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Abstract: A hybrid implant with a structure mimicking that of natural bone was developed.
Titanium alloy Ti–6Al–4V prepared with three-dimensional (3D)-printing technology was used to
simulate the cortical-bone layer. The mismatch in the mechanical properties of bone and titanium
alloy was solved by creating special perforations in the titanium’s surface. Porous ultra-high
molecular weight polyethylene (UHMWPE) with high osteogenous properties was used to simulate
the cancellous-bone tissue. A method for creating a porous UHMWPE structure inside the titanium
reinforcement is proposed. The porous UHMWPE was studied with scanning electron microscope
(SEM) to confirm that the pores that formed were open, interconnected, and between 50 and 850 µm
in size. Mechanical-compression tests done on the obtained UHMWPE/titanium-hybrid-implant
samples showed that their mechanical properties simulated those of natural bone.
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1. Introduction

Reconstructing the structural integrity of damaged bone-tissue sections is currently considered
a major problem. Commonly used materials for making bone implants are metals and their alloys,
ceramics, and various kinds of polymers; each has its pros and cons. Metals and their alloys have
good strength, excellent resistance to fatigue, and high ductility, which allow them to be used as a
replacement for highly loaded bone tissue. However, their high elastic modulus may lead to stress
shielding as a result of bone-tissue resorption [1]. Additionally, the metals’ tendency to significantly
corrode reduces their biocompatibility, and corrosion products can poison the surrounding tissue [2,3].

Ceramic materials have high biocompatibility and bioactive properties, high strength, and high
resistance to corrosion and wear [4]. However, ceramics have low resistance to fatigue, which makes
these materials rather brittle [5]. Because of this, ceramic implants are considered to have a high risk of
damage caused by impact stress. Moreover, as with metallic materials, ceramics’ high elastic modulus
can lead to stress shielding.

Polymers have high biocompatibility, excellent resistance to corrosion, high ductility, and a
modulus similar to that of natural bone [6,7]. They have great potential to be prepared
as three-dimensional (3D) scaffolds that provide support for bone-cell and tissue growth [8–10].
However, most polymeric materials do not have sufficient strength and tend to creep. Additionally,
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they may degrade over time. Therefore, polymer implants cannot be used to replace large and highly
loaded areas of bone tissue.

Successful bone-defect repair means that an implant should have a structure that mimics that
of the bone being restored. Bone consists of two basic layers: cortical and cancellous tissue [11].
Cortical tissue contributes to reinforcing a bone’s mechanical characteristics. Cancellous tissue
has osteogenic and osteoinductive properties that support cells and create optimal conditions for
their growth.

Ultra-high molecular weight polyethylene (UHMWPE) is a widely used polymer in medical applications
because of its high chemical resistance, biocompatibility, and mechanical and tribological properties.
UHMWPE is used in implants for hip and shoulder arthroplasties, knee-joint replacements [12,13],
and in spinal-disk prostheses [14]. Porous UHMWPE has good potential for use as a 3D porous scaffold
in bone-defect replacement applications. A porous UHMWPE scaffold has a structure mimicking that
of cancellous tissue, as shown in Figure 1, and it provides an ideal environment for cell growth [15,16].
Theaverageporesize inporousUHMWPEcorrespondstothatof thecancelloustissue(100–600microns[17,18]).
The porous UHMWPE has open and interconnected pores, and its total porosity is close to 80%. Creating
the porous UHMWPE scaffold using the salt-leaching method allows pore size to be easily changed to match
that of the replaced bone area.
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Figure 1. (a) Porous ultra-high molecular weight polyethylene (UHMWPE) scaffold; (b) SEM images of
porous UHMWPE scaffold and (c) natural cancellous tissue.

In medical applications, titanium alloys are commonly used in orthopedic and dental-implant
products because of their reliable mechanical performance that allows them to replace hard bone
tissue [19]. A lack of osseointegration into the bone is the main reason for the failure of titanium
implants [20]. In 60% to 70% of clinical cases, titanium implants are revised because of aseptic
loosening [20]. Strong fixation is necessary to guarantee the successful use of titanium implants.

Many investigations were carried out with the aim of reducing the elastic modulus of titanium-alloy
implants. It is well known that the modulus of second-generation β–Ti alloys (80 GPa) is lower than
that of first-generation orthopedic α+β-titanium alloys Ti–6Al–4V (110 GPa) and SUS 316L stainless
steel (200 GPa) [21,22]. In addition, by changing the composition and preparation conditions of β–Ti
alloys, the elastic modulus can be reduced to about 40 GPa [23–25]. However, β–Ti alloys may release
some elements (e.g., Nb, Ta, and Zr) that can affect the surrounding tissue, and this may lead to a
decrease in their biocompatibility compared to that of pure Ti and α+β–Ti alloys [26]. Another way to
obtain a low modulus is by preparing a porous metal implant by using 3D-printing technology [27].
Depending on the type of used rapid-prototyping techniques and the process parameters, the obtained
samples have a low elastic modulus ranging from 0.86 to 60 GPa [28,29].

