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A B S T R A C T

Porcine epidemic diarrhoea virus (PEDV), belongs to the genus Alphacoronavirus in the family Coronaviridae and
causes severe diarrhoea, vomiting, dehydration and high mortality in seronegative newborn piglets. Thus, a
precise and rapid diagnosis of PEDV infection is important for the application of control measures to limit viral
dissemination. In this investigation, a monoclonal antibodies (MAbs)-based competitive enzyme-linked im-
munosorbent assay (ELISA) for detecting antibodies against PEDV was developed and validated. The diagnostic
performance of the test was evaluated by receiver operating characteristic (ROC) analysis using a panel of 829
known sera collected from different commercial pig farms, with or without a history of PED presence and from
experimentally infected pigs. The competitive ELISA showed excellent diagnostic performance and dis-
criminatory power with high sensitivity (Se) and specificity (Sp) values (Se= 96.5%, 95% IC 94.1–98.1;
Sp= 98.2%, 95% IC 96.3–99.3). Moreover, this competitive ELISA method has other properties, such as high
feasibility of testing sera without pre-treatment and automatic and instrument-mediated revealing, that makes it
appropriate for large-scale screenings of affected pig farms in endemic regions or for monitoring plans in PEDV-
free areas.

1. Introduction

Porcine epidemic diarrhoea (PED) is highly contagious enteric viral
disease of swine, characterized by diarrhoea, vomiting, and dehydra-
tion, followed by high mortality in new born piglets (50–100%). The
aetiological agent called Porcine Epidemic Diarrhoea Virus (PEDV)
belongs to the genus Alphacoronavirus in the family Coronaviridae of the
order Nidovirales (Jung and Saif, 2015). PEDV may infect animals of all
ages but older pigs usually show a milder form of the disease with lower
mortality rates (Alvarez et al., 2015). PEDV has been firstly detected in
the United Kingdom in 1978, and since then has spread worldwide
causing significant economic losses in all main swine producing areas,
including Asia and North America, (Horie et al., 2016; Lee, 2015; Song
and Park, 2012; Sun et al., 2015; Vlasova et al., 2014). In Europe, PEDV
spread to most countries between the 1970s and 1990s (Saif et al.,
2012); then outbreaks became infrequent (Song and Park, 2012) but the
virus persisted in an endemic form in the pig population at a low rate,
causing sporadic cases in weaner or feeder pigs in few European

countries. In Italy, PEDV re-emerged in a typical epidemic form in 2005
to 2006 (Martelli et al., 2008), but the disease progressively dis-
appeared once more. Recently, following the 2013 epidemic in the US,
single, limited or multiple PEDV outbreaks have been diagnosed in
several European countries (Dastjerdi et al., 2015; EFSA, 2016;
Grasland et al., 2015; Hanke et al., 2015; Hanke et al., 2017; Mesonero-
Escuredo et al., 2018; Mesquita et al., 2015; Stadler et al., 2015;
Steinrigl et al., 2015; Theuns et al., 2015; Toplak et al., 2016; Van der
Wolf et al., 2015), including Italy (Alborali et al., 2014; Boniotti et al.,
2016). The disease spread from 2015 onward, causing hundreds of
cases, mainly in high-density pig production areas in the Po valley
(North Italy), affecting fattening units as well as farrow-to-finish or
farrow-to-weaner farms (Boniotti et al., 2018), and characterized by
high variability of size and clinical disease. Based on their genome,
isolates from these cases were closely related to each other (Boniotti
et al., 2016). Following sequencing, they were classified as S INDEL
strain, being the German isolate (Stadler et al., 2015) 99.4% identical to
the OH851 strain isolated in the US in January 2014 (Wang et al.,
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2014). The circulating strains responsible for the outbreaks in 2014 in
Italy were genetically analysed and he comparison of partial sequences
of the RdRp and membrane (M) genes and the total glycoprotein spike
(S1) gene showed a high nt identity with the S-INDEL strain USA/
OH851/2014 from the USA (98.7%, 99.8%, 99.3–99.5%, respectively)
and with the strains detected in Germany (100%, 100%, 99.7%).This
situation was totally different from what detected from 2007 to 2012
when the PEDV strains circulating in Italy showed a high genetic
variability. In particular, a novel coronavirus generated by re-
combination between PEDV and TGEV, called Swine Enteric Cor-
onavirus (SeCoV), was identified (EFSA, 2016; Boniotti et al., 2016).
Moreover, in May 2016 a PEDV/SeCoV recombinant strain was de-
tected In Italy; this new strain rapidly spread since January 2017 and
then overcome the S-INDEL OH851-like strain, representing nowadays
over 90% of the circulating strains (Papetti et al., 2017).

