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Abstract

Accurate and automatic brain metastases target delineation is a key step for efficient and
effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a
deep learning convolutional neural network (CNN) algorithm for segmenting brain metasta-
ses on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We
integrated the CNN-based algorithm into an automatic brain metastases segmentation
workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge
(BRATS) data and clinical patients’ data. Validation on BRATS data yielded average DICE
coefficients (DCs) of 0.75+0.07 in the tumor core and 0.81+0.04 in the enhancing tumor,
which outperformed most techniques in the 2015 BRATS challenge. Segmentation results
of patient cases showed an average of DCs 0.67+0.03 and achieved an area under the
receiver operating characteristic curve of 0.98+0.01. The developed automatic segmenta-
tion strategy surpasses current benchmark levels and offers a promising tool for SRS treat-
ment planning for multiple brain metastases.

Introduction

The incidence of brain metastases has increased with the advanced modern cancer therapy
technology and prolonged cancer survival. [1]. Stereotactic radiosurgery (SRS), a standard of
care for brain metastases [2], requires accurate delineation of tumor/target volumes for treat-
ment planning, but manually contouring multiple brain metastases can be a time- and labor-
intensive process. Developing an accurate and efficient automated delineation tool would ben-
efit clinical practice by improving the efficiency of SRS treatment planning.

Researchers have been investigating automatic brain tumor segmentation methods for
decades [3,4] and have developed various tools [5-7]. Currently available automatic brain
tumor delineation methods can be divided into two categories: information theory-based
methods and learning-based methods [3]. The information theory-based methods use image
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data itself and utilize traditional image processing tools to detect abnormalities. Exemplary algo-
rithms include watershed segmentation algorithms, active contour algorithms, and region-
growing segmentation algorithms [8-11]. Learning-based methods consider segmentation tasks
as classification problems and require a certain number of expert-segmented images to train
classification models. On those expert-segmented images, manually-designed image features,
such as mean, standard deviation, gray level co-occurrence matrix (GLCM), and local binary
pattern features (LBP), are extracted and fed into machine learning models, such as support vec-
tor machine (SVM) or artificial neural network (ANN), to classify target abnormalities [12-17].

Automatic brain metastases segmentation requires special considerations in its clinical
implementation. First, SRS is often used to treat small tumors, e.g. the tumor diameter is less
than lcm [2], which are easy to miss in information theory-based segment methods. Second,
clusters of brain metastases complicate automatic segmentation, and simultaneous delineation
of multiple lesions is difficult. Third, contrast-enhanced T1 magnetic resonance imaging
(MRI) is generally the only imaging modality acquired for treatment planning, which elimi-
nates the application of many advanced multi-modality image segmentation tools. Further-
more, SRS is usually a one-day outpatient procedure, which requires fast segmentation for a
rapid clinical workflow.

Recently, we developed an automatic brain metastatic tumor segmentation strategy for an
SRS clinical workflow [7]. The developed strategy integrates a set of traditional image process-
ing tools and takes advantage of image intensity information to discriminate tumor regions
from surrounding tissues. This method achieved high accuracy in automatic contouring in
both simulated data and clinical patient image sets. However, the developed method has diffi-
culties in segmenting small brain metastases with volumes less than 1.500cc, especially when
the tumor is surrounded by other high intensity structures, such as the superior sagittal sinus
or a confluence of sinuses. Its intensity histogram-based abnormalities-detecting strategy hin-
ders its application in segmenting small-size tumors, since a limited number of voxels in a
small-size has an undistinguishable intensity histogram from surrounding structures. Conven-
tional artifact feature-based learning methods could fail with small-size tumor segmentation as
well, because the limited number of voxels is unlikely to provide statistically significant fea-
tures for segmentation. Deep learning convolutional neural networks (CNN), which require
neither manual image feature extraction nor tumor intensity histogram, may have advantages
in classifying small-size abnormalities. Advantage in classifying small targets have been proved
in reference [18] [19]. The CNN algorithm utilizes a stack of sequentially connected convolu-
tional filters to study the nonlinear relationship between abnormal voxels and their neighbors,
and automatically derives a voxel characterization model. This self-learning procedure is
promising for small-size tumor segmentation.

