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Abstract

Individuals learn to classify percepts effectively when the task is initially easy and then grad-
ually increases in difficulty. Some suggest that this is because easy-to-discriminate events
help learners focus attention on discrimination-relevant dimensions. Here, we tested
whether such attentional-spotlighting accounts are sufficient to explain easy-to-hard effects
in auditory perceptual learning. In two experiments, participants were trained to discriminate
periodic, frequency-modulated (FM) tones in two separate frequency ranges (300—-600 Hz
or 3000—6000 Hz). In one frequency range, sounds gradually increased in similarity as train-
ing progressed. In the other, stimulus similarity was constant throughout training. After train-
ing, participants showed better performance in their progressively trained frequency range,
even though the discrimination-relevant dimension across ranges was the same. Learning
theories that posit experience-dependent changes in stimulus representations and/or the
strengthening of associations with differential responses, predict the observed specificity of
easy-to-hard effects, whereas attentional-spotlighting theories do not. Calibrating the diffi-
culty and temporal sequencing of training experiences to support more incremental repre-
sentation-based learning can enhance the effectiveness of practice beyond any benefits
gained from explicitly highlighting relevant dimensions.

Introduction

Two perceptual events that are difficult or impossible for an individual to distinguish can
become discriminable through a training procedure that starts with easy distinctions and grad-
ually progresses to more subtle differences [1-2]. This phenomenon has been referred to as the
easy-to-hard effect or transfer along a continuum, while the progressive procedures used to
induce the effect have been termed fading or progressive training. Pavlov [2] demonstrated the
easy-to-hard effect in dogs learning to discriminate visual, auditory, and somatosensory sti-
muli. Early studies in humans also showed easy-to-hard effects for simple images and sounds
[3-5]. More recent work has established that fading influences not only acquisition, but also
perceptual generalization [6-7] and cortical plasticity [8]. The easy-to-hard effect was once a
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major focus of associative learning research because of extensive debates about whether effects
were due to an increase in dimensional salience [9], or acquired gradients of association
(reviewed by [10]). Recently, similar debates have arisen in the context of perceptual learning/
perceptual category learning studies, with some researchers again arguing that this effect is due
to increases in dimensional salience [11-12], whereas others argue that the effect can be
explained in terms of gradual changes in stimulus representations and/or their associations
[13-20].

Those arguing for the dimensional salience perspective posit that progressive training
serves to highlight relevant dimensions. Imagine that a listener is given the task of discriminat-
ing two similar tones of 1000 and 1005 Hz. If not told that the relevant dimension is frequency,
the listener will need to discover this on their own to successfully distinguish the sounds, for
example, by ruling out other possible dimensions such as sound duration or intensity. Learn-
ing may be slowed by tests of various hypotheses regarding the relevant dimension. In con-
trast, if initial experimental trials present an easily discriminable difference (e.g., 1000 vs. 1300
Hz), the listener will become immediately aware that frequency is relevant to performing the
task. This then facilitates discrimination of smaller frequency differences. In essence, this
attentional-spotlighting perspective argues that progressive training causes an attention-
related “stretching” of a dimension by facilitating the discovery that the dimension is relevant.
This idea has been pervasive in the perceptual learning [21-23] and category learning litera-
tures [11, 24-26]. Several popular learning theories/models (e.g., ALCOVE; [27]; Analyzer
Theory; [28]) have incorporated such mechanisms.

In contrast, associative theorists suggest that the associations between stimulus representa-
tions and behaviorally relevant outcomes constrain discrimination performance (for reviews
see [16-17, 29-30]). While learning highly discriminable events, there is little overlap between
stimulus representations. Learning in this scenario is fast and favors elements of representa-
tions that are active on a particular trial —most of which are unique to each stimulus. When
more difficult discriminations are introduced, the elements that help distinguish these stimuli
will already carry the most associative strength, thus facilitating learning. If an individual only
experiences difficult discriminations, the most active elements may be those that are shared by
both stimuli. Learning will then proceed more slowly [14,16,20]. There are similar theories
that employ physiologically plausible stimulus representations (e.g., activations of artificial
visual cortical neurons with fixed response profiles) as inputs to associative learning-based
artificial neural networks [31]. Researchers employing these models have posited that associa-
tive weights represent weights of attention [32]. However, this process of incremental atten-
tional shift involves differentially weighting portions of dimensions/representations, making it
a different learning process than dimensional discovery.

