soil Bacillus (7).
By incorporating evolutionary models, GMYC, ES and

AdaptML carry at least two advantages over OTU clus-
tering. First, they do not require the selection of an arbi-
trary sequence identity cut-off. Second, these methods will
always demarcate species as clades with a single evolution-
ary origin.
ES carries the additional advantage of generating pre-

dictions about the rates of ecotype formation and periodic
selection within a clade. Periodic selection occurs when an
individual within an ecotype gains a selective advantage
within its ecological niche and carries all or nearly all of its
genotype to fixation within that ecotype (selective sweeps)
(40,41). This process results in genetic cohesion within
ecotypes, analogous to the cohesion provided by inter-
breeding among members of an animal or plant species.
Ecotype formation occurs when an individual changes its

ecological niche, thereby releasing itself from the cohesive
force of periodic selection within its parental ecotype.
Ecotype formation is therefore analogous to sexual isola-
tion and speciation among macroorganisms (8,42).
Estimating the rates of periodic selection and ecotype for-
mation therefore can shine light on the evolutionary and
ecological processes that drive microbial diversity.

Our primary aim for this study was to investigate the
degree and extent to which OTUs are phylogenetically and
ecologically inconsistent. We compared and contrasted
OTUs with ecotypes using both 16S rRNA and protein-
coding genes. We found surprisingly extensive phylogen-
etic inconsistency among OTUs, to the extent that only a
small minority of the OTUs comprised monophyletic
clades. We also found a large amount of ecological incon-
sistency among OTUs. Specifically, when tested against
habitats defined by their ecological parameters, OTUs
were much more likely to span multiple habitats and less
efficient in explaining the ecological variation than were
ecotypes.

In addition, we introduce QuickES, a modified version
of ES that runs much faster than the original version.
Although an approximation of the complete algorithm,
this version is capable of generating rough ecotype esti-
mates for many thousands of sequences, making ecotypes
a practical alternative unit for microbial diversity studies
involving large sequence datasets.

MATERIALS AND METHODS

Data set, sequence alignment and classification

The 16S rRNA data set consisted of 116 391 near full-
length Sanger-sequenced bacterial 16S rRNA sequences
sampled from 21 different skin sites of 10 human
subjects (43). The 16S rRNA sequences were aligned
using the PyNAST algorithm in QIIME (44) and classified
to the genus level using RDP Classifier, version 2 (45) at
the default settings. We focused on the 10 most abundant
genera within the skin data set for subsequent
analyses. These genera made up �85% of the
data set and spanned a broad taxonomic range, including
the phyla Actinobacteria (Propionibacterium and
Corynebacterium), Firmicutes (Staphylococcus,
Streptococcus and Anaerococcus), Bacteroidetes
(Cloacibacterium) and Proteobacteria (Diaphorobacter,
Aquabacterium, Acidovorax and Acinetobacter).

In addition to the 16S rRNA gene, we also analysed
protein-coding genes including 1025 hsp60 Sanger se-
quences of the genus Vibrio sampled from a coastal
marine environment (34) and 132 psaA Sanger sequences
of the genus Synechococcus sampled from the effluent
channel of Mushroom Spring in Yellowstone National
Park (36). The hsp60 encodes a heat shock protein,
whereas psaA encodes a photosynthetic reaction centre
protein. Protein-coding sequences were aligned by their
amino acid sequences using MUSCLE (46) and then con-
verted back to a DNA alignment using in-house scripts.
All sequences were retrieved from Genbank, along with
the sampling data for each sequence.
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Phylogenetic analysis

Maximum-likelihood (ML) trees used as input for the ES
and AdaptML analyses were generated using FastTree
(47), with the gtr and gamma model engaged. The gtr
and gamma model was chosen as the best model by
JModelTest (48). For the assessment of OTU monophyly,
we generated additional maximum likelihood trees and
maximum-parsimony trees using RAxML (49), and
neighbour-joining trees using QuickTree (50). To control
for uncertainty in the tree topology, we only considered
clades with >80% bootstrap support in our monophyly
tests. An OTU was classified as monophyletic if all its
members shared a single common ancestor to the
exclusion of other OTUs. Otherwise, it was classified as
paraphyletic, so long as the last common ancestor of all
sequences of the OTU had at least 80% bootstrap
support, and not all the descendants of that ancestral
node were from the same OTU. We noted, however,
that paraphyly, so defined, encompassed a broad array
of phylogenetic patterns. These patterns ranged from
OTUs that were very close to being monophyletic,
(i.e. classed as paraphyletic due only to one or two diver-
gent sequences within an otherwise monophyletic clade),
to OTUs that were spread across the entire phylogeny. To
distinguish between these extremes, we computed a
‘Paraphyly Index’ (PI) (Supplementary Figure S1) for
each OTU defined by the formula:

PIOTU ¼ 1� NOTU=Ncladeð Þ

Where NOTU is the number of sequences belonging to
the OTU, and Nclade is the total number of sequences that
are descendants of the last common ancestor of the OTU.
A PI of zero indicates a monophyletic group, whereas a
PI >0 indicates some degree of paraphyly.

