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Abstract: Three flavonoids derived from the leaves of Capsicum chinense Jacq. were identified
as chrysoeriol (1), luteolin-7-O-glucopyranoside (2), and isorhamnetin-7-O-glucopyranoside (3).
They had IC50 values of 11.6 ± 2.9, 14.4 ± 1.5, and 42.7 ± 3.5 µg/mL against soluble epoxide hydrolase
(sEH), respectively. The three inhibitors (1–3) were found to non-competitively bind into the allosteric
site of the enzyme with Ki values of 10.5 ± 3.2, 11.9 ± 2.8 and 38.0 ± 4.1 µg/mL, respectively. The
potential inhibitors 1 and 2 were located at the left edge ofa U-tube shape that contained the enzyme
active site. Additionally, we observed changes in several factors involved in the binding of these
complexes under 300 K and 1 bar. Finally, it was confirmed that each inhibitor, 1 and 2, could be
complexed with sEH by the “induced fit” and “lock-and-key” models.
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1. Introduction

Arachidonic acid is converted to epoxyeicosatrienoic acids (EETs) by cytochrome P450
epoxygenase [1]. EETs exist as four regioisomeric metabolites; 5,6-, 8,9-, 11,12- and 14,15-EETs [1].
Furthermore, soluble epoxide hydrolase (sEH, E.C.3.3.2.10) biosynthesizes dihydroxyeicosatrienic acids
(DHETs) from EETs by hydrolyzing the epoxide ring of EETs into a diol [2]. Since EETs were revealed as
endothelium-derived hyperpolarizing factors in 1996, they have been found to have biologicalactivities,
such as anti-inflammatory, anti-hypertensive, kidney-protective, and cardiac-protective effects [3].
11,12-EET was reported to inhibit nuclear factor kappa B signaling pathways and cytokine-induced
expression of cellular adhesion molecules [4]. 11,12- and 14,15-EETs stimulate the large-conductance
Ca2+-activated K+ channel and dilate blood vessels [3]. Therefore, sEH, which is encoded in the EPHX2
gene located at chromosomal region 8p21-p12, has been known as the hydrolase to treat cardiovascular
disease [5]. The sEH inhibitor, 12-(3-adamantan -1-yl-ureido)dodecanoic acid (AUDA), is a potential
inhibitor, with an IC50 value in the nanomolar range [6]. Due to its low solubility, AUDA is dissolved
in DMSO for in vitro experiments and used as a formulation with large amounts of 2-hydroxylpropyl
β-cyclodextrin in vivo [3].

There are 30 species in the genus Capsicum, and of them Capsicum annuum L. (C. annuum),
Capsicum chinense Jacq. (C. chinense), Capsicum frutescens L., Capsicum baccatum L., and Capsicum
pubescens Ruiz and Pav. are mainly cultivated [7]. C. chinense or “Bhoot jolokia” and “Bin
jolokia” in Assam, “Naga King Chili” in Nagaland, “Umorok” in Manipur, and “Ghost pepper”
in the west, which belongs to the family Solanaceace [8], is an important horticultural crop for
food and medicines [9]. This fruit has been reported to be one of the hottest chili peppers [10].
Capsaicin analogs, nornordihydrocapsaicin, nordihydrocapsaicin, capsaicin, dihydrocapsaicin,
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homocapsaicin, and homodihydrocapsacin, were detected in the extract of the fruit of C. chinense [11].
Additionally, several flavonoids have been reported to have been isolated from the genus Capsicum [12].
The content of quercetin in the leaves is higher in the immature pepper stage (~156.9 mg/g) than
in the mature pepper stage (~10.2 mg/g) [12]. Recently, flavonoids, kaempferol and apigenin
from Tetrastigma hemsleyanum [13], and the flavonoid glycosides, quercetin-3-O-β-D-galactoside and
3,7,3′-tri-O-methylquercetin-4′-O-β-D-apiofuranosyl-(1→2)-O-β-D-glucopyranoside [14], have been
reported as non-competitive agents blocking the catalytic reaction of sEH [13,14]. Finally, these findings
led to the analysis of the components from leaves of C. chinense and study of their activity against sEH.