Still another class of representation-based learning theories explain the easy-to-hard
effect with mechanisms of non-associative learning that involve gradual, experience-depen-
dent changes to stimulus representations themselves. For example, Saksida [18-19] devel-
oped a neural network model composed of a self-organizing map (SOM) competitive
learning layer, and an associative output layer responsible for mapping representations in
the SOM to response categories. A key feature of the model was that competitive learning in
the SOM enabled internal representations of stimuli to change over the course of exposure
(see [33]). When trained with only difficult-to-discriminate inputs, stimuli continually com-
peted over the same representational space in the map (i.e., they activated the same process-
ing elements). Consequently, representational modification was slow, degrading the ability
of the associative learning layer to map stimuli to correct outputs. In contrast, when the
model was initially trained with easy contrasts, competition for representational space
between hard-to-discriminate stimuli was reduced. This was because the SOM had already
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spatially segregated elements that distinguished inputs. In Saksida’s model [18-19], easy tri-
als facilitated later representational modification, making it easier to map similar stimuli to
different outputs. Importantly, the SOM computational framework (also, [33-34]) predicts
learning and the easy-to-hard effect regardless of whether or not attention is directed toward
particular stimulus features. This prediction is consistent with neural data demonstrating
that under passive exposure conditions there is significant reorganization of cortical repre-
sentations of stimuli (e.g., [35-36]) and improvements in perceptual performance (e.g., [6,
37-40]). It can also potentially account for learning along stimulus dimensions that are irrel-
evant for making trained discriminations (e.g., [41-45]) and the specificity of learning
within a dimension (for review, see [46]).

Whether the advantages of progressive training arise from the discovery of appropriate
dimensions, from adjustments to stimulus representations and their outputs, or from both
processes, continues to be debated. Suret and McLaren [47] created four different morphed
face continua and trained participants in a categorization task with an easy-to-hard or con-
stantly difficult regimen. Despite training on the four continua concurrently (i.e., several
dimensions were relevant in the same task), easy-to-hard effects were still found. Those results
were well simulated by a simple associative model of learning, leading the authors to conclude
that “there is no need in our theorizing to postulate changes in associability to a dimension as
awhole”. In a series of recent studies from our group [6-8], progressively trained human lis-
teners outperformed those receiving non-progressive training in auditory temporal discrimi-
nation tasks. In one study, we used birdsongs that varied in overall rate as stimuli [6]. Training
regimens in which participants progressed from easy-to-hard discriminations, moved from
hard-to-easy discriminations (anti-progressive), had randomly ordered discrimination diffi-
culties, or constantly hard discriminations were compared. Progressively trained participants
showed the best discrimination performance. Participants undergoing anti-progressive train-
ing performed the worst. This suggested that it was the progression from easy-to-hard discrim-
inations, and not mere variability in discrimination difficulty that mattered. Also of note, even
though participants in the anti-progressive and random-order regimens received easy trials
that emphasized temporal dimensions of difference, this did not lead to performance equal to
that of progressive training.

More support for representation-based views comes from neurophysiological work. One
study in which barn owls were exposed to prismatic spectacles, found that receptive fields of
neurons coding for auditory space in the optic tectum were altered more so when prisms
shifted the horizontal visual field in progressive increments than when a large shift was intro-
duced without progression [48]. Another study investigated whether differences in human
performance were correlated with differences in cortical plasticity observable in the auditory-
evoked potential (AEP). Participants were trained in either a progressive or constantly difficult
regimen to discriminate frequency modulated sounds with a 12 Hz repetition rate from sounds
having slower rates (i.e., <12 Hz). AEPs were measured before and after training in a para-
digm in which frequently presented 12 Hz sounds were intermixed with occasional oddball
sounds with slower rates. The P2 component of the AEP evoked by slow sounds showed
amplitude enhancement that was greater after progressive training. This effect was obtained
while participants were asked to ignore sounds and read a book or magazine, suggesting that
neural signatures of the progressive advantage are observable under conditions in which atten-
tion is not directed toward stimuli [8].

Drawing contrasting conclusions, Pashler and Mozer [11] reported that the benefits of pro-
gression in perceptual category learning tasks were only evident when the relevant stimulus
dimension was obscured by varying features along multiple dimensions. Furthermore, when
Pashler and Mozer’s participants were explicitly informed of the relevant dimension prior to
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training, the progressive advantage disappeared. Based on these results, they suggested that
progression enhances learning primarily in situations where participants are confused about
what features distinguish the events to be classified. Similar results and conclusions were
reached decades earlier in other category learning experiments [2,3,5,9]. Similarly, Ahissar and
Hochstein [49] found that exposure to a single “target present” and “target absent” trial in an
easy version of a visual detection task was sufficient to facilitate later learning. Few participants
showed learning without easy trial exposures. This Eureka effect was interpreted to support the
idea that easy trials make stimulus features accessible via attention. There is further support for
this view in observations that having knowledge regarding an upcoming trial’s difficulty or rel-
evant perceptual dimension facilitates stimulus processing as assessed with behavioral [50-51]
and physiological measures [52].

Understanding the mechanisms that drive easy-to-hard effects, and testing assumptions of
current learning theory, are important for the development of perceptual training regimens
that have real-world applications (e.g., speech contrast training, dialect accommodation
training, bird identification, etc.). If easy-to-hard effects are mainly driven by the discovery
of the dimensions that contain the most information, then training regimens may be most
effective if they explicitly focus attention on relevant dimensions. For instance, Roads,
Mozer, & Busey [53] propose that lengthy visual expertise training in fingerprint-matching
can be reduced if novices are guided where to look by increasing the saliency of the parts of a
fingerprint image where experts look. Similar proposals have been made for learning of unfa-
miliar speech sound contrasts [24]. If, however, data suggest that incremental representation-
based learning mechanisms are an important component of refining perceptual abilities,
then training regimens may be more effective when they take into account how sequencing
of stimulus presentations constrains learning-related changes to stimulus representations
and/or their associations.