Although we did not specifically classify any
OTUs as polyphyletic based on these criteria, we were
able to determine based on direct observation of
phylogenies that many OTUs were in fact polyphyletic.
That is, they were not explainable by a single evolutionary
origin.

OTUs

Unless otherwise specified, OTUs were generated with the
Uclust de novo clustering algorithm using QIIME (44).
For the skin 16S rRNA data set, OTUs were generated
using identity cut-offs of 99.5, 99 and 97%. For the
protein-coding Vibrio hsp60 and Synechococcus psaA
data sets, OTUs were generated using cut-offs of 100,
99, 97, 95, 90 and 85%. It has been shown that different
OTU clustering algorithms can return very different
outputs (51). Therefore, to ensure the robustness of our
analysis of OTU monophyly, additional software
[MOTHUR (52) and Clusterer (53)] and additional clus-
tering algorithms (nearest neighbour and average
neighbour clustering) were also used to cluster the
sequences. In each case, the default clustering parameters
were used for all analyses, except to modify the cut-off
value, or the clustering algorithm as indicated.

Demarcation of ecotypes using ES

We used ES (33) version 0.6 to demarcate ecotypes on two
abundant genera within the human skin data
(Aquabacterium and Diaphorobacter), as well as on the
Vibrio hsp60 and Synechococcus psaA sequences data.
ES is an algorithm for predicting ecologically homoge-
neous populations (ecotypes) from sequence data alone,
without the need for inputting any ecological data, or for
selecting any similarity cut-off value [see Koeppel et al.
(33) for a full description of the ES algorithm]. Briefly,
ES operates by simulating the evolution of a set of
sequences based on parameterized values for the number
of ecotypes, as well as the rates of ecotype formation,
periodic selection and genetic drift. It uses a maximal like-
lihood framework to estimate values for each of these four
parameters by fitting the simulated sequences to the
observed diversity curve (see Supplementary Figure S2
for examples). Using the best parameter solutions, ES
then demarcates ecotypes onto a phylogeny generated
from the same set of sequences, by selecting the most in-
clusive clades consistent with being a single ecotype.
The full version of ES is only capable of analysing �200

sequences at once within a reasonable time frame. As all of
these genera contained many more sequences, we used a
divide-and-conquer approach. Using a guiding tree, we
subdivided the sequences into clades containing fewer
than 200 sequences and ran ES separately on each clade.
We then demarcated ecotypes on the entire tree by finding
the most inclusive clades consistent with being a single
ecotype (33).

QuickES

To speed up the ES and make it practical to analyse thou-
sands of sequences, we modified the original ES algorithm
and created a version called QuickES. QuickES approxi-
mates the ecotype estimation process but still carries the
key advantages of the standard ES ecotypes over OTUs, in
that its ecotypes are always monophyletic, and there is no
need to select an identity cut-off. The improved speed was
achieved in two primary ways.
First, we used a divide-and-conquer approach similar to

the one described earlier in the text. In this case, we
subdivided the sequences into clades such that each
clade was the most inclusive possible clade in which at
least 90% of the descendants belonged to the same OTU
(99% cut-off). Subdividing the data set into clades dra-
matically improved the speed of analysis because ES scales
poorly as more sequences are added.
The second improvement in computation speed came

from using a rougher estimate of the periodic selection
and ecotype formation rate parameters. From the set of
clades obtained in the divide-and-conquer step, we
selected those clades that contained between 25 and 200
sequences. Each of these moderately sized clades was then
analysed using a truncated version of the brute force
search algorithm from the original ES, to glean a rough
estimate of the parameter values necessary for ecotype
demarcation. The very time consuming hill-climbing algo-
rithm that ES uses to refine the estimates further was
eliminated. Eliminating this step markedly increases the
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speed but decreases the reliability of the rate estimates;
therefore, QuickES should not be used for the final rate
estimation but only for ecotype demarcations when data
sets are too large to analyse with the full ES algorithm.
Having obtained rough estimates of the rate parameters
for several clades, we then generated global rate estimates
by computing the mean of the rates from the clades
analysed. Then, following the basic demarcation
protocol from the original ES (33), we demarcated
ecotypes for every clade, by finding the most inclusive
subclades consistent with being a single ecotype, given
the global rate estimates. QuickES is freely available
software and can be downloaded from http://
wolbachia.biology.virginia.edu/WuLab/Software.html.
Detailed instructions of running QuickES are described in
the Supplementary Methods.