Although only a single serotype of PEDV has been described, phy-
logenetic studies of the S gene have indicated that PEDV can be ge-
netically divided into 2 groups: genogroup 1 (G1; classical) and gen-
ogroup 2 (G2; field epidemic or pandemic) (Huang et al., 2013; Lee,
2015). Each genogroup can be further separated into subgroups 1a and
1b, and 2a and 2b, respectively. G1a comprises the prototype PEDV
strain, CV777, vaccine strains (e.g., 83P-5 cited by Colin et al., 2015)
and other cell culture-adapted strains, whereas G1b includes new var-
iants detected in China, United States and South Korea, and more re-
cently in Europe. G2a and G2b contain global field isolates that were
responsible for earlier local epidemics in Asia and recent pandemic
outbreaks in North America and Asia, respectively. The US G1b variants
were called S INDEL strains because of the presence of insertions and a
deletion in the N-terminal domain (NTD) of S1 gene compared to se-
quences of original US G2b PEDV strains (Huang et al., 2013; Wang
et al., 2014; Lee, 2015).

In Europe, the recent re-occurrence of PEDV (closely related to the
INDEL OH 851 strain) infections led to necessarily asses the capacity of
the existing diagnostic assays to correctly diagnose PED outbreaks.

From acutely infected pigs, PEDV can be identified by reverse
transcription polymerase chain reaction (RT-PCR) (Kim et al., 2001;
Chen et al., 2014) in faecal or intestinal samples. Low levels of viraemia
have been also observed in serum (Jung and Saif, 2015; Lohse et al.,
2017). The virus is present and excreted by infected animals for a
limited period, typically less than one month (Lee, 2015), while the
serological response is expected to last for a much longer period
(Crawford et al., 2015). Therefore, it is important that diagnostic la-
boratories can efficiently and quickly detect PEDV infection when
outbreaks of disease occur. Commercial test for the detection of anti-
bodies to PEDV are available but different European laboratories have
developed a variety of “in–house” assays.

The main purpose of this study was to describe the development of
an in-house competitive enzyme-linked immunosorbent assay (ELISA)
based on monoclonal antibodies (MAbs) for the detection of antibodies
against PEDV in individual pig sera and to estimate the diagnostic
performance of this assay.

2. Materials and methods

2.1. In-house competitive ELISA

The competitive ELISA validated in our study is an immunoassay
using the whole virus, grown in cell culture, as a source of antigens.
This assay is based on a double antibody sandwich, using a purified
MAb as catcher and a horseradish peroxidase (HRP)-conjugated MAb as
a tracer. The MAbs employed for the set-up of the competitive ELISA
were produced against the CV-777 PEDV strain as described in a pre-
vious study (Sozzi et al., 2010). Their characterization (MAbs screening
and selection) is described in Supplemental file n. 1.

The competitive ELISA is described as follows: the ELISA micro-
plates were coated with the purified MAb 1F12 at a concentration of