The current work tests the popular claim that attentional spotlighting views are sufficient to
explain easy-to-hard effects in perceptual/category learning. If benefits are a result of discover-
ing the appropriate dimension (cf. [11]), then any benefit of sequencing should generalize
across the critical dimension. For example, if easy-to-hard sequencing causes the attentional
spotlight to be placed on the relevant auditory dimension of frequency modulation (FM) rate
(cf. [6-8]), benefits should apply to all stimulus contrasts in which the critical dimension is
FM rate. Several researchers have used this exact argument in support of attentional-spotlight-
ing in categorization tasks (e.g., [27]). In contrast, learning theories based on how representa-
tions are reorganized and modified predict that benefits should be partially specific to the
feature values of trained stimuli. For instance, if learning is enhanced under a regimen that
fades from large to small FM rate differences, this learning will be specific to those rates, and
potentially the audible sound frequencies present in the acoustic signal [46]. In other words,
the progressive advantage should be restricted to the stimulus representations elicited by pro-
gressively trained stimuli. This work tested these hypotheses via within-subjects designs where
participants received easy-to-hard sequencing of FM rate discriminations for trains of FM
sweeps in one frequency range (e.g., 300-600 Hz), but constantly difficult discriminations for
FM sweep trains that spanned a separate set of frequencies (e.g., 3000-6000 Hz). If learning
mechanisms beyond attentional-spotlighting contribute to the benefits associated with pro-
gression, then participants should perform better after training with sounds from their pro-
gressively trained range. This is examined both under testing conditions very similar to
training (Experiment 1), and testing conditions requiring application of learning to a novel
and more difficult task (Experiment 2).
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Experiment 1

In Experiment 1, participants were trained simultaneously in progressive and constantly
difficult training regimens to categorize FM sweep trains with different rates of frequency
modulation as ‘Fast’ or ‘Slow’. Progressive and Constant regimens were assigned to different
frequency ranges and were counterbalanced. Participants were tested post-training with both
frequency ranges. Effects of regimen were examined.

Methods
Ethics statement

The Institutional Review Board of The University at Buffalo, State University of New York,
approved Experiment 1 of this study. All participants signed an informed consent document.

Participants

Twenty-two young adults (ages 18-32) from the area surrounding the University at Buffalo,
The State University of New York, participated in exchange for course credit in an introduc-
tory psychology course, or on a volunteer basis. Two participants, one from each group, were
excluded from the analysis because they failed to exceed chance performance in the testing
portion of the experiment (averaged across frequency ranges). All participants were putatively
healthy with self-reported normal hearing. Participants were assigned randomly to either
receive progressive training in the ‘low’ or the ‘high’ frequency range, with constant training
assigned to the opposite range.

Stimuli and apparatus

Sweep trains consisted of 5 consecutive and upwardly directed FM sweeps spanning frequen-
cies from 300-600 Hz (‘low’ frequency range) or 3000-6000 Hz (‘high’ frequency range). FM
rates of 6, 6.7, 7.5, 8.4, 9.4, 10.6, 11.8, and 13.4 octaves per second were used. A preliminary
experiment revealed that FM sweep trains in the ‘high’ and low’ frequency ranges were simi-
larly discriminable on the dimension of rate (see supplemental materials, S1 File). See Fig 1 for
depictions of example sweep trains. FM sweep trains are especially suitable for the current
study because: 1) perceptual learning has been well documented with FM stimuli [7,24,45,54],
2) FM sweep trains are complex, like many real-world sounds (e.g., speech), yet are unfamiliar
to participants, and 3) auditory perceptual learning is in many instances frequency dependent,
showing partial to full specificity to the frequencies of trained sounds (for review, see [46]).
The last reason warrants within-subject comparisons between ‘low’ and ‘high’ frequency
ranges after training (cf. [45]). Stimuli were generated in MATLAB 2014a (Mathworks, Natick,
MA).

Experimental procedures and data acquisition were performed using DMDX experimental
software [55]. Participants made responses via a computer keyboard. Sounds were presented
over closed JVC HA-RX500 headphones in closed room judged as quiet by the experimenters.
Stimuli were presented at a fixed comfortable listening level not exceeding 81 dB SPL.

Procedures

Training and testing took place in a single session.