Demarcation of ecotypes using AdaptML

We used AdaptML (34) to demarcate ecotypes for the
marine Vibrio hsp60 data set. Our AdaptML analysis of
Vibrio returned habitats virtually identical to those of
Hunt et al. (34), with the exception that we had seven
habitats instead of six. This is likely due to slight vari-
ations in tree topology resulting from using different
tree-building algorithms. We refer to the seventh habitat
as HG (Hunt et al. habitats are HA- HF). The habitat-
learning and clustering steps of AdaptML were performed
using the default settings.

Benchmarking the performance of OTUs and ecotypes in
explaining the ecological variance in the vibrio data set

We used the methods described in (19) to compare OTUs
and ecotypes in their ability to account for the ecological
variation in the Vibrio data set. Vibrio sequences were
associated with two ecological measurements: the size of
the particle from which the Vibrio sequences were isolated
(<1 mm, 1–5mm, 5–63 mm, >63 mm) and the season when
the samples were collected (spring and fall) (34). We first
transformed the particle size and season categories into
quantitative variables using multiple correspondence
analysis implemented in the ‘ade4’ package (54). Then
we carried out redundancy analysis implemented in the
‘vegan’ package in R to estimate the amount of variation
in the ecological parameters that could be explained when
sequences were grouped by either OTUs or ecotypes.
Statistical significance was assessed using permutation
tests. Akaike information criterion was used to evaluate
the performance of the different species delineation
models.

Estimation of periodic selection and ecotype
formation rates

The complete ES algorithm generates estimates of the
rates of periodic selection and ecotype formation. We per-
formed ES analyses individually on all major subclades of
the genera Aquabacterium, Diaphorobacter and Vibrio and
tested whether the mean rates of ecotype formation and
periodic selection were different between genera using
Student’s t-tests. Rates within the same genus were
grouped into high, medium and low categories using the

Tukey–Kramer test as described in Supplementary
Methods. ES estimated rates in units of events per nucleo-
tide substitution. Rates were log-transformed before stat-
istical analysis so as to more closely approximate a normal
distribution.

RESULTS

Extensive microdiversity within clades

Consistent with our expectations, and with findings
observed in other microbial habitats, we observed exten-
sive microdiversity in the data sets we analysed
(Supplementary Figure S2). The number of 16S rRNA
OTUs in each genus showed a dramatic flare-up between
the 98 and 99% cut-off levels (Supplementary Figure
S2A–E). The presence of such a ‘hockey-stick’ pattern
has previously been observed in natural bacterial popula-
tions (55,56) and is considered typical of human
associated microbial populations (57,58). This pattern is
consistent with the Stable Ecotype Model (8,33), which
predicts that ephemeral microdiversity should be present
within bacterial communities, as bacteria undergo neutral
divergence between periodic selective sweeps.

The protein-coding sequences of the Vibrio and
Synechococcus data sets displayed similar flare-ups,
though at slightly lower sequence identity thresholds
(�97% in both cases) (Supplementary Figure S2 Fand
G). This reflects the more rapid evolution of the protein-
coding hsp60 and psaA genes compared with the
16S rRNA gene.

Extensive and pronounced paraphyly and polyphyly
among OTUs

To deal with the potential uncertainty in the tree topology,
we only considered clades that were well supported (boot-
strap values �80) in our monophyly analyses. Our analysis
of the predominant skin bacterial genera revealed that
strikingly few OTUs are monophyletic (Table 1). At the
97% identity level, no >75% of the OTUs were monophy-
letic groups in any of the genera analysed. At the 99%
identity level, fewer than 60% of OTUs in each genus were
monophyletic. The percentages were far smaller in most
genera. The results were even more remarkable among
larger OTUs (those containing at least 50 sequences):
<67% of the large OTUs in each genus were
monophyletic at the 97% cut-off. At the 99% cut-off,
fewer than 25% of the large OTUs in each genus were
monophyletic groups. In fact, in five of the 10 genera
analysed (Acidovorax, Acinetobacter, Aquabacterium,
Cloacibacterium and Diaphorobacter), none of the large
99% OTUs were monophyletic.

To measure the degree of paraphyly among these
OTUs, we computed the PI (see ‘Materials and
Methods’ section for details) for all of the 99% OTUs in
each genus. A PI of 0 indicates a monophyletic group,
whereas a PI close to 1 indicates substantial paraphyly.
Surprisingly, large numbers of OTUs of all sizes across
all genera had mixed phylogenetic signal, some extensively
(i.e. their PI was close to 1.0, Figure 1). We observed
similar patterns among OTUs clustered at 97 and 99.5%
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thresholds (Supplementary Figure S3). This result suggests
that phylogenetic incoherence among OTUs is far more
pronounced and pervasive than is generally recognized.