In this paper, we report our newly developed CNN-based brain metastases auto-segmenta-
tion strategy. This work aims to delineate the small lesions (<1.5cc) accurately and efficiently.
The network architecture is branchy and made up of three sub-paths to incorporate multi-
scale information to perform delineation of small lesions on MRL

Methods and materials
Ethics statement

This retrospective patient study was approved by Human Research Protection Program Office
(HRPPO)/Institutional Review Board (IRB) of The University of Texas Southwestern Medical
Center. All methods in this study were conducted in accordance with the relevant guidelines
and regulations. Considering that this is not a therapeutical treatment study, our institutional
review board waived the need for obtaining written informed consent from the participants.
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Automatic delineation workflow

The auto-segmentation workflow that we developed is illustrated in Fig 1. The entire workflow
can be divided into three sections: image preprocessing, segmentation, and false positive con-
tour removal. The first section, image preprocessing, removes the skull from the original T1c
image by employing a robust learning-based MRI brain extraction system (ROBEX) [20].
ROBEX combines a discriminative and a generative model to achieve the final result. When a
new image is presented to ROBEX, the tool uses a Random Forest classifier to detect the brain
boundary. Then the generative model is explored to find a highest likelihood contour. The
brain contour is refined by free deformation and used for skull stripping. The third section
removes false positive contours by utilizing the spherical geometry characteristics of brain
metastases. Essentially, we use a sphericity metric [21] to quantify the delineated structure
shape. The structure with a sphericity value smaller than a predefined threshold is removed
from the final contour sets. The intermediate second step is a learning-based segmentation
method consisting of a CNN architecture, which we will describe in detail in the following
sections.

A Modified DeepMedic CNN architecture

A CNN framework treats segmentation as a voxel-wise classification problem. The lesion

can be delineated from the background if the probability of each image voxel belonging to the
target is known. Our work was inspired by DeepMedic, a CNN architecture proposed by Kam-
nitsas et al. [22]. The network architecture consists of a sequence of four sections: input, con-
volution, fully connected, and classification sections, as illustrated in Fig 2. The input section
processes the original images to obtain the designed image patches. The designed image
patches are then fed into a convolution section, where multi-layer convolutional filters operate
and output feature maps. The convolution section is followed by a fully connected layer that
groups all feature maps. The final classification section calculates a prediction score to classify
each image voxel and yield a segmentation map. Our proposed CNN method enhances the
original DeepMedic structure by including an additional sub-path (sub-path 2) to capture
multi-scale image features for accurate image segmentation. In addition, the entire structure is
implemented on a graphic processing unit (GPU) platform to improve computation efficiency.
For simplicity, we call this modified DeepMedic CNN architecture “En-DeepMedic” in this
paper.

Input section. The input section generates image patches for the rest of the network. En-
DeepMedic is a voxel-wise classification system, where each voxel is classified based on the lin-
ear and non-linear relationship between the focal voxel’s intensity and its neighbors. Because
of the large image size, as the case of the 3D brain MRI images studies in the paper, calculating
the linear or nonlinear relationship between all voxels in the entire image is computation-
intensive. We divide the image into small patches to calculate the voxel relationship within a
limited region instead of the entire image. Using small image patches saves computational
time and memory space. Such strategy is important for GPU implementation; especially on-
chip memory is limited on the current market-available GPU cards.

The En-DeepMedic architecture extracts both local and global patches as inputs for the
convolution section. Fig 3 illustrates a two-dimensional patch extraction strategy, though the

1. Image Preprocessing: 2. Leaming-based Segmentation 3. False-positive
Tlc Images e .
Skull stripping En-DeepMedic method Contours Removal

Fig 1. Workflow of the proposed deep learning-based brain metastases auto-segmentation.
https://doi.org/10.1371/journal.pone.0185844.9001
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Fig 2. En-DeepMedic architecture. a'@3DConv (kq,kz,ks): a’is the number of feature maps captured at
layer I, (kq,ka,k3) is convolution filters size.

https://doi.org/10.1371/journal.pone.0185844.g002

actual image patches used in the algorithm are three-dimensional. Each extraction selected the
central voxel at random and simultaneously extracted concentric local and global image
patches. Neighboring voxels around the central voxels form the local patch, which provides
local information. The global patch covers a larger region, which contains relative global infor-
mation. To mitigate the computational burden caused by the larger global patch, we down-
sampled all global patches. In this study, we specified the local image patch size as (25, 25, 25)
and down-sampled the global patches from (57, 57, 57) to (19, 19, 19).