Training. A single-interval two-alternative forced choice (1i-2afc) task was used. On half
of all trials, a “Slow” sweep train (< = 8.4 octaves per second) was presented. The other half of
trials contained “Fast” sweep trains (> = 9.4 octaves per second). Participants were explicitly
informed with verbal instructions before starting that the sounds would differ in speed. Their
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Fig 1. Spectrograms of sweep trains and depiction of training procedures for the counterbalance condition which
received progressive training in the ‘low’ frequency range and constant training in the ‘high’ frequency range. In
the low frequency range, Fast/Slow contrasts start with a large difference in Block 1 of training, but progressively become
more difficult. In the high frequency range, contrasts start difficult to differentiate and remain difficult throughout training.

https://doi.org/10.1371/journal.pone.0180959.9001

task was to press a key marked S’ if a sweep train was “Slow” and a key marked ‘F’ if a sweep
train was “Fast”. Displayed on the screen during each trial was the question: “Slow or Fast?”
Fig 1 depicts training contrasts experienced by half of the participants for which the low fre-
quency range received progressive training and the high frequency range received constant
training. In this case, the first block of training contained easy to categorize trains in the ‘low’
frequency range, but hard to categorize trains in the ‘high’ frequency range. Though the
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Al

contrasts differed in difficulty, the appropriate categorization boundary was the same for these
frequency ranges (between 8.4 and 9.4 octaves per second). Over the course of blocks the ‘low’
frequency range included progressively more difficult contrasts until reaching the same FM
rate contrast as the ‘high’ frequency range. The ‘high’ frequency range remained at a fixed level
of difficulty throughout training. There were 4 blocks of training with 48 trials in each block
(12 slow-low, 12 slow-high, 12 fast-low, 12 fast-high). Order of stimuli was pseudo-random-
ized within a block such that no more than 2 of the same trial types occurred in consecutive tri-
als (unique for each participant). ‘Low’ and ‘high’ frequency range trials were intermixed.
Feedback of correctness was given after each trial with the words “Correct” or “Wrong” pre-
sented after a response. If a response was not given within 5 s of a sound’s onset, a missing
response was recorded and the next trial was initiated. Trials with missing responses were
excluded from the analysis. The mean number of missing responses per participant was less
than .1% of all trials (maximum was ~2%).

Testing. After training, all participants completed a test containing high- and low-fre-
quency range sweep trains at the hardest contrast (8.4 vs. 9.4 octaves per second). The same 1i-
2afc task used during training was also used during testing. The test was 84 trials long (21
slow-low, 21 slow-high, 21 fast-low, 21 fast-high). Trial order was pseudo-randomized so that
no more than 3 of the same sounds were presented consecutively. No feedback was given dur-
ing the test.

Results
Training
Fig 2 shows A’ in the training portion of the experiment. Data is collapsed across counterbal-

ance conditions, showing performance for the progressively-trained and constant-trained fre-
quency ranges. No significant main effects or interactions with counterbalance condition were

0.95
0.90
0.85
0.70
0.65
0.70
0.65
0.60
0.55 Q
0.50

—a— Progressive

O- Constant

3 Q

1 2 3 4
Training Block

Fig 2. Training performance (A’) for the progressive and constant trained frequency ranges. Error bars show within-
subject standard errors of the means [57].

https://doi.org/10.1371/journal.pone.0180959.g002
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found when including it as a factor in any analysis (see S1 File for this alternative analysis of
data from both experiments). Where ‘H’ refers to Hit Rate and ‘F’ refers to False Alarm Rate,
A’ was equal to .5+ (H—-F)(1 + H - F)/4H(1 — F) when H > F, and .5 - (F - H)(1 + F - H)/4F
(1 — H) when H < F [56]. A 2 (range: progressive or constant) x 4 (block) repeated-measures
ANOVA revealed both a significant main effect of range, F(1, 19) = 46.26, p < .001, ,° = .71,
and of block, F(3, 57) = 5.47, p = .002, n,” = .22. The former reflects the progressive training
regimen being easier overall than the constantly hard training regimen. The latter character-
izes a large decrease in sensitivity over the course of training that is driven by the large changes
in stimulus contrast difficulty from block to block in the progressive condition. There was also
a significant range x block interaction, F(3, 57) = 20.28, p < .001, npz =.52, stemming from A’
for the two ranges converging over the course of the training period. This conversion is likely
driven by the difficulty of stimulus contrasts becoming more similar between the conditions as
training progresses. None of these training results are surprising. They are consistent with pre-
viously reported trends between the two types of conditions (e.g., [11]), and are well in line
with effects of contrast difficulty on perceptual sensitivity to differences [56]. A noteworthy
point, however, is that the block 4 sensitivities appear to be similar for the progressively trained
and constant trained ranges. At the end of training, there is no effect of training regimen. Even
s0, it has been shown that the benefit of progression tends to build up over the course of expo-
sures to a new hard contrast [6, 19]. Test results are better suited for an assessment of training
effects.

Testing

Fig 3 shows A’ in the test for the progressively-trained and constant-trained frequency ranges.
A paired samples t-test found that the progressively trained range was performed with signifi-
cantly higher accuracy than the constant range, #(19) = 2.16, p = .043, Cohen’s d = .49.

Discussion

That a progressive advantage was found within-subjects when comparing conditions that had
the same critical relevant dimension suggests that learning involved processes beyond dimen-
sional-highlighting. Representation-based theories where learning occurs because of changes
to the stimulus representations themselves, or in the read-out connections from those repre-
sentations, predict that benefits should be restricted at least partially to the trained sounds (i.e.,
the sounds that elicit those representations). Representation-based accounts of perceptual
learning are thus more consistent with the current data.