2. Materials and Methods

2.1. General Experimental Procedures

Column chromatography was performed using silica gel (Kieselgel 60, 70–230 and 230–400
mesh, Merck, Darmstadt, Germany), Sephadex LH-20 (GE Healthcare, Uppsala, Sweden), and C-18
(ODS-A 12 nm S-150, S-75 µm; YMC Co., Kyoto, Kansai, Japan) resins. Thin-layer chromatography
(TLC) was performed using pre-coated silica gel 60 F254 and RP-18 F254S plates (both 0.25 mm, Merck).
Spots in the TLC were visualized by spraying with 10% aqueous H2SO4 solution followed by heating
to 300°C in dried air. Nuclear magnetic resonance (NMR) spectra were recorded using the JEOL
ECA 500 spectrometer (1H, 500 MHz; 13C, 125 MHz) (JEOL, Tokyo, Japan) (Supplementary Materials).
AUDA (10007927), soluble epoxide hydrolase (10011669) and PHOME (10009134) were purchased
from Cayman (Cayman, Ann Arbor, MI, USA).

2.2. Plant Materials

The leaves of C. chinense were collected in October 2017 at Jeollbuk-do, Republic of Korea, and were
identified by Dr. Y.D. Jo in the Radiation Breeding Research Center (RBRC), Korea Atomic Energy
Research Institute (KAERI). A sample specimen (RBRC002) was deposited at the Herbarium of RBRC,
KAERI, Republic of Korea.

2.3. Extraction and Isolation

The leaves of C. chinense (2 kg) were extracted twice with 95% methanol (36 L) at room temperature
for a week. The solution was evaporated under reduced pressure to obtain a methanol extract (~210 g).
The brown extract was suspended in distilled water (2.1 L) and successively partitioned with n-hexane,
chloroform, ethyl acetate, and BuOH fractions. The chloroform fraction (8.4 g) was chromatographed
on a silica gel column and eluted with a gradient system of n-hexane-acetone (0:1→1:1) to give eight
fractions (HC1–HC8). The HC6 fraction was re-chromatographed on the C-18 column using an isocratic
system of methanol–water (3:1) to afford compound 1 (12 mg). The ethyl acetate fraction (6.4 g)
was separated on a silica gel column eluted with a gradient solvent system of chloroform–methanol
(0:1→1:2) to achieve ten fractions (HE1–HE10). The HE6 fraction was separated on a Sephadex LH-20
column with 95% methanol to obtain compound 2 (20 mg) and five fractions (HE61–HE65). Compound
3 (7 mg) was purified by C-18 column chromatography with an isocratic solvent system of 50%
methanol from the HE64 fraction.

2.4. sEH Assay and Kinetic Analysis

sEH (130 µL, ~16 ng/mL) in 25 mM bis-Tris-HCl buffer (pH 7.0) containing 0.1% BSA and 20 µL of
compound in MeOH was mixed in a 96-well plate, followed by the addition of 50 µL buffer containing
5 µM PHOME. The reactions were carried out at 37◦C for 40 min. The inhibitory ratio was calculated
according to the following equations:

Inhibitory activityrate (%) = [(∆C/∆S)/∆C] × 100 (1)
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where ∆C and∆S represent the intensity of control and inhibitor after 40 min, respectively.

y = y0 + [(a × x)/(b + x)] (2)

where y0 is the minimum value on the y-axis, a denotes the difference between maximum and minimum
values, and b refers to the x value at 50%.

2.5. Docking Study of sEH With Inhibitor

The docking study of sEH with its inhibitor was performed using Autodock version 4.2. The 3D
structure of the inhibitor was developed and minimized by MM2. The single bonds were confirmed
as flexible bonds using the AutoDockTools. The 3D structure of the protein was downloaded from
the RCSB protein data bank (pdb id: 3ANS). Water, substrate, and the B chain were deleted from the
pdb file. Hydrogen atoms and Gasteiger charges were added to the A chain. The grid dimensions
were set at 126×126×126 number of points (x×y×z). Docking simulation was performed to dock the
inhibitor 25,000,000 times into this grid. These results were visualized using Chimera version 1.14
(San Francisco, CA, USA) and AutoDockTools 1.5.6 (La Jolla, CA, USA).