Given the extreme deviation from monophyly that we
observed with the PI scores, we mapped several OTUs
onto phylogenies to observe their phylogenetic patterns
directly. We observed that many of the OTUs appear to
be polyphyletic because they required multiple independ-
ent evolutionary origins to explain their distribution
across the phylogeny (Figure 2). Extensive paraphyly
was observed, regardless of the phylogenetic or OTU clus-
tering methods used (Table 2). Putative ecotypes, by
contrast, always mapped to monophyletic clades
(Figure 2) because phylogenetic information was taken
into account during the demarcation process.

We next checked whether the phylogenetic heterogen-
eity we had observed among OTUs based on 16S rRNA
also existed in OTUs of protein-coding genes. OTUs in the
marine Vibrio data set, clustered based on similarity at the
hsp60 locus, showed a similar, if less extreme phylogenetic
pattern. There was considerably more monophyly among
OTUs in this data set than in the skin data set. Over 80%
of the OTUs at all cut-offs except 99% were monophyletic
(Supplementary Table S1). At the 99% cut-off, however,
only 74.56% of the OTUs were monophyletic groups.

Although the majority of the non-monophyletic OTUs
were paraphyletic (i.e. explainable by a single evolutionary
origin), several OTUs did appear to be polyphyletic
(Figure 3A) (see 97% OTU-6 and OTU-7). The
Yellowstone Synechococcus psaA sequences clustered
into only three OTUs (97% cut-off). Two of the three
were monophyletic, but the third and largest was paraphy-
letic (Figure 3B).

Extensive ecological heterogeneity among OTUs

It has been established that OTUs contain a great deal of
ecological diversity (11). However, this is usually assumed
to be a result of defining OTUs too broadly. Under this
line of reasoning, it might be assumed that simply narrow-
ing the breadth of OTUs, either by using a more stringent
identity cut-off or by using a marker less conserved
than 16S rRNA, can address this problem in microbial
ecology studies. We have undercut this reasoning by
demonstrating that OTUs are phylogenetically inconsist-
ent. Our results suggest that the problem runs deeper than
simply using a cut-off that is too relaxed. We hypothesized
that the lack of phylogenetic consistency among OTUs
will be associated with ecological heterogeneity within
OTUs, even when a more rapidly evolving protein-
coding gene was used to cluster them.

Table 1. Phylogenetic heterogeneity among 16S rRNA OTUs of skin data set

Genus OTU identity
threshold

OTUs >1 Sequence OTUs >50 Sequences

Number
of OTUs

% Monophyletic Number
of OTUs

% Monophyletic

Acidovorax 97% 2 0.00% 1 0.00%
99% 3 0.00% 1 0.00%
99.5% 4 0.00% 2 0.00%

Acinetobacter 97% 8 12.50% 3 0.00%
99% 31 25.81% 8 0.00%
99.5% 45 31.11% 1 0.00%

Anaerococcus 97% 31 51.61% 4 0.00%
99% 64 37.50% 4 25.00%
99.5% 71 11.27% 3 0.00%

Aquabacterium 97% 5 60.00% 1 0.00%
99% 5 60.00% 1 0.00%
99.5% 12 41.67% 1 0.00%

Cloacibacterium 97% 2 50.00% 1 0.00%
99% 7 57.14% 2 0.00%
99.5% 44 11.36% 3 0.00%

Corynebacterium 97% 53 33.96% 22 13.64%
99% 160 25.00% 44 2.27%
99.5% 323 18.89% 45 0.00%

Diaphorobacter 97% 1 0.00% 1 0.00%
99% 1 0.00% 1 0.00%
99.5% 11 18.18% 1 0.00%

Propionibacterium 97% 3 66.67% 3 66.67%
99% 7 42.86% 4 25.00%
99.5% 88 23.86% 3 0.00%

Staphylococcus 97% 6 16.67% 3 0.00%
99% 59 18.64% 16 12.50%
99.5% 230 24.78% 12 0.00%

Streptococcus 97% 12 75.00% 5 60.00%
99% 50 22.00% 7 14.29%
99.5% 127 14.96% 4 0.00%