10 μg/mL in a volume of 50 μL/well and incubated overnight at
5 ± 3 °C in ELISA coating buffer (carbonate bicarbonate buffer
pH 9.2 ± 0.2). The serum sample was diluted 1:4 and 1:8 on an aux-
iliary microplate by adding 25 μL in 25 μL of a sample dilution buffer
(phosphate-buffered saline [PBS], pH 7.2 ± 0.2), containing Tween 20
[0.05%] (MP Biochemicals LLC, Illkirch, France). Moreover, in order to
reduce nonspecific binding, yeast extract [1%] (Biolife Italiana Srl,
Milan, Italy) and mouse serum [1%] (IZSLER, Brescia, Italy) were
added to the PBS for saturating sites that were still free after adsorption.
Internal controls were included in each plate: the positive and negative
control sera and the 100% control wells, and all were examined as
double repetitions. Control (negative and positive) sera were collected
respectively from specific-pathogen-free (SPF) pigs and from animals
experimentally infected with a PEDV INDEL-strain identified in Italy on
2015 (strain 10,674/2015). A volume of 50 μL of antigen (whole VERO
cell culture-adapted G1a PEDV strain CV777, inactivated with β-pro-
priolactone) optimally diluted (1:3) in the dilution buffer (phosphate-
buffered saline [PBS], pH 7.2 ± 0.2, containing Tween 20 [0.05%],
yeast extract [1%]) was added to all the samples and controls, in which
50 μL of the dilution buffer was added. At the end of a 60 ± 5min
incubation at 37 ± 2 °C, 50 μL of each sample or control-antigen
mixture were transferred onto the previously coated microplate. A vo-
lume of 25 μL/well of the HRP-conjugated 4C3 MAb (10mg/mL,
1:1000 in dilution buffer) was added, and the plates were incubated
again by applying the same described conditions. Then, after a cycle of
3 washings with PBS (pH 7.2 ± 0.2, containing Tween 20 [0.05%;
washing solution]), 50 μL/well of ortho-phenylenediamine (Sigma-
Aldrich, St. Louis, MO) substrate was added. Finally, the reaction was
blocked after 10 ± 2min by adding 50 μL/well of 1M sulfuric acid
(Carlo Erba Reagents Srl, Cornaredo, Milan, Italy). The optical density
(OD) of the samples was read at 492 nm, using a microplate spectro-
photometer (Multiskan EX, Thermo Fisher Scientific, Waltham, MA).
Laboratory grade reagents and filtered water (Milli-Q Academic, EMD
Millipore Corp., Billerica, MA) were employed. Furthermore, all in-
struments were calibrated and maintained within the Quality Assurance
System ISO/IEC 17025:2018.

The results were interpreted using the following formula:

= −

×

Percent inhibition (PI) 100 (mean OD of sample

/mean OD of 100%control wells) 100

Fulfilling of the following criteria, which correspond to those nor-
mally applied in previous studies conducted in our laboratory was
needed for considering a run valid: mean OD of 100% control
wells= 1.5 ± 0.5 and difference between mean OD of negative and
positive controls≥ 0.8.

2.2. Panel of sera employed for the validation of the method

A panel of 829 samples was employed, including 415 negative sera
and 414 PEDV-positive sera. They were divided into the following de-
tailed categories:

359 field samples without PEDV exposure. Collection of serum
samples was performed in 12 selected Italian farms during 2015.
Farms were classified as non-exposed to PEDV based on historical
data and lack of enteric signs compatible with viral diarrhoea. The
observation period in each farm lasted at least four months, during
which multiple faecal samples were taken and tested negative for
PEDV RNA based on quantitative real-time PCR (qPCR) described by
Bertasio et al., 2016. Sera were taken from nursery and grow-fin-
ishing pigs;
30 negative sera originating from SPF pigs;
373 field samples with PEDV exposure. Collection of serum samples
was performed in 17 Italian commercial pig farms between 2014
and 2015 after the PEDV outbreaks. The PEDV infection status was
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first determined by the presence of enteric signs and then confirmed
based on identification of both PEDV RNA by qPCR in faecal sam-
ples and PEDV antigen by a double antibody sandwich ELISA (Sozzi
et al., 2010). PEDV qRT-PCR assay were performed using primers
and probes targeting the S1 gene of PEDV as previously described
(Bertasio et al., 2016). Positive samples were collected during a
period from 2 to 3 weeks to 3 to 4months after PCR positivity. In
these outbreaks G1b PEDV strains with high similarity to the US
OH851 “mild INDEL strains” were identified by sequencing analysis
of the S1 gene from positive faecal samples (Boniotti et al., 2016).
67 collection sera from eight three-weeks old piglets obtained
during two previous experimental infections. Five piglets have or-
ally been infected with an US PEDV INDEL strain and sera sampled
at 0-7-14-21 and 28 days post infection (dpi). The remaining three
piglets have been infected with an Italian PEDV S-INDEL strain
identified on January 2015 and sera collected at 0-1-2-4-5-6-7-8-15-
18-24-31-41 and 52 dpi. According to the results obtained by using
the cELISA test, i.e. positivity was detected starting from 5 to 7 dpi
(Supplemental file n.2), 26 sera were considered negative and 41
positive.