Modified convolution section. The convolution section has multiple layers that sequen-
tially capture the image features by convolution operations. These captured image features
include low-level features, such as edge and corner, and high-level features, such as non-linear
intensity relationship between neighboring voxels. The feature maps are the output of each
convolution layer. The entire convolution section comprises three different sub-paths. Sub-
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Fig 3. lllustration of image patch extraction.

https://doi.org/10.1371/journal.pone.0185844.9003

paths 1 and 2 use the same local patch with different filter sizes to capture different neighbor-
hood patterns, while sub-path 3 works on the down-sampled global patch to reveal global fea-
tures. For each sub-path, let L be the depth of the convolution filter stack, which is the number
of convolution layers used in a sub-path. a (1 € [1,L]) be the number of feature maps in the It
layer, and F! (i € [1,]) be the i" feature map of the I layer. In this cascaded network, F! is cal-

lth

culated by nonlinearly activating the convolution of the - 1" layer feature map and the I""

layer filter with certain bias, as shown in Eq I:
9(171 _
Fg:g(Zj:lel*W;‘lieri)' (1)

Here, g(-) is the PReLU function [23]. The PReLU is a neuron activation function defined as

x,x>0
g(x) = { ’ 0 where a is a network parameter. Wj’,. is the filter connecting the j feature
ax,x <

map in the [ — 1" layer and the i" feature map in the I’ layer, and b! is the bias from the artifi-
cial neuron model [24]. A typical 3D convolutional operation is illustrated in Fig 4(A). The
generation of the i feature map in the I’ layer is illustrated in Fig 4(B). The filter number of
layer Iis &’ - o/. The total filter coefficient number of each individual convolutional layer
stackis N = S0, of oo - KL - kL - kL, where (K, k., k.) is the filter size of the I" layer. As
there are 3 sub-paths in this section, the total number of to-be-learned filter coefficients is
YNy p = 1,2,3. With a filter size of (3,3,3) in sub-path 1 (and 3) and (5,5,5) in sub-path 2, a
local patch size of (25,25,25), and a down-sampled global patch size of (19, 19, 19), the size of
the output feature map is (9,9,9) in sub-path 1 and 2 and (3,3,3) in subpath 3.

Compared to the original DeepMedic method, our En-DeepMedic is distinguished by an
additional sub-path (sub-path 2) included in the convolution section. Sub-path 2 uses a larger
convolution filter (5, 5, 5) and operates on every other convolution layer, unlike sub-path 1.
This design is useful for capturing different multiscale features in addition to those captured
by sub-path 1.

Fully connected section. The fully connected (FC) section fuses all of the feature maps
generated by the convolution section to preserve the consistency of spatial information. The
FC section operates similarly to the convolution section, where each coefficient node works as
a convolution filter with size (1,1,1). It treats the output feature maps of the three sub-paths
equally, which requires feature maps to have the same size.
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Fig 4. Process of 3D convolution layer. (a) 3D convolution of a feature map with a filter. (b) Generation of
the ith feature map in the th layer.

https://doi.org/10.1371/journal.pone.0185844.g004

Classification section. The classification section generates the categorical probability for
each voxel. Like most convolutional neural networks, a softmax function maps the feature
map to categorical probabilities. A cost function (Eq 2) is defined to maximize the logarithmic
likelihood between the input patch, I, and the corresponding ground truth segmented patch,
Cs

ol®.1,¢) = — o S S loglp, (<)), )

where x and ¢” are the v"" target voxel’s position and ground truth, v € [1,V]. V = f* x fFx
fE, where (fL, f-, 1) is the L™ layer feature map size. s € [1,B], where B is the size of a batch.
P,y is the output of the softmax function. The parameter © is denoted as the filter coefficients

and bias, which are determined during network training through the Stochastic Gradient
Descent (SGD) method[25]. Here, the network training refers to using a set of segmented
images (called labelled images) to find the optimal network parameters. SGD is a stochastic
approximation of the gradient descent optimization method for minimizing an objective func-
tion iteratively. In each iteration, it calculates the gradient from a subset of labelled dataset. It
helps to speed up the training in a large training set.