Experiment 2

Experiment 2 investigated whether or not there is a progressive advantage in the generalization
of learning [6-8]. Two types of generalization were examined. First we examined whether the
effect would remain when participants were tested in an untrained task. After training similar
to Experiment 1, participants were tested in a two-interval two-alternative forced-choice (2i-
2afc) task on their ability to discriminate rate in both the progressive and constant trained fre-
quency ranges. Two sounds of differing FM rates were presented, and participants were asked
to indicate which was faster. We also tested whether or not there would be a progressive advan-
tage when stimulus contrasts were made more difficult than training. Here, we shortened
sweep trains in order to make the task more difficult. Shorter novel sweep trains with less repe-
titions were tested in addition to trained sweep trains to characterize potential differences in
generalization of learning to discriminate more difficult contrasts. There were two reasons for
the methodological changes from Experiment 1 to Experiment 2. If the progressive advantage
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Fig 3. Test performance (A’) for the progressive and constant trained frequency ranges. Error bars
show within-subject standard errors of the means [57].

https://doi.org/10.1371/journal.pone.0180959.9003

found in Experiment 1 extends to an untrained task (i.e., the 2i-2AFC task) and to untrained
stimulus contrasts (i.e., shorter sweep trains), this would provide support for a representation-
based account of the progressive advantage. It would also suggest that these perceptual learn-
ing mechanisms are potentially relevant for real world training applications because they gen-
eralize beyond the exact circumstances of training.

Methods
Ethics statement

The Institutional Review Board of United States Air Force Research Laboratory approved
Experiment 2 of this study. All participants signed an informed consent document.

Participants

Eighteen young adults (ages 19-34) at the U.S. Air Force Research Laboratory, Wright-Patter-
son Air Force Base, OH, were either paid to participate, or served as unpaid volunteers. All
individuals had prior experience participating in psychoacoustic studies, including participa-
tion in a preliminary study designed to determine whether or not performances in ‘low” and
‘high’ frequency ranges were comparable (see supplemental materials, S1 File). All participants
were putatively healthy with self-reported normal hearing and no psychoactive medication use
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at the start of the study. Participants were randomly assigned to either receive progressive
training in the ‘low’ or the ‘high’ frequency range, with constant training assigned to the oppo-
site range.

Stimuli and apparatus

Sweep trains were made up of 1, 2, 3, or 4 consecutive and upwardly directed FM sweeps span-
ning the same frequency ranges as Experiment 1. FM rates of 5, 5.4, 5.8, 6.3, 6.8, 7.4 7.9, and
8.6 octaves per second were used. The number of repetitions and differences between succes-
sive FM rates in this stimulus set were reduced to accommodate well-practiced and highly
motivated Air Force listeners. As in Experiment 1, stimuli were generated in MATLAB 2014a
(Mathworks, Natick, MA).

Experimental procedures and data acquisition were performed using MATLAB. Partici-
pants made responses via a computer keyboard. Sounds were presented over Telephonics
TDH-39P headphones (Farmingdale, NY) in an Acoustic Systems sound booth (Occupational
Health Dynamics, Hoover, AL), at a fixed comfortable listening level not exceeding 81 dB SPL.

Procedures

The experiment took place across two sessions occurring on separate consecutive days. Train-
ing took place in the first session. Testing took place in the second session.

Training. The training task and procedures were similar to Experiment 1. On half of the
trials, a “Slow” sweep train (< = 6.3 octaves per second) was presented. The other half con-
tained “Fast” sweep trains (> = 6.8 octaves per second). As in Experiment 1, participants
received explicit verbal instructions that the sounds would differ in speed prior to starting
training. There were 6 blocks of training with 48 trials in each block (12 slow-low, 12 slow-
high, 12 fast-low, 12 fast-high). For the progressively trained frequency range, FM rate con-
trasts faded from easy-to-hard over the course of training blocks: 5 vs. 8.6 (block 1), 5.4 vs. 7.9
(block 2), 5.8 vs. 7.4 (block 3), and 6.3 vs 6.8 (blocks 4-6). The FM rate contrast was always 6.3
vs 6.8 for the constant trained frequency range. Trial order was completely randomized within
a block (unique for each participant). Feedback was given in the same manner as Experiment
1. There was no response deadline.

Testing. On each test trial two FM sweep stimuli were presented back-to-back with 500
ms of silence in between. One of these stimuli was “Fast” (6.8 octaves per second) and the
other was “Slow” (6.3 octaves per second). Listeners’ task was to indicate which was faster. The
number of repetitions in FM sweep stimuli (1-4) varied from trial to trial, but was the same for
the two stimuli presented within a trial. There were 4 blocks in the test with 48 trials in a block
(6 trials for each combination of repetition and frequency range). Orders of the fast and slow
sounds within a trial were counterbalanced. Trials were completely randomized within a block
(unique for each participant). No feedback was presented. There was no response deadline.
Once again, the difference in the testing task serves to examine task generalization of the easy-
to-hard effect.