This table displays the number of monophyletic OTUs in each genus at three different identity thresholds (97, 99 and 99.5%). Only
OTUs containing at least two sequences and meeting the support criteria were considered, as a single sequence is monophyletic by
definition. The effect was more pronounced among larger OTUs (OTUs containing at least 50 sequences, right-hand columns).
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We used the previously established marine Vibrio (34)
and hot spring Synechococcus (36) AdaptML habitat types
as benchmarks for determining ecological homogeneity.
We reasoned that populations belonging to a single
habitat could be considered more ecologically homoge-
neous than populations spanning multiple habitats. We
observed that in the Vibrio data, OTUs (97% identity
cut-off at the hsp60 locus) frequently spanned several of
the habitats predicted by AdaptML (Figure 3A).
For the entire Vibrio data set, we found that only 55.1%

of the OTUs belonged to just one AdaptML habitat. In
comparison, 77.2% of ecotypes generated by ES were
either identical to or nested within the AdaptML
ecotypes, as expected (35) (and see ‘Discussion’ section).
A Student’s t-test confirmed that the mean number of
habitats spanned by Vibrio OTUs was significantly
greater than the mean number spanned by Vibrio ES
ecotypes (P< 0.0002). This indicated that ES ecotypes
showed greater ecological homogeneity than the 97%
OTUs in the Vibrio data set.
The Synechococcus analysis showed a similar pattern.

Our ES analysis predicted 12 non-singleton ES ecotypes
in the Synechococcus data set (Figure 3B), which appear to
be ecologically distinct based on the temperature of the
sample site (36). Representatives of several ecotypes were
also found to be predominant at different depths of the
microbial mat, suggesting potential ecological distinctness
based on light and O2 concentrations (36). Each of the ES
ecotypes corresponded to a single AdaptML habitat,
though, as expected, some AdaptML ecotypes contained
multiple ES ecotypes (Figure 3B). In comparison, the
largest OTU spanned all three AdaptML habitats.
The size of an OTU is expected to have a large impact

on its level of ecologically heterogeneity. For example, for

the same data set, 97% OTUs will be larger than 99%
OTUs (i.e. containing more sequences) and thus ecologic-
ally will be more heterogeneous. To control for the poten-
tial size difference between OTUs and ecotypes, we
followed the approach of Powell et al. (19) and bench-
marked the performance of OTUs of different cut-offs
and ecotypes in explaining the ecological variance in the
Vibrio data set. Our results show that ecotypes (ES or
AdaptML) significantly outperformed OTUs in account-
ing for variation in the ecological parameters (sampling
particle size and season) (Table 3). This was the case, re-
gardless of the size of the OTUs (at 97, 99 or 100%
identity cut-offs). Although 100% OTUs explained the
most variance, as expected, it came with a high cost
associated with the large number of classes. Ecotypes
most efficiently explained the variance according to the
Akaike information criterion (dAIC=181 for AdaptML
and dAIC=49 for ES against 100% OTUs, respectively).
It is not surprising that AdaptML performed better than
ES in this test because AdaptML uses both the sequences
and the ecological information to demarcate ecotypes,
whereas ES only uses sequences. Our results are in
agreement with the Powell et al. study (19) showing that
evolutionary theory-based approaches outperform oper-
ational approaches in producing ecologically meaningful
diversity units.

Universal identity cut-offs fail to capture all
putative ecotypes

Having shown that 97% cut-off OTUs were ecologically
heterogeneous, we next sought to determine whether any
single identity cut-off could have generated OTUs similar
to the putative ecotypes designated by the ES algorithm.
We binned the ecotypes by their minimum pairwise

Figure 1. OTU paraphyly is pervasive and pronounced. This graph plots OTU size against PI for all 99% 16S rRNA OTUs among 10 genera. PI
values of 0.0 indicate monophyletic groups, whereas a PI close to 1 indicates substantial paraphyly. Genus classifications of OTUs are colour coded
as indicated in the key.
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Figure 2. Extensive paraphyly and polyphyly among OTUs. Maximum likelihood trees of representative subclades of the genera (A) Aquabacterium
and (B) Diaphorobacter. OTU generated using the 99% identity cut-off are shown with the putative ecotypes (PE) demarcated by ES. Internal nodes
with >80% bootstrap support are highlighted with red circles.
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sequence identity and plotted the number of ecotypes in
each sequence identity bin for the Aquabacterium and
Vibrio genera (Figure 4). Figure 4 shows that ecotypes
display a wide range of sequence identities, and no
universal OTU cut-off can be applied to capture all
these ecotypes. This held true, regardless of whether the
complete ES method or QuickES was used. For example,
in the Aquabacterium genus, a large majority (94.2%) of
the ecotypes had a minimum pairwise sequence identity
�99% (Figure 4A left panel). This means that if these
sequences were clustered into OTUs using a 99%
identity cut-off, many of those OTUs might contain
sequences from multiple ecotypes. At the other end of
the spectrum are the 14 ecotypes (5.8%) whose
minimum sequence identity is <99%. A 99% identity
OTU cut-off would subdivide these ecotypes into
multiple OTUs.