PLOS ONE | https://doi.org/10.1371/journal.pone.0185844  October 6, 2017 6/17


https://doi.org/10.1371/journal.pone.0185844.g004
https://doi.org/10.1371/journal.pone.0185844

@° PLOS | ONE

A convolutional neural network-based automatic delineation strategy for brain metastases

Hyper parameters. Before training, we predefined a set of hyper parameters, which could
not be learned automatically through training. The hyper parameters used in our En-DeepMe-
dic architecture are listed in Table 1 along with their associated workflows. Initialization gener-
ates initial coefficients for the filter weights and bias. Instead of using random values, we
employed the method used by He et al. [23] to generate initial coefficients. The Dropout tech-
nique [26] avoids overfitting by randomly discarding part of the obtained coefficients in each
iteration. We performed the dropout scheme on the FC section only with a dropout rate of
0.5. Data augmentation balances positive and negative samples, because there is a large gap
between the number of tumor and non-tumor voxels. All positive patches were flipped along
the sagittal plane to increase their numbers. A k-fold cross validation strategy trains, validates,
and tests our En-DeepMedic method. We randomly partitioned the original dataset into k sub-
sets with equal size and performed the training and validation phases k times with one subset
for validation and the other k-1 subsets for training. Batch size and epochs depend on computer
memory and could be modified based on the machine architecture.

Validation dataset

We used two groups of data to train and validate our model. One dataset was from BRATS
[27], a database for evaluating brain tumor segmentation methods. BRATS provides each
patient’s T1-weighted MRI with Gadolinium contrast (T1c) and T2-weighted Fluid-Attenu-
ated Inversion Recovery (FLAIR) images. We used this dataset to compare our automatic
delineation method with other competitive algorithms. All images in the dataset were resized
to 1.0mm x 1.0mm x 1.0mm after skull removal. The other dataset consisted of 240 brain
metastases patients with T1c MRI scans collected at the University of Texas Southwestern
Medical Center (UTSW) from 2009 to 2014 [28]. The number of brain metastases per case var-
ies from 1 to 93 (5.679 + 8.917 per case). The mean tumor size is 0.672 + 1.994cc. All scans
were acquired on a SIEMENS 3T MRI system prior to radiosurgery on the treatment day. The
brain metastases contours drawn by neurosurgeons following the standard UTSW clinical pro-
tocol were used as ground-truth in this study. Each data group was divided into three sets:
training, validation, and testing. Both training and validation sets were used in the training
phase to generate the proper network coefficients. The testing set was used to evaluate the
trained model. BRATS (265 cases) and clinical data (225 cases) were selected and randomly
assigned to the training and validation sets to generate the network coefficients.

Evaluation metrics

We evaluated the performance of the En-DeepMedic-based auto-delineation method with
respect to both geometrical measurements of individual tumor segmentation accuracy and

Table 1. Hyper parameters used in this study.

BRATS validation clinical data validation
hyper parameters value hyper parameters value
Initialization weights and bias He method [23] weights and bias He method [23]
Dropout convolutional section 0 convolutional section 0
FC section 0.5 FC section 0.5
Data Augmentation flipped along sagittal plane flipped along sagittal plane
Training batch size 10 batch size 10
epochs 35 epochs 15
Validation batch size 48 batch size 48
Testing batch size 10 batch size 10

https://doi.org/10.1371/journal.pone.0185844.t001
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statistical measurements of receiver operator characteristic (ROC) curve analysis. We quanti-
tatively evaluated the geometrical accuracy of individual tumor segmentation with 1) DICE

: __ 2(ANB)
coefficients (DCs = A5

respectively; and 2) the mean value and standard deviation of surface-to-surface distance
(SSD): MSSD = mean cc(mingep ||c — d||2), SDSSD = std.cc(mingep ||c — d||,), where ¢ and
d are points on the A and B volumes’ surfaces C and D, respectively. For statistical measure-