To evaluate the Sp of the method, known positive sera for other
porcine coronaviruses were tested:

24 experimental samples with known TGEV exposure, obtained
from three 5-week-old pigs orally inoculated with TGEV strain
Purdue, from which sera were collected at 0, 7, 10, 17, 24, 31, 40
and 60 dpi.
11 experimental samples with known HEV exposure, obtained from
hyperimmunised animals: six rabbits, one guinea pig and four pigs
inoculated with HEV 741 VR ATCC, strain 67 N (Mengeling et al.,
1972).

2.3. Statistical analysis

A receiver operating characteristic (ROC) curve is a graphical re-
presentation of the relative effects of the false negative and false posi-
tive rates for every possible cut-off, and it is an effective method of
evaluating the quality or performance of diagnostic tests.Therefore, the
discriminating power of the competitive ELISA for anti-PEDV antibody
detection was evaluated by a ROC curves analysis (Zhou et al., 2002)
using MedCalc Statistical Software version 13.1.0 (MedCalc Software
bvba, Ostend, Belgium; http://www.medcalc.org; 2014). The area
under the curve (AUC) is a global statistic summary of diagnostic ac-
curacy and can distinguish between non-informative (AUC=0.5), less
accurate (0.5 < AUC≤ 0.7), moderately accurate
(0.7 < AUC≤ 0.9), highly accurate (0.9 < AUC < 1) and perfect
tests (AUC=1) (Swets, 1988). The accuracy of a diagnostic test is
displayed in an interactive dot diagram where data of the negative and
positive groups are displayed as dots on two vertical axes.

3. Results

The diagnostic performance of the competitive ELISA for anti-PEDV
antibody detection was evaluated by testing 829 swine sera, which
were classified as positive or negative according to their known origin.
Only when all the validation criteria were fulfilled. The results of ELISA
test were considered valid and used for further analysis. Thus, the ROC
curves were calculated based on previous classification of the sera into
positive and negative groups. The ROC curves permitted both to select
the optimal cut-off values and to estimate the diagnostic sensitivities
and specificities. The shape and the relevant AUC values demonstrated
the highly accuracy (AUC=0.992 at the 1/4 dilution, 95% IC
0.983–0.997) of the competitive ELISA for anti-PEDV antibody detec-
tion, that has nearly 100% sensitivity (Se) and specificity (Sp). By using
the first serum dilution, the cut-off value representing the optimal

balance of Se and Sp (Se: 97.8–95% CI 95.8–99.1; Sp: 97.69–95% CI
95.7–98.9) was 56% (percentage of inhibition). Considering the test
performances, a cut-off value easily applicable in routine activity cor-
responding to 60% (Se: 96.5–95% CI 94.1–98.1; Sp: 98.2–95% CI
96.3–99.3), that still allows working with high levels of Se and Sp, was
selected (Fig. 1). The 1/4 serum dilution was selected as the screening
one since it provided the best diagnostic Se and Sp values, as well as the
highest discrimination window between positive and negative sera. In
addition, 1/8 or even more serial dilutions could be used to estimate the
antibody level (i.e., the serum titre could be expressed as the dilution
closer to the cut-off value).

The interactive dot diagram (Fig. 2) displayed the accuracy of a
diagnostic test. The horizontal line placed in the selected cut-off (60%)

Fig. 1. Receiver operating characteristic (ROC) curve based on result for a
panel composed of 829 swine sera (415 negative and 414 positive), employed
to set the cut-off values for the competitive enzyme-linked immunosorbent
assay for serologic detection of PEDV. AUC=area under the curve.

Fig. 2. Interactive dot diagram (MedCalc Stadistical Software). In the graph,
the data of the positive and negative samples are displayed as dots on two
vertical axes (0= negative samples, 1= positive samples). A horizontal line
indicates the cut-off point with the best separation (minimal false negative and
false positive results) between the two groups. The corresponding test char-
acteristics i.e. sensitivity and specificity are shown at the right side of the graph.
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showed a very good discriminating power of the test with a best se-
paration (minimal false negative and false positive results) between the
two groups (positive-1 and negative-0).

Both sets of 24 and 11 experimental samples, respectively positive
for TGEV and HEV, yielded negative results in the competitive PEDV
ELISA. Thus, heterologous positive sera were clearly differentiated from
the PEDV-positive sera, suggesting that a satisfactory analytical Sp was
achieved.