Results
Training

As in Experiment 1, all analyses were performed on data collapsed across counterbalance
conditions. Fig 4 shows A’ across training blocks and ranges. A 2 (range: progressive or con-
stant) x 6 (block) repeated-measures ANOVA revealed both a significant main effect of range,
F(1,17) = 109.75, p < .001, i,° = .87, and block, F(5, 85) = 13.95, p < .001, 17,” = .45. Once
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again, the former likely reflects the progressive training being easier overall than the constantly
hard training regimen. The latter is likely driven by the large decrease in sensitivity over the
course of training due to changes in stimulus contrast difficulty from block to block in the pro-
gressive condition. A significant range x block interaction, F(5, 85) = 39.77, p < .001, n,” = .70,
was also found. This likely stems from A’ for the two ranges converging over the course of the
training period. These effects were expected and are unsurprising. Manipulations to stimulus
similarity are well known to impact discriminability. We turn next to analyses of the test data
to assess our hypotheses.

Testing

Fig 5 shows test A’ for the progressive and constant frequency ranges for each level of the repe-
tition factor (1-4 repetitions). Qualitatively, it appears as though test performance is better

in the progressively trained frequency range for every level of repetition, with the possible
exception of stimuli containing a single sweep. A 2 (range: progressive or constant) x 4 (repeti-
tions) repeated-measures ANOVA revealed a significant main effect of range, F(1, 17) = 7.72,
p=.013,7,” = 31, supporting better performance for the progressively trained range. There
was also a significant main effect of repetition, F(3, 51) = 27.31, p < .001, 1,” = .62. A signifi-
cant linear trend analysis was in support of FM sweep trains with more repetitions being easier
to discriminate, F(1, 17) = 44.68, p < .001, 77,” = .72. The range x repetitions interaction was
not significant, F<2.

Discussion

Experiment 2 replicated the Experiment 1 finding that the progressively trained range showed
enhanced performance post-training. Further, the progressive advantage was observable in an
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untrained 2i-2afc task, suggesting that the processes involved in learning are task-general
rather than task-specific. The progressive advantage was also not stimulus specific. That is, the
effect occurred for both trained and untrained sounds that contained less FM sweep repeti-
tions compared to training.

General discussion

The notion that focusing attention on a relevant perceptual dimension explains perceptual
learning and easy-to-hard effects has been around for over a century [1,9,11]. In early writing
on the topic, James [1] reported that most scientists/philosophers of the time had dismissed
perceptual learning as a topic of study, assuming that the theoretical mechanisms were deter-
mined on the basis that: “what we attend to we perceive more minutely”. Unsatisfied with this
as the sole explanation for perceptual learning, James offered a theory in which sensory
impressions are discriminated based upon their associations with memories of past events,
which could also account for easy-to-hard effects. Later, in a classic easy-to-hard effect demon-
stration, Lawrence [9] found that rats given 30 initial easy trials performed better than rats
trained in a constantly hard regimen to discriminate stimulus brightness. He concluded that
dimensional discovery should play some role in learning theory in addition to associative
mechanisms (also see [58]). Simulation work later revealed that such effects could be
accounted for by both associative (e.g., [20, 47]) and non-associative [18-19] representation-
based learning mechanisms without assuming dimensional discovery. Even so, attentional-
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spotlighting views have continued to be popular accounts of the easy-to-hard effect and per-
ceptual learning.

Here, we tested the adequacy of attentional spotlighting alone to explain easy-to-hard
effects using auditory tasks. In two experiments, easy-to-hard effects were found within indi-
viduals when stimulus contrasts with the same critical dimensions were assigned to different
training regimens (progressive or constantly difficult). Additionally, a progressive advantage
was found within individuals for untrained FM sweep train sounds that contained less percep-
tual information than the training set (Experiment 2). That is, a progressive training advantage
was also found in the generalization of learning towards more difficult to discriminate novel
stimuli. The easy-to-hard effects observed appear to be task-independent as they were found
when testing the post-training ability to discriminate sounds in the trained categorization task
(Experiment 1) and an untrained 2i-2afc psychophysical task (Experiment 2). It should also be
noted that all individuals were given explicit instructions to discriminate sounds based on
their speed, “Slow” and “Fast” labels for responses, and on-screen reminders that they should
discriminate sounds using speed. That easy-to-hard effects were still observed despite these
multiple sources of information about the relevant dimension runs counter to arguments from
the attentional-spotlighting perspective that the establishment of dimensional relevance
“erases” easy-to-hard effects [11].

The current work does not refute the claim that knowing what to pay attention to in percep-
tual discrimination tasks has beneficial effects. This has been well demonstrated. Listeners
trained to discriminate sounds along the dimension of azimuthal auditory spatial separation
with inter-aural level difference (ILD) cues generalize some of this learning to spatial discrimi-
nations using inter-aural time difference (ITD) cues [22]. That learning generalizes even
though the acoustic features available for discrimination are different has been taken as evi-
dence that ILD trained participants learn to pay attention to auditory space. Also, discrimina-
tion of stimuli along category relevant dimensions can benefit from category learning
regardless of whether or not comparison stimuli are on opposite sides of the categorization
boundary (e.g., [59]; although, see [25]). An attentional-spotlighting view provides a reason-
able account for these findings and several other related studies (for review, see [21,60-62]).
Part of the reason why attentional-spotlighting continues to be used as a primary explanation
for perceptual improvements is that the focus of attention has such large and consistent effects.
However, learning that can take place with essentially no perceptual experience (e.g., by telling
a person what to pay attention to; cf. [11]) does not well characterize perceptual learning as
typically defined-“an increase in the ability to extract information from the environment, as a
result of experience and practice with stimulation coming from it” [42].