2.6. Molecular Dynamic Study

A molecular dynamic study was performed to simulate the optimal configuration of sEH with
the flavonoids using the Gromacs version 4.6.5. Their Itp and gro files were constructed in the
GlycoBioChem PRODRG2 server, and integrated into gro via Gromos96 43a1 force field and topology
files of sEH that were generated by utilizing gdb2gmx of Gromacs. The complex was obtained as cubes
of water molecules measuring 8.5×8.5×8.5 containing six chloride ions. The energy of the complex was
lowered to 10 kJ/mol of maximal force in the steepest descent method. A stable simulated complex was
equilibrated at 300 K for 100 ps, and simulated at 1 bar for 100 ps. Finally, the complex was simulated
for molecular dynamics for 10 ns.

2.7. Data Analysis

Data are expressed as the means ± standard deviation (n = 3). Allvalues were analyzed using
Sigm aPlot (Systat Software Inc., San Jose, CA, USA) to determine treatment variations.

3. Results and Discussion

3.1. Isolation, Identification, and Enzyme Assay

Flavonoids and polyphenols were detected in chili peppers by a total flavonoid and polyphenol
content test [15]. Previous phytochemical studies have reported that flavonoids, such as luteolin and
quercetin derivatives, are contained in the components of hot pepper fruit [16]. In pepper leaves,
10 carotenoids were analyzed by comparing the chromatogram retention time of a mixed standard of
carotenoids by using the C30 column of high performance liquid chromatography [17]. Based on these
facts, the objective of this study was to find flavonoid derivatives from the leaves of C. chinense.

The dried leaves of C. chinense were collected from an experimental farm and extracted with
95% methanol at room temperature for a week. The concentrated extracts were dissolved in
distilled water and successively divided in n-hexane, chloroform, ethyl acetate, and BuOH fractions.
Flavonoid aglocone (1) and glycosides (2 and 3) were purified with open column chromatography
from chloroform and ethyl acetate fractions, respectively. Their chemical structures were evaluated
as chrysoeriol (1) [18], luteolin-7-O-glucopyranoside (2) [19], and isorhamnetin-7-O-glucopyranoside
(3) [20] from nuclear magnetic resonance analysis, and by comparison with reported data (Figure 1).
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Figure 1. The structure of flavonoid derivatives (1–3).

Recently, our studies have revealed that some flavonoids showed inhibitory activity against
sEH [13,14]. Purified compounds 1–3 were evaluated for binding strength and type of enzyme
in vitrofor insight into the sEH inhibition. The inhibitory activity rate on sEH at each concentration
of the compound was calculated as the product difference between the presence and absence of the
enzyme using Equation (1). Figure 2A shows that they inhibit sEH activity in a dose-dependent manner
at concentrations of ~1–30 µg/mL. To calculate the half maximal inhibitory concentration of inhibitors
(IC50), these inhibition rate values were fitted by Equation (2). Inhibitors 1–3 were found to have IC50

values of 11.6 ± 2.9, 14.4 ± 1.5, and 42.7 ± 3.5 µg/mL, respectively (Table 1).
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Table 1. The soluble epoxide hydrolase (sEH) inhibitory activities and enzyme kinetics of flavonoids.

The Inhibitory Activity on sEH

IC50 (µg/mL) a Binding Mode (µg/mL)

1 11.6 ± 2.9 Non-competitive type (10.5 ± 3.2)
2 14.4 ± 1.5 Non-competitive type (11.9 ± 2.8)
3 42.7 ± 3.5 Non-competitive type (38.0 ± 4.1)

AUDA b 1.2 ± 1.2 (ng/mL)
a all compounds were tested in a set of triplicated experiments. b Positive control.