), where A and B are the auto- and manual-segmented volumes,

ment, we conducted a ROC curve analysis, where sensitivity (TPR = ;%) and specificity
(SPC = TNTfFP) were calculated with voxel-wised TP (true positive), TN (true negative), FN

(false negative), and FP (false positive). Here, TP and TN are the number of the auto-delinea-
tion method classified tumor voxels and non-tumor voxels that agreed with the ground truth.
FN is the number of voxels classified as tumor voxels in the ground truth but missed by the
auto-delineation, and FP is the number of voxels classified as tumor voxels by the auto-delin-
eation but not in the ground truth. We performed the ROC curve analysis by plotting the
curve of sensitivity against (1-specificity). We calculated the Areas under the ROC curves
(AUC) to quantify the classification performance.

Results
Validation on BRATS

The BRATS database includes five different target structures: necrosis (label 1), edema (label
2), non-enhanced tumor (label 3), enhanced tumor (label 4), and background. In addition to
the individual labeled structures, BRATS defines the whole tumor region, which consists of
four structures (label 1+2+3+4), and the tumor core, which consists of necrosis, enhanced and
non-enhanced tumor (label 1+3+4). As described by Menze et al. [27], the edema is segmented
on T2 and FLAIR images, and the gross tumor is delineated on T1c together with T1 images,
while necrosis and enhanced tumor are segmented on T1c images. Non-enhanced tumor is a
residual volume derived by subtracting necrosis and enhanced tumor volumes from the gross
tumor volume.

Multi-modality segmentation-Comparison with methods in BRATS. For fair compari-
son with the multi-modality-based methods in BRATS, we trained both the DeepMedic archi-
tecture and our En-DeepMedic architecture with T1c and FLAIR images. Table 2 lists the
mean DC (£ standard deviation, SD) for each method. Compared with other algorithms in the
BRATS2015 challenge, our En-DeepMedic method achieved better DCs than most of the
reported methods (Table 2).

T1c segmentation-Comparison with DeepMedic. Since our method is primarily
intended for mono-modality segmentation, we trained the model using only the T1c image
with a 5-fold cross validation. The quantitative results given by geometrical metrics are shown
in Fig 5. The mean value of each metric resulting from DeepMedic is also plotted using
magenta stars in the figure for the comparison.

The ROC curves measuring the classification performance are plotted in Fig 6. The red
curve indicates the developed En-DeepMedic model, and the blue curve indicates the Deep-
Medic model. We calculated the AUC of the two curves and obtained 0.99 for the developed
En-DeepMedic method and 0.97 for DeepMedic.

Validation with clinical data

Sample cases. We present two sample cases to illustrate En-DeepMedic performance on
small tumor segmentation. The first case (named Pt. #1) is a 65-year-old male patient who
underwent Gamma Knife radiosurgery for brain metastasis of melanoma. There were three
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Table 2. Performance of DCs (+SD) in BRATS challenge 2015.

METHOD Tumor Enhanced
core tumor
Brain Tumor Segmentation by a Generative Model with a Prior on 0.64+0.29 0.52+0.33
Tumor Shape[29]
Segmentation of Gliomas in Multi-modal Magnetic Resonance Imaging 0.77 0.68

Volumes Based on a Hybrid Generative-Discriminative Framework[30]

Multi-modal Brain Tumor Segmentation (BRATS) using Sparse Coding 0.64 -
and 2-layer Neural Network'[31]

2

CaBS: A Cascaded Brain Tumor Segmentation Approach[32] 0.67 0.68
Parameter Learning for CRF-based Tissue Segmentation of Brain (0.78, (0.81,0.92)
Tumors3[33] 0.91)

Deep Convolutional Neural Networks for the Segmentation of Gliomas 0.73 0.68

in Multi-Sequence MRI [34]

Multi-Modal Brain Tumor Segmentation Using Stacked Denoising 0.72+0.17 0.66+0.18
Autoencoders [35]