In this study, a UHMWPE/titanium-hybrid implant with a structure mimicking that of natural
bone was developed and explored.

2. Materials and Methods

2.1. Description of UHMWPE/Titanium-Hybrid Model

Figure 2 shows the model of the hybrid implant. The hybrid implant consisted of two main layers.
One mimicked the cancellous tissue, as shown in Figure 2(1), and the other mimicked the cortical
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tissue of natural bone, as seen in Figure 2(2). To simulate the cancellous tissue, a porous UHMWPE
scaffold was chosen to support bone-cell and tissue growth [15,16].
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Figure 2. Hybrid-implant model with structure mimicking that of natural bone. (1) Porous UHMWPE
with high osteoconductive properties (cancellous-tissue simulation); (2) titanium reinforcement with
mechanical properties that were sufficiently close to those of natural bone (cortical-tissue simulation);
(3) thin solid UHMWPE layer that created a smooth surface.

Titanium was chosen to simulate cortical tissue. The mismatch in the mechanical properties of
bone and titanium was solved by creating special perforations in the titanium reinforcement’s surface.
In the proposed hybrid-implant model, the main role of the metal part was to ensure that the implant
had the optimal mechanical properties that it needed, while the polymer part provided the needed
environment for new bone-cell growth.

The cortical tissue of natural bone has a smooth solid surface. This smooth surface is needed to
prevent damage to the adjacent tissue (i.e., muscles) during movement. In order to create this smooth
surface on the hybrid implant, a thin solid UHMWPE layer is proposed, as shown in Figure 2(3).

2.2. Three-Dimensional Printing of Titanium Reinforcement

Commercial spherical Ti–6Al–4V powder with a normal distribution size ranging from 20 to 63 µm
was selected to manufacture titanium-reinforcement samples; average particle size was 48 microns.

Titanium reinforcements were obtained using selective-laser-melting (SLM) equipment (SLM
280 2.0, SLM Solutions Group AG, Lübeck, Germany) in an argon atmosphere to avoid any possible
oxygen contamination. Deposition was performed at a laser power of 275 W, and scanning velocity
was 1100 mm/s. Layer thickness was set to 30 µm, and track distance was 0.12 mm. Solid-titanium
samples in the form of cylindrical tubes with a diameter of 10 mm, a height of 20 mm, and a wall
thickness of 1 mm were obtained using SLM technology. The compressive mechanical properties of
these types of titanium samples were used to construct a material model in SOLIDWORKS Simulation
2018 SP3 (Dassault Systèmes, Vélizy-Villacoublay, France).

2.3. Three-Dimensional Structural Model of Titanium Reinforcement with Reduced Elastic Modulus

The solid-titanium samples prepared by 3D printing had a rather high elastic modulus (116 GPa),
as can be seen in Table 1. The elastic modulus of natural bone was in the range of 7–30 GPa [30–32].
This large difference between the elastic moduli of the artificial implant and natural bone could create
stress shielding. This problem could be solved by creating special perforations in the surface of
the titanium sample. This would decrease the effective cross-section and, consequently, the elastic
modulus. However, sample strength could decrease as a result of using this technology. Therefore,
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topological optimization of the number, size, shape, and location of these perforations on the sample
surface was required. A structural model of the titanium reinforcement with the optimal number,
size, shape, and location of perforations was built in SOLIDWORKS Simulation 2018 SP3. The results
of the mechanical-compression test on the solid-titanium samples were used to construct a material
model in SOLIDWORKS Simulation 2018 SP3. The boundary conditions and loads were set; the model
was under 250 MPa of uniaxial compression, a number corresponding to the maximal compressive
strength of natural bone. In each iteration and during the calculations (topology optimization),
the relative densities of the elements, calculated on the basis of the stress level of each element,
were obtained. If the density value of the element were lower than the preset value, the element would
be excluded from the finite-element model.

Table 1. Mechanical properties of solid titanium, hybrid implant, and natural bone.