Additionally, these inhibitors were evaluated at three different concentrations for the initial velocity
(v0) at various concentrations of the substrate (1, 1.5, 2.2, 3.1, 6.2, and 12.5 µM). The inverse of these
concentrations and v0 values were used for the Lineweaver–Burk plot. As indicted in Figure 2B–D,
the respective concentrations of the inhibitor had family lines calculated. Flavonoids 1–3 exhibited the
same non-competitive mechanism of actionin the enzyme with a −1/Km value and different 1/Vmax values
(Table 1). Furthermore, the Dixon plot is represented by the modified Lineweaver–Burk plot. The Ki

values were calculated as 10.5 ± 3.2, 11.9 ± 2.8 and 38.0 ± 4.1 µg/mL, respectively (Figure 2E–G, Table 1).

3.2. Molecular Docking

In 1894, the “lock-and-key” model was first suggested as the interaction of enzyme (lock) with
substrate (key) by Emil Fisher [21]. Molecular docking is a virtual technology that calculates this model
using Force-field [22]. Since the 1980s, computer technologies have been used for drug development by
Merck Inc. [22]. Our study adopted molecular docking using the Autodock 4.2 program for increasing
the understanding of the flavonoid–sEH interaction. Based on the enzyme kinetic results, we performed
the blind docking to search for an allosteric site to which inhibitors 1 and 2 with IC50 values below
50 µg/mL could bind. We found that two had the best pose into sEH with binding energies of −8.4
and −7.6 kcal/mol, respectively (Figure 3A, Table 2). They were docked into the left edge position of
a U-tube shape containing the catalytic site of the enzyme. As shown in Figure 3A–E and Table 2,
flavonoid aglycone 1 had three hydrogen bonds between a ketone group and Trp525 (at a distance
of 2.2 Å), a hydroxyl group and Asp496 (at a distance of 1.7 Å) or Phe497 (at a distance of 2.0 Å).
The respective A- and B-rings of the flavonoid kept the π-π interactions with Phe497 at distances of 6.7
and 10.9 Å. The flavonoid glycoside (2) formed four hydrogen bonds between the sugar group and
Leu417 and Met419 at distances of 1.9 and 2.0 Å, as well as two hydroxyl groups between the B-ring
and His 524 at 1.9 Å and 2.1 Å, respectively. In addition, the B-ring of 2 kept π-π interactions with the
furan ring of His420 at a distance of 12.9 Å.

Table 2. Interaction and binding energy of sEH with flavonoids (1 and 2).

Hydrogen Bonds (Å) π-π Interaction (Å)
Binding Energy

(kcal/mol)