Determining which representation-based mechanisms contribute to easy-to-hard effects,
and perceptual learning more generally, has proven to be difficult [16-17,19,29]. Given that
non-associative models like Saksida’s SOM based model [18-19] do not rely on reinforcement
learning, one prediction they make is that a progressive advantage should be observed even
under mere-exposure conditions. A few behavioral studies have tested this prediction, with
recent research finding such an effect (e.g., [6, 63], although see [47,64]). Another prediction
from non-associative models, but not necessarily from associative models, is that progressive
training should benefit acuity for a trained stimulus on a dimension irrelevant for making
the trained discrimination. Both the auditory [45] and visual domains [38] have shown task-
irrelevant perceptual learning (although, see [58]). Non-associative models could potentially
explain easy-to-hard effects in task-irrelevant perceptual learning if expansion of a stimulus’s
representation in representational space (cf., [34]) aids in discriminating that stimulus from
others that differ on more than the trained dimension. To our knowledge, predictions regard-
ing the effects of stimulus sequencing in such a case have not yet been explicitly tested.
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Whatever representation-based account fits the experimental data best will likely need to be
merged with some model of attention in order to account for all circumstances under which
easy-to-hard effects manifest. One possible framework for this is reverse-hierarchy theory
(RHT). RHT proposes that easy discriminations recruit high-level cortical areas that focus
processing on salient features [49,60]. As difficulty increases, lower cortical areas that form
representations with higher resolution for those features are subsequently accessed by atten-
tion. Changes in stimulus representations and representational outputs play no role in easy-to-
hard effects in this framework. Rather, effects stem from finding the appropriate existing rep-
resentations for making distinctions. Aside from differences in the terms “appropriate dimen-
sion” and “appropriate representation”, the reasoning behind the RHT and dimensional
discovery views is similar—easy trials help direct the “spotlight” of attention, which facilitates
discrimination of difficult contrasts. RHT in its current form is also unlikely to account for the
progressive advantage seen here since access to the representational level suitable for making
distinctions should be the same for both progressively and constantly trained ranges within an
individual. However, RHT theorists have acknowledged the need for representation-based
learning within and/or between hierarchical levels to explain varieties of perceptual learning
data (e.g., reweighting of features from low-levels to high-levels; [60]). Potentially, a model
that specifies a representation-based learning process within RHT could account for easy-to-
hard effects that appear to be driven by both attentional-spotlighting and representation-based
learning mechanisms.

Caveats and further considerations

This work was not designed to test all of the procedural and stimulus conditions under which
easy-to-hard effects manifest. Because of this, it is necessary to consider how alternative con-
clusions reached by others may relate to methodological differences. Perhaps the most salient
difference between our work and most of the other studies of the easy-to-hard effect is that we
use auditory stimuli. Those arguing for attentional spotlighting have primarily used visual sti-
muli [5,11,49], even though similar processes are assumed to occur in the auditory system as
well [11, 60]. The processing in the visual and auditory systems is distinct in several ways. This
includes differences in the processing of temporal features, integration across dimensions, and
occlusion/masking [60, 65]. Some claim these differences lead to qualitatively different learn-
ing effects [65]. A visual perceptual learning study analogous to ours may not produce similar
results. In addition, we have also only tested easy-to-hard effects in tasks in which acoustic fre-
quency modulation is relevant. Many other acoustic and non-auditory sensory dimensions
remain to be tested.

Another difference between our methods and those of studies advocating for an atten-
tional-spotlighting perspective lies in the nature of the tasks being trained. Whereas we
attempted to minimize procedural learning (e.g., learning what dimensions determine cate-
gory membership), others have used tasks wherein procedural learning is necessary. For
instance, in Pashler and Mozer’s [11] experiments, the largest easy-to-hard effect was found in
a categorization task with artificial face-like stimuli containing variations in eye size, the
presence of a nose, brightness, and horn height. Only horn height was relevant. Participants
were not told which feature was relevant and had to learn this through trial and error. In
another categorization study, Spiering and Ashby [66] trained participants to categorize visual
stimuli in a manner that required the use of spatial frequency and orientation dimensions. In
contrast to our previous work, they found that participants trained with an anti-progressive
regimen actually performed better than progressively trained participants. Presumably this
was because hard-to-easy sequencing discouraged an inappropriate single-dimensional rule-
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based categorization strategy (i.e., using only one dimension). Learning-related changes to
performance in these cases were likely related to discovering what to do rather than to any
changes in perceptual acuity, especially since the tasks involved scenarios in which participants
were not informed about the relevant dimensions. Though our data show different patterns of
improvement and generalization, they are at odds with these earlier visual studies only in the
sense that our findings demonstrate a need to consider learning processes beyond the discov-
ery of task-appropriate strategies. Variations in the sequential structure of training regimens
may affect procedural learning in ways that differ from their effects on perceptual learning.