4. Discussion

Therefore, it is important that diagnostic laboratories can efficiently
and quickly detect PEDV infection when outbreaks of disease occur. A
precise and rapid diagnosis of PEDV infection is important for the ap-
plication of effective measures control viral dissemination and severity
of the disease outbreaks, and thus reliable virological and serological
diagnostic assays are needed. Rapid identification of PEDV and its
differentiation from other enteric swine pathological agents are
achieved by using virological assays, whereas serological tests provide
useful information regarding past exposure to PEDV, prevalence of in-
fection and epidemiology of the disease. The determination of PEDV-
specific antibodies may also be used to evaluate sow immunity and/or
presence of immunoglobulin in the colostrum, which might help to
predict the level of specific protection in piglets.

In this investigation, a MAbs-based competitive ELISA for the de-
tection of PEDV antibodies was developed in house and validated.
Ideally, the diagnostic Sp and Se of a such test should be calculated
using clearly true negative and true positive samples as defined by a
combination of “gold standard” methods. In the present study, a ROC
curve approach, considering different groups of pig sera obtained either
from farms classified as PED-negative or -positive based on their his-
tory, presence of clinical signs and results of virological tests (Real-Time
RT-PCR and antigenic ELISA), or from experimentally infected pigs, in
which antibodies could be detected starting from 5 to 7 days post in-
fection, was used to estimate the assay accuracy for the PEDV compe-
titive ELISA. In particular, the diagnostic Se and Sp obtained by this
validation study confirmed those obtained in a previous study (Sozzi
et al. 2014), in which this competitive ELISA was evaluated by com-
paring it with the immunoperoxidase monolayer assay (IPMA). A total
of 296 field serum samples taken from pigs in PEDV-exposed or un-
exposed Italian farms were used. Field samples were collected from
finishing pig farms in Lombardy and Emilia Romagna 4 to 8 weeks after
the beginning of the last wave of PED in Italy from 2005 to 2006. In
those outbreaks, sequencing analysis of the S1 gene from Real-Time RT-
PCR-positive faecal samples identified a G1a PEDV strain. The results
obtained by the PEDV competitive ELISA presented a high correlation
with those obtained by the IPMA test (i.e., a kappa score= 0.97), which
indicates an almost full concordance between the two methods. Ac-
cording to the results obtained, to the cELISA for anti-PEDV antibody
detection it could be attributed nearly 100% sensitivity (Se). However,
we selected that cut-off value (60%) both easily applicable in routine
activity and representing the optimal balance of Se (96.5) and Sp
(97.69). The sensitivity of the test is therefore very high also in the case
of infection due to the more recent PEDV strains belonging to S-INDEL
group and it is likely not affected by genetic differences among circu-
lating strains as already observed by Gerber et al. (2016) who sustained
the capacity of the cELISA to correctly identified pigs infected with G1a,
G1b and G2b PEDV.

To date, only a single serotype of PEDV has been recognised. Since
the results reported here were obtained by testing sera taken after PED
outbreaks caused by viruses belonging to different genogroups, we can
conclude that this serological assay is able to detect anti-PEDV anti-
bodies against various strains, including both the old European strains
and the contemporary S INDEL strains, that have infected pig herds in
several European countries, including Italy, in the last three years.

Additionally, the properties of this PEDV competitive ELISA and its

use in field conditions have been analysed. In fact, it has been employed
in parallel with a variety of “in-house” and commercial assays set up for
the detection of anti-PEDV antibodies in two interlaboratory studies
(Gerber et al., 2016; Strandbygaard et al., 2016) to test shared panels of
pig sera collected both in the field and during experimental studies in
some European and North American countries. As described in these
two studies, our “in-house” competitive ELISA “performed very well
and exhibited both high Se and Sp” (Se: 97–95% CI 90.0–100.0 Sp:
94–95% CI 83.0–100.0) (Strandbygaard et al., 2016) and “had the
overall highest detection” levels (Gerber et al., 2016).

5. Conclusions

The PEDV competitive ELISA method here described could be
considered a useful test for routine detection of PEDV antibodies due to
its Se and Sp. The scope of the current studies is the implementation of
this method to acquire data on the incidence of viral enteritis due to
PEDV in pig herds by indirect serological investigations. Indeed, this
method could likely allow successive confirmation of the effect of tar-
geted immunoprophylactic actions, with regard to the current and
evolving epidemiological situation.
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