1 Asp496(1.7), Phe497(2.0), Trp525(2.2) Phe497(6.7, 10.9) −8.4

2 Asp335(1.9,2.1), Leu417(1.9),
Met419(2.0) His420(12.9) −7.6

3.3. Molecular Dynamics

Since the bovine pancreatic trypsin inhibitor in a vacuum was simulated using molecular dynamics
(MD) by McCammon in 1977, MD has been one of the state-of-the-art computational techniques for
in-depth understanding of the communication between ligand and receptor with structural changes
over time [22]. An induced fit model of enzyme–inhibitor binding was suggested by Koshl and because
the inhibitor can induce the conformation change of the enzyme during the binding [22]. NMR and
X-ray crystallography have provided limited information of the static binding pose of a ligand in an
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enzyme [23]. This study performed MD simulation using the Groamcs 4.6.5 program and the induced
fit model to solve the unveiled communication of flavonoids (1 and 2) with sEH.
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As shown in Figure 4A,B, inhibitors 1 and 2 visually confirmed the stable state fitted with
sEH during the simulation time with ~9.1×105 kJ/mol potential energy (Figure 4C). The protein
root-mean-square deviation (RMSD) values of 1 and 2 were ~2.5 and ~2.8 Å, respectively (Figure 4D).
The sugar group of 2 hung on the narrow entrance of the U-tube shape in sEH. Whereas 1 was located
in the inner pocket of it, which was of sufficient size. The loops around the enzyme that were bound
with the former produced more apparent changes than those ofthe latter (Figure 4A,B). Inhibitors 1 and
2 maintained 0–3 hydrogen bonds with residues of sEH for 10 ns (Figure 4E,F). Hydrogen bonds in the
complex of sEH with inhibitors were analyzed per 1-ns interval during their trajectory (Figure 4G,H,
Table 3). Noticeably, the ketone and 5-hydroxyl groups of 1 were continually maintained at a distance
of ~3.5 Å from Arg410 (Figure 4G). The ketone and 6′-hydroxyl groups in the sugar of 2 remained
at a distance of 3.5 Å from Met188 and Leu186 within 5 ns. The 1′-hydroxyl group in the sugar of 2
approached 3.5 Å for hydrogen bonds for 9–10 ns (Figure 4H). Based on the results in comparison
to the hydrogen bonds in molecular docking and dynamics, it was found that a new hydrogen bond
to Arg410 mainly occurs during dynamics in the inhibitor 1–sEH complex. The inhibitor 2–sEH
complex constantly maintained hydrogen bonds with Leu417 and Met419 in the docking results.
Therefore, inhibitors 1 and 2 were close to the “induced fit” and “lock-and-key” models, respectively.
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Table 3. Hydrogen bond analysis of the inhibitors with sEH at 1-ns intervals for 10 ns.

Time (ns)
1 2

Amino Acid (Å) Amino Acid (Å)

0 Arg410(2.78), Tyr466(2.78) His420(2.83), Ser415(2.80), Leu417(3.32),
Tyr466(3.01)

1 Arg410(2.69,2.94), Phe497(2.94) Phe267(3.20), Leu417(2.82), Trp525(3.01)

2 Arg410(3.06,3.28), Ser412(3.35) Arg410(3.06), Ser415(2.87), Leu417(2.98),
Met419(2.80)

3 Arg410(2.95) Ser418(3.35), Met419(3.32), His420(3.15)
4 Arg410(2.74, 3.24), Ser412(3.21) Arg410(3.29), Met419(3.30)
5 Arg410(3.17, 3.18)
6 Arg410(3.07) Met419(3.08)
7 Arg410(3.16), Ser412(2.89), Phe497(3.19) Met419(3.03)
8 Arg410(3.21,3.04), Trp525(2.86) Phe267(3.22)
9 Arg410(2.92), Ala411(3.04) Leu417(2.92), Phe497(2.82,2.86), Lys495(2.94)

10 Arg410(2.61,3.10), Ala411(2.77) Leu417(2.87), His420(3.18), Ser412(3.19),
His524(3.18)
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4. Conclusions

Among flavonoids 1–3 from the dried leaves of C. chinense, chrysoeriol (1) and
luteolin-7-O-glucopyranoside (2) showed inhibitory activities against sEH with IC50 values of 11.6 ± 2.9
and 14.4 ± 1.5 µg/mL, respectively. Through enzyme kinetic study, Lineweaver–Burk and Dixon plots
revealed that they were non-competitive inhibitors with Ki values of 10.5 ± 3.2 and 11.9 ± 2.8 µg/mL,
respectively. They were visually represented to be bound into the right edge, next to the catalytic site of
the enzyme, by the stable Autodock score. In particular, inhibitor 1 was found to form a hydrogen bond
with another amino acid (Arg410) in the molecular docking result via dynamic, whereas 2 was confirmed
to form hydrogen bonds with common amino acids (Leu417 and Met419) between the molecular docking
and dynamics results. These findings confirmed the possibility that the leaves of C. chinense containing
flavonoids (1 and 2) were natural sEH inhibitors in vitro and in silico. Finally, the study suggests that
the two are suitable for cell-based and in vivo experiments involving cardiovascular disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/2/180/s1,
Figure S1–S3: 1H- NMR and 13C-NMR spectra of compounds 1–3.
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