Rates of periodic selection vary within and between genera

One advantage of ES over other methods is that it can be
used to gain insight on the processes of microbial
diversification. We used the complete ES to compare the
rates of periodic selection and ecotype formation within
and between genera. We generated estimates of the
rates of periodic selection and ecotype formation for
subclades within each genus. Consistent with the Stable
Ecotype Model, we found that, in each case, the rate
of periodic selection was estimated to be greater than
the rate of ecotype formation. In Aquabacterium and
Diaphorobacter, the median rate of periodic selection

among subclades was around twice the median rate of
ecotype formation (2.04 times and 1.50 times greater,
respectively). Interestingly, in Vibrio, the median rate of
periodic selection was 26.5 times higher than the median
rate of ecotype formation (Table 4). Our analysis
revealed no statistically significant differences between
the Vibrio, Aquabacterium and Diaphorobacter genera in
their rates of ecotype formation (Student’s t-test:
Vibrio-Diaphorobacter: P� 0.298; Vibrio-Aquabacterium:
P� 0.097; Aquabacterium-Diaphorobacter: P� 0.997).
However, we did detect significant differences in
the rate of periodic selection between genera. Specifically,
both Vibrio and Aquabacterium showed a significantly
higher rate of periodic selection than Diaphoro-
bacter (Student’s t-test: P< 0.0059 and P< 0.0139,
respectively).

There were surprisingly large variations in the rates of
periodic selection and ecotype formation (Supplementary
Figures S4 and S5) within each genus. For example, both
Aquabacterium and Vibrio contained clades with greatly
elevated periodic selection rates. In Aquabacterium, the
rate estimated for one clade was nearly 8-fold higher
than that of the other clades (Supplementary Figure
S4B). In Vibrio, two clades showed rates 16-fold and
160-fold higher above the average, respectively
(Supplementary Figure S4C). The rate of ecotype forma-
tion within Vibrio was also highly variable, with one group
of clades showing ecotype formation rates as much as
10-fold higher than the rest of the genus (Supplementary
Figure S5C).

Table 2. Phylogenetic heterogeneity of OTUs is robust to methodology

Clustering method OTU cut-off n Phylogenetic method

FastTree
(ML)

RAxML
(ML)

RAxML
(MP)

QuickTree
(NJ)

QIIME (Uclust) 97% 5 60.00% 40.00% 40.00% 50.00%
99% 5 60.00% 60.00% 40.00% 60.00%
99.5% 12 41.67% 60.00% 45.45% 80.00%

MOTHUR (farthest neighbour) 97% 9 33.33% 33.33% 25.00% 37.50%
99% 41 14.63% 15.79% 15.79% 17.65%
99.5% 306 10.53% 10.44% 10.34% 14.34%

MOTHUR (nearest neighbour) 97% 1 0.00% 0.00% 0.00% 0.00%
99% 3 66.67% 66.67% 66.67% 66.67%
99.5% 3 33.33% 50.00% 33.33% 33.33%

MOTHUR (average neighbour) 97% 2 50.00% 50.00% 50.00% 50.00%
99% 5 60.00% 40.00% 60.00% 60.00%
99.5% 31 48.15% 58.33% 60.87% 77.78%

Clusterer (farthest neighbour) 97% 11 18.18% 18.18% 18.18% 20.00%
99% 43 20.93% 17.95% 17.50% 28.13%
99.5% 227 13.24% 14.36% 14.78% 15.57%

Clusterer (nearest neighbour) 97% 1 0.00% 0.00% 0.00% 0.00%
99% 5 40.00% 40.00% 40.00% 40.00%
99.5% 7 14.29% 16.67% 14.29% 14.29%

Clusterer (UPGMA) 97% 4 25.00% 25.00% 25.00% 25.00%
99% 9 33.33% 22.22% 22.22% 33.33%
99.5% 21 45.00% 52.63% 47.37% 47.37%

This table displays the percentage of monophyletic 16S rRNA OTUs in the genus Aquabacterium at three different identity thresholds (97, 99 and
99.5%). As in Table 1, only OTUs containing at least two sequences and meeting support criteria were considered in the percentage computations,
though the total number of OTUs is displayed in the n column. Different phylogenetic methods (columns) and different OTU clustering algorithms
(rows) were tested. Cells display the percentage of OTUs that were monophyletic clades.
ML, Maximum likelihood; MP, Maximum parsimony; NJ, Neighbour joining.