Practical and applied relevance

It is important to consider incremental processes of perceptual learning in the design of train-
ing regimens meant to address real-world issues of perception. Partly, this is because the
involvement of these processes predicts consequences that are not considered or predicted by
attentional-spotlighting. For instance, increased differentiation of perceptual representations
in the brain may help individuals more flexibly use those representations in other cognitive
tasks [67], allowing for the generalization of perceptual skills in a way not predicted by atten-
tional spotlighting. Relatedly, better representational quality may reduce the need for one to
utilize domain-general cortical networks involved in cognitive-control for determining what
he or she is hearing or seeing (e.g., [68]). Learning could thus free up those resources for use in
other tasks (e.g., encoding that information into long-term memory). Attentional spotlighting
views instead propose that learning only involves correctly engaging cognitive control pro-
cesses (e.g., selective attention). Another applied prediction from some representation-based
learning models (e.g., [18-19]) is that exposure to stimuli should be beneficial even if task-rele-
vant dimensions are not allocated attention. Potentially, such exposure could be used to boot-
strap explicit perceptual training (cf. [69-70]). If designers of perceptual training regimens
focus only on optimizing the “spotlight” of attention, they are unlikely to maximize their train-
ing procedures to fully utilize perceptual learning.

Collectively, past studies of the easy-to-hard effect along with the current results suggest
that both attentional-spotlighting and basic incremental representation-based learning pro-
cesses can be important in perceptual learning. Developers of training programs meant to
reduce an individual’s perceptual or cognitive problems (e.g., language-related deficits; [71]),
or to enhance performance in some perceptual task of interest (e.g., music perception; [72];
speech perception; [54]), should consider maximizing both types of learning. Programs that
focus on either dimensional highlighting (e.g., [72-74]), or incremental learning processes
(e.g., [75]), may not be as beneficial as programs that focus on both (e.g., [71,76]).

It is also important to note that the effects of sequencing that should be considered extend
beyond the sequencing of discrimination difficulty. For instance, interleaved (e.g., A, B, A, B,
A, B) and blocked (e.g., A, A, A, B, B, B) exposure to categories can have different effects on
learning outcomes. Typically, interleaving categories throughout the training period leads to
better performance (for review, see [77]). However, it may be that interleaved and blocked
category training regimens have different effects depending upon perceptual similarities
within a category. Hammer et al. [78] propose that blocked training should benefit perfor-
mance when within category similarity is low (e.g., songbirds having different colors and
shapes) because it will help a learner ignore category irrelevant information (e.g. color). In
contrast, when within category similarity is high, the opposite should be true. That is, inter-
leaving categories across trials will help the learners determine the features that make those
categories distinct. The stimulus sets in our tasks conform to the latter circumstance. Pro-
gressive sequencing could have different effects in a categorization task if within-category
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similarity is low. Type of categorization task (e.g., ruled-based vs. information integration
based) may also interact with easy-to-hard effects [66]. Hence, whether or not easy-to-hard
benefits are obtained likely depend on the type of task being trained and the processes
involved in learning (e.g., strategic rule-based learning vs. implicit long-term memory based
learning). This may be important to consider for clinical populations known to use atypical
categorization strategies (e.g., [79-80]).

Currently, decisions about when to increase or decrease difficulty, and the time to spend
on various levels of difficulty within a task, are often determined by trial-and-error, self-
reports of learners, or assumptions about what should work best. Potentially, learning could
be simulated under a variety of training regimens using models that contain both incremen-
tal learning and attentional-spotlighting components. A subset of those training regimens
leading to the best learning and generalization could then be tested in behavioral work. Simi-
lar methods have been used successfully in memory research (for review, see [81]), and could
make it possible to design empirically validated training regimens, without an exhaustive cor-
pus of behavioral studies. This work could also be informative in establishing training proce-
dures that limit “worsening” in generalization (i.e., when training hurts performance with
novel stimuli; [22,45,82-84]), or that optimally benefits learning for specific types of percep-
tual input.

Conclusions

Although attentional spotlighting can in some cases be useful for learning to make fine percep-
tual distinctions, it alone is not a sufficient explanation of easy-to-hard effects. Attentional-
spotlighting accounts incorrectly predict that easy-to-hard sequencing should aid discrimina-
tion performance all along the discrimination relevant dimension. They also incorrectly
predict that when a participant’s attention is explicitly and repeatedly drawn to relevant
dimensions early in training (e.g., by the presentation of easy contrasts in one range of that
dimension), then he or she should show no within-subject benefits of progressive training
(e.g., [11]). In contrast to the attentional-spotlighting explanation of easy-to-hard effects, pro-
posed representational modification/reweighting learning mechanisms (e.g., [16,19,30]) are
able to account for the specificity of easy-to-hard effects to trained sounds and the presence of
an easy-to-hard effect when relevant dimensions are clearly revealed. Future theoretical and
applied work may benefit from consideration of how multiple processes contribute, and possi-
bly interact, to modify perceptual acuity.
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