Material Compressive Strength, MPa Elastic Modulus, GPa Deformation, %

Solid titanium without
perforations 835 ± 41 116 ± 4 1.1 ± 0.1

Hybrid implant 256 ± 10 32.6 ± 4.5 1.2 ± 0.1
Natural bone [30–32] 130–230 7–30 1–6

The developed model of the titanium-reinforcement structure with a reduced elastic modulus
is shown in Figure 3a. The model consisted of 1.5 × 105 elements and 7.8 × 105 nodes. During
the simulation, all of the nodes on the lower face of the cylinder were limited in all degrees of
freedom. Convergence criteria were used for displacement and force. Tolerance was set at 1 × 10−5,
and convergence-criteria values were set to 0.05 for both force and displacement. Stress distribution
in the developed model at 250 MPa of compressive stress is shown in Figure 3b. According to the tests
in SOLIDWORKS Simulation 2018 SP3, the titanium-reinforcement structure had an elastic modulus
of about 30 GPa. Figure 3c shows a photo of a titanium-reinforcement sample with a reduced elastic
modulus prepared using SLM technology.
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2.4. UHMWPE/Titanium-Hybrid Implant Molding

GUR 1020 UHMWPE was used to prepare a porous scaffold according to the salt-leaching method
described by Maksimkin et al. [15,33]. NaCl with a particle size ranging from 80 to 900 µm was used
as soluble material. A UHMWPE/NaCl-composite powder was prepared through a solid-state mixing
method in a planetary ball mill (Pulverisette 5, Fritsch, Idar-Oberstein, Germany) at low-energy
conditions. UHMWPE and NaCl powder were mixed at a ratio of 1:9 by weight.

To create the UHMWPE/titanium-hybrid implant, it was necessary to form a porous UHMWPE
scaffold inside the titanium-reinforcement samples. This porous UHMWPE layer needed to have
the same characteristics as those of the porous UHMWPE scaffold described above; this was considered
an important factor.

A hot-pressing method was used to form the porous UHMWPE layer in the titanium-reinforcement
samples. In the press mold, the UHMWPE/NaCl-composite powder and the titanium-reinforcement
samples were loaded as follows. First, the UHMWPE/NaCl-composite powder was loaded into
the press mold, and compacted at room temperature and 60 MPa of pressure, as this was necessary
to prevent any deformation in the titanium-reinforcement samples. The thickness of the compacted
UHMWPE/NaCl-composite layer was 5 mm. Second, the titanium-reinforcement samples were
placed vertically onto the compacted UHMWPE/NaCl-composite layer, as shown in Figure 4a.
Third, an additional amount of UHMWPE/NaCl-composite powder was loaded into the press mold,
as shown in Figure 4b. The hot-pressing process was carried out at 180 ◦C and 40 MPa of pressure.
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Figure 4. Photos showing loading process of UHMWPE/NaCl-composite powders and titanium-reinforcement
samples in press mold. (a) Titanium-reinforcement samples placed vertically on to compacted UHMWPE/NaCl
powder; (b) loading additional amount of UHMWPE/NaCl-composite powder into press mold.

After the hot-pressing process, the plate consisting of the titanium-reinforcement samples
and the UHMWPE/NaCl composites was taken out and washed in subcritical water at a temperature
of 120 ◦C and pressure of 250 bar to remove the salt [34]. After removing the salt, the outermost
porous UHMWPE layer around the titanium reinforcement was mechanically removed, so that
the titanium-reinforcement samples filled with porous UHMWPE could be obtained. The adsorbed
water in the UHMWPE pores was removed by drying at 70 ◦C for 3 h.

The thin solid layer on the surface of the hybrid implant was made from UHMWPE GUR 1020.
UHMWPE cylinders with diameter of 15 mm, height of 22 m, and wall thickness of 0.5 mm were
made using a hot-pressing process. UHMWPE cylinders were radially stretched to a diameter of
25 mm. Afterwards, the prepared titanium-reinforcement sample containing porous UHMWPE
was put into the stretched solid-UHMWPE cylinder, and both were heated to a temperature of
100 ◦C. Because of the shape-memory effect in UHMWPE [35], the stretched solid-UHMWPE cylinder
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was tightly connected to the prepared titanium-reinforcement sample containing the porous UHMWPE.
Thus, a thin solid layer on the surface of the hybrid implant was created.

3. Results and Discussion

Figure 5a shows a photo of the prepared UHMWPE/titanium-hybrid implant that consisted of
a thin solid UHMWPE layer (giving it a smooth surface), titanium reinforcement (cortical-tissue
simulation), and a porous UHMWPE scaffold (cancellous-tissue simulation). To investigate
the porous UHMPWE scaffold’s structure, the thin solid UHMWPE layer was removed from
the UHMWPE/titanium-hybrid implant (see Figure 5b), and the titanium reinforcement containing
the porous-UHMWPE-scaffold sample was cut in half (see Figure 5c). The SEM image of this porous
UHMWPE scaffold demonstrated that the pores were open and interconnected, as shown in Figure 5d.
The initial individual UHMWPE particles were missing. All polymer particles were sintered. Figure 6
illustrates the distribution of pore sizes in the porous UHMWPE scaffold, which ranged from 50
to 850 µm. Average pore size was 250 µm. Volume porosity was 79 ± 2%. Adhesion between
titanium and porous UHMWPE was of a physical nature because of the high surface roughness of
the titanium sample.
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The solid UHMWPE covering the UHMWPE/titanium-hybrid implant could be saturated with
an antibiotic (e.g., amoxicillin) using supercritical-fluid-impregnation technologies, as illustrated
in our previous article [36]. Adding an antibiotic to the solid UHMWPE could solve the problem of
peri-implant inflammation that is often induced by opportunistic microflora.