5182 Nucleic Acids Research, 2013, Vol. 41, No. 10

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt241/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt241/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt241/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt241/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt241/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt241/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt241/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt241/-/DC1


Figure 3. OTUs and Ecotypes show distinct habitat associations. An ML tree of a subset of the Vibrio hsp60 sequences (A) and a neighbour-joining
tree of the full set of Synechococcus psaA sequences (B). OTUs, ES ecotypes and AdaptML ecotypes are shown. Note that the formatting in the OTU
column and the AdaptML column is different. In the OTU column, all leaves marked by the same color belong to the same OTU. In the AdaptML
column, different colours denoted different habitats. Each distinct colour bar is its own ecotype, whereas bars of the same colour are ecotypes co-
occurring in the same habitat.
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Validation of QuickES

We tested QuickES on a three-gene concatenation of se-
quences from soil Bacillus simplex and Bacillus subtilis/
licheniformis. These sequences were isolated from the
Negev Desert in Israel and had previously been analysed
using the complete ES algorithm (33). For each data set,
we ran three QuickES trials, selecting the results from the
trial whose parameter solutions gave the best likelihood
value (best of three). We then repeated this procedure

twice, resulting in a total of three replicate runs.
Supplementary Figures S6 and S7 show that ecotypes
demarcated in three QuickES runs were very similar to
each other and also to those predicted by the full analysis.

We also benchmarked the performance of QuickES
ecotypes in its ability to explain the ecological variance
in the Vibrio dataset (Table 3). Grouping sequences by
QuickES ecotypes accounted for 58% of ecological vari-
ation (P� 0.005). QuickES ecotypes were much better at
explaining the ecological variance than all the OTUs we
tested (97%, 99% and 100%, dAIC� 30), although they
performed slightly worse than the ecotypes demarcated
with the complete ES (dAIC=19).

DISCUSSION

Although great strides have been made in our understand-
ing of bacterial diversity in recent years, the field has been
challenged by the lack of an agreed on unit of diversity
analogous to the biological species of animals and plants.
Although identity-based OTUs provide a ‘quick and dirty’
approach to quantifying bacterial diversity and are very
useful, they are no substitute for coherent and meaningful
units of bacterial ecology and evolution (8,59,60).

Our results illustrate several problems with using OTUs
to approximate bacterial species. Although these problems
are generally known, we have shown here that they are far

Figure 4. Putative ecotypes are not captured by any single sequence identity cut-off. Graphs display the number of ecotypes whose minimum
pairwise sequence identity fall into each of the displayed bins in the skin Aquabacterium (A) and the marine Vibrio (B) data sets.

Table 3. Performance of OTUs and ecotypes in explaining ecological

variation in the Vibrio data set

Model Number
of classes

Variance
explained

AIC

OTU 97% 68 42%* 764
OTU 99% 187 60%* 649
OTU 100% 382 73%* 639
ES 190 62%* 590

QuickES 156 58%* 609
AdaptML 214 69%* 458

The variance explained was calculated by dividing the constrained
inertia by the total inertia. The two methods that returned the lowest
AIC scores are highlighted in bold. Asterisk denotes the significance of
P� 0.005 by permutation tests.
AIC, Akaike information criterion.
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more serious than has previously been appreciated. First,
paraphyly and polyphyly among OTUs are far more
extensive and pronounced than expected. We observed
this pattern in a wide variety of genera spanning
multiple bacterial phyla, indicating that this problem is
widespread and not taxon specific. Our results showing
significant numbers of paraphyletic and polyphyletic
OTUs at various sequence identity thresholds further re-
inforce the point that simply narrowing the identity cut-
off will not correct the phylogenetic inconsistency among
OTUs. Although the acceptability of paraphyletic taxa in
systematics is debatable (8,61,62), polyphyletic groups are
generally considered to be unacceptable as true taxa. This
is because polyphyletic groups by definition lack a single
evolutionary origin. Most modern species concepts require
individuals within the same species to share a single
evolutionary lineage (63,64) and therefore a single evolu-
tionary origin.

Second, we show that extensive phylogenetic inconsist-
ency is associated with extensive ecological heterogeneity
in OTUs. This is distinct from ecological heterogeneity
caused by using OTUs that are too broadly defined. Just
as phylogenetic inconsistency will persist, regardless of
identity cut-off, simply narrowing the identity cut-off
might not produce ecologically coherent OTUs. We
demonstrated that ecotypes outperform OTUs in explain-
ing the ecological variance in the sequence data. This
finding is particularly relevant to human microbiome
research, in which 16S rRNA OTUs are commonly used
to compare the composition of microbial communities
between healthy and diseased individuals (65). The 16S
rRNA OTUs at 97 (66,67), 98 (58) and 99% (43,68)
identity cut-offs have been used as units of microbial di-
versity. Our results suggest that such OTUs may not be
ecologically homogeneous and therefore can be problem-
atic for association studies. Specifically, the use of eco-
logically heterogeneous units could add noise when
investigating the associations between OTUs and health
states, resulting in false negatives.

An additional problem with OTUs is that the identity
cut-off is arbitrarily defined and subjectively applied. The
threshold selected can greatly affect estimates of both the
numbers and composition of species in a community.
Ecotypes, as predicted by either ES or AdaptML,
require no arbitrary cut-off, and therefore can be
compared consistently across taxa. We demonstrated
that ecotypes can be variable in the amount of sequence

diversity they contain such that no single universal identity
threshold will accurately capture the ecotypes in a com-
munity. We calculated alpha diversity (diversity within
habitats) and beta diversity (diversity among habitats)
indices for the skin data set using both OTUs and
ecotypes (data not shown). The overall alpha diversity
values measured using ecotypes are higher than those
measured using 16S rRNA OTUs (97 or 99% cut-off),
suggesting that the routinely used 16S rRNA units might
underestimate the diversity. However, we noticed no
apparent or significant differences between beta diversity
measures derived from ecotypes and OTUs.
One benefit of the complete ES algorithm over other

methods is that it provides estimates of the rates of
ecotype formation and periodic selection. These rate esti-
mates can be used to gain insight into the mode and tempo
of bacterial diversification. Periodic selection events purge
the genetic diversity within a population and lead to adap-
tation within a species lineage (anagenesis) (40,41).
Ecotype formation (cladogenesis) occurs when an individ-
ual becomes sufficiently ecologically distinct that it is no
longer vulnerable to periodic selection events occurring in
its parent population. Determining the relative rates of
periodic selection and ecotype formation can help us dis-
tinguish between different models of bacterial speciation
and evolution (8,69). For example, the Stable Ecotype
Model proposes recurring periodic selective sweeps
between rare ecotype formation events, and therefore
predicts that anagenesis is the most dominant mode of
adaptive evolution (8). In contrast, the Species-Less
Model features a high rate of species turnover, with
frequent cladogenesis and almost no anagenesis, because
each species is likely to go extinct before its first periodic
selection event (69). Our ES analyses indicate that periodic
selection happens much more frequently than ecotype for-
mation, suggesting that at least in the bacterial lineages
analysed in our study, anagenesis is the dominant mode of
adaptive evolution.
For a lineage that is recently formed, either as a result of

invading a new habitat or via horizontal transfer of a
niche-expanding gene (35), we might expect an elevated
rate of anagenesis as the lineage adapts to the conditions
of its new environment. Highly elevated periodic selection
rates like those we observed in some subclades of Vibrio
and Aquabacterium therefore might be an indication of
their recent expansion into a novel ecological niche. This
is consistent with a punctuated equilibrium mode of

Table 4. Ecotype formation and periodic selection rates of three genera

Genus n Ecotype formation rate Periodic selection rate

Mean Standard
deviation

Median Mean Standard
deviation

Median

Aquabacterium 20 0.179 0.092 0.458 6.969 18.950 0.934
Diaphorobacter 19 0.166 0.130 0.340 0.707 0.472 0.510
Vibrio 10 0.312 0.370 0.105 88.467 239.166 2.780

ES (original version) estimates of the mean and median periodic selection and ecotype formation rates for skin Aquabacterium and
Diaphorobacter, and for marine Vibrio. The n values are the number of subclades for which the rates were independently calculated.
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evolution, in which evolutionary change occurs in rare but
rapid bursts following major changes in a lineage’s envir-
onment (70). This hypothesis could be tested using com-
parative genomic and ecological analyses between sister
clades with high and low periodic selection rates, for
example, to look for genes that are undergoing positive
selection.
Capable of processing only hundreds of sequence at a

time, the original version of ES would be unable to prac-
tically analyse massive next generation sequencing data
sets. We have demonstrated here that QuickES, by using
a divide and conquer approach coupled with parameter
approximation, can demarcate ecotypes in datasets with
tens of thousands of sequences. QuickES generates only
very rough estimates of the periodic selection and ecotype
formation rates, and we do not recommend QuickES be
used to draw conclusions of this type. In addition to the
QuickES package introduced here, a new version of
the ES algorithm is under development that should
allow the full ES algorithm to directly analyse many thou-
sands of sequences at once (Frederick M. Cohan, Danny
Krizanc, personal communication). AdaptML can already
analyse thousands of sequences simultaneously but
requires ecological data to estimate ecotypes. ES needs
only sequence data to predict ecotypes and therefore is
advantageous when little or no ecological data is available.
When possible, the best practice is to use both AdaptML
and ES together to take advantages of their complemen-
tary benefits, with AdaptML demarcating putative
ecotypes based on known ecological parameters, and ES
then subdividing them based on evolutionary models, as
we and others have demonstrated (7,36,37). Because
ecotypes incorporate evolutionary and ecological models,
they are evolutionarily and ecologically more consistent
than OTUs. Given the numerous advantages of ecotypes
over OTUs, we advocate for using ecotype as an alterna-
tive unit of microbial diversity.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1, Supplementary Figures 1–7 and
Supplementary Methods.
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