Results of the mechanical-compression tests on the solid-titanium samples without perforations
in their surface and on the hybrid implants are presented in Table 1. As a control reference, data on
the compressive mechanical properties of natural bone were added to Table 1. The solid-titanium
samples prepared by 3D printing had compressive strength of 835 ± 41 MPa, elastic modulus of
116 ± 4 GPa, and deformation of 1.1 ± 0.1%. The UHMWPE/titanium-hybrid implant had compressive
strength of 256 ± 10 MPa, elastic modulus of 32.6 ± 4.5 GPa and deformation of 1.5 ± 0.1%. Simulated
stress behavior of the titanium-reinforcement-model structure had good agreement with the obtained
mechanical properties (see Figure 3b).

Obtained mechanical results demonstrated an effective decrease in the elastic modulus of the hybrid
implant compared to that of the solid titanium because of the designed perforations in the surface of
the hybrid implant’s titanium reinforcement, which the solid titanium did not have. The compressive
mechanical properties of the UHMWPE/titanium-hybrid implants were very close to those of natural
bone (see Table 1). Such mechanical behavior in the hybrid implants could minimize the occurrence of
stress shielding in the bone.

Figure 7 displays the stress-deformation diagram for the solid titanium without perforations in its
surface, the UHMWPE/titanium-hybrid implant and natural bone. The stress-deformation diagram
shows differences in the elastic modulus and deformation behavior of the hybrid implant and natural
bone. However, these differences were in the range of the bone properties’ statistical scatter, which
depended on bone composition, porosity, age, gender, and functional demands.
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Figure 7. Stress-deformation diagram for solid titanium without perforations, UHMWPE/titanium-hybrid
implant, and natural bone. Mechanical-compression tests on natural bone performed in similar conditions to
those in place during tests on hybrid implants. Bone size corresponded to that of UHMWPE/titanium-hybrid
implant. Canine elbow bone was used for bone-tissue samples.

4. Conclusions

In our previous work, porous UHMWPE with open and interconnected pores to provide the ideal
environment for cell growth was prepared. However, the problem of the difference in the mechanical
properties of synthetic implants and natural bone needed to be solved to successfully apply
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the developed scaffolds for replacing loaded areas of bone tissue. In this study, this problem was solved
by developing a hybrid implant consisting of two main components: a porous UHMWPE scaffold that
simulated cancellous tissue and titanium alloy Ti–6Al–4V that simulated cortical tissue in natural bone.
An approach was proposed to reduce the elastic modulus of titanium by creating special perforations
in the titanium-sample surface. These perforations could decrease the effective cross-section and,
consequently, the elastic modulus. Topological optimization of the number, size, shape, and location of
these perforations in the sample surface was performed using SOLIDWORKS Simulation.

Titanium samples were manufactured using selective-laser-melting technology. This technology
allowed to manufacture specialized implants depending on the size of the bone-tissue area to
be replaced.

A method for forming the porous UHMWPE scaffold inside the titanium reinforcement
was proposed. SEM images of the porous UHMWPE scaffold demonstrated that pores were open
and interconnected, and that all polymer particles were sintered. Pore size was in the range of
50–850 µm, average pore size was 250 µm, and volume porosity was 79 ± 2%. Adhesion between
titanium and porous UHMWPE was of a physical nature because of the titanium sample’s high surface
roughness. An examination of the obtained structure of the porous UHMWPE scaffold that formed
inside the titanium reinforcement showed that this structure was similar to that of the porous scaffold
described by Maksimkin et al. [15,33]. It could be suggested that the porous scaffold inside the titanium
reinforcement had high osteogenic properties, as shown by the authors mentioned above [15].

Obtained mechanical results demonstrated an effective decrease in elastic modulus due to
the designed perforations in the surface of the titanium reinforcement. The compressive mechanical
properties of the UHMWPE/titanium-hybrid implants were very close to those of natural bone.
Such mechanical behavior of the hybrid implants could minimize the occurrence of stress shielding
in the bone.

The veterinary medical applications of the developed technology for producing
UHMWPE/titanium-hybrid implants were tested in real clinical cases. Figure 8 shows photos
of the obtained UHMWPE/titanium-hybrid implants used for bone-tissue replacement in a dog and two
cats. These implants were prepared according to the size and shape of the replaced bone-tissue area;
their mechanical properties were similar to those of the replaced bone. Surgical operations to place
the implants were successful.Materials 2020, 13, x FOR PEER REVIEW 9 of 11 
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