DeepMedic [22] 0.75 0.72
En-DeepMedic method 0.75+0.07 0.81+0.04

"The authors declared their DCs performance in median value
2The authors didn’t provide corresponding data
3The authors declared their DCs performance in format (median, range = max-min)

https://doi.org/10.1371/journal.pone.0185844.t1002

lesions, including a 0.221cc volume in the left mid frontal, a 0.276cc volume lesion in the left
paracentral lobule, and a 0.293cc volume in the right globus pallidus, respectively. The distri-
bution of the lesions is shown in Fig 7(A), where the red contours represent the ground truth,
and the green contours illustrate the result of the En-DeepMedic method. Fig 7(B), 7(C) and 7
(D) show three lesions’ delineation results, each with coronal, sagittal, and transverse views.
The auto-delineated contours overlap with the manual ones and achieve an average DC of
0.84. The second case (named Pt. #2) is a 47-year-old female patient who underwent Gamma
Knife radiosurgery for brain metastasis of melanoma. This patient has one lesion located in
the left choroid plexus with size of 0.194cc and another previous treated lesion in the post tem-
poral lobe. The delineation results on 3 orthogonal cross sections views are shown in Fig 8.
The quantitative evaluation of these two patients segmentation results are listed in Table 3.
Overall performance. We employed a 5-fold cross validation strategy to estimate the
overall performance of the segmentation strategy. The resulting mean values for the geome-
trical metrics are: DCs 0.67+0.03, MSSD 0.9+0.3mm, and SDSSD 0.8+0.1mm. The detailed

SDSSD(mm)

() (b) ()

Fig 5. Box plots of geometrical metrics. (a) DCs, (b) MSSD, and (c) SDSSD of 5-fold cross validation with
BRATS data using En-DeepMedic. The red line and cyan diamond inside each box denote medium value and
mean value, respectively. The magenta star indicates the mean value of the geometrical metrics results from
DeepMedic.

https://doi.org/10.1371/journal.pone.0185844.9005
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Fig 6. ROC curves for using DeepMedic and En-DeepMedic methods for BRATS data segmentation.
https://doi.org/10.1371/journal.pone.0185844.9006

distributions of each geometrical metric are shown in Fig 9. The ROC curves of the En-Deep-
Medic classifier from each fold are plotted in Fig 10 by the five colored solid lines, and the red
dotted line indicates the average curve. AUC is 0.98+0.01, close to 1.

Comparison with our previous intensity-based segmentation method

We compared the En-DeepMedic method with our previous intensity-based method [7]. We
selected ten tumors with different sizes, ranging from 6.918cc to 0.129cc. Both methods delin-
eated the large lesions (>1.500cc) successfully. Fig 11 illustrates the delineation results of a
large tumor (2.532cc) and a small tumor (0.537cc). Table 4 lists the corresponding geometrical
metrics values from both methods. The small lesions were more challenging, and the intensity-
based method failed to delineate 4 of the 6 metastases smaller than 1.500cc. In contrast, the
En-DeepMedic performed well with the small lesions.

Discussion

In this study, we presented En-DeepMedic, a CNN-based delineation method designed for
automatic brain metastases segmentation for radiosurgery. To compare with other algorithms,
the developed En-DeepMedic method was trained on multi-modality BRATS data and
achieved good DCs. The competitive results obtained from BRATS2015 are shown in Table 2.
The developed method ranked first in the enhanced tumor region (label 4 in BRATSs) and sec-
ond in the tumor core (label 1+3+4). This result indicates that En-DeepMedic performs well
on multimodality image segmentation. Also, our En-DeepMedic is mainly designed for delin-
eating small lesions. It performs well on BRAST2015 dataset which accurately doesn’t have
much small size brain tumors. We believe if we adjust some hyper-parameters and image
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3D view of tumor distribution in whole brain

(d)

Fig 7. Segmentation results of Pt #1. (a) 3D rendering of the tumor locations inside the brain; (b)~(d):
segmentation of lesion in (b) the right globus pallidus, (c) the left paracentral lobule, and (d) left mid frontal.

https://doi.org/10.1371/journal.pone.0185844.9007

patch size, the En-DeepMedic could achieve even better performance. Our En-DeepMedic
also performed better than its parent DeepMedic method on mono-modality segmentation
(Figs 5 and 6). We achieved this improvement by adding an additional sub-path (sub-path 2)
to the architecture, as shown in Fig 2. Sub-path 2 employed larger convolution filters (5,5,5)
compared to the filter size (3,3,3) in sub-path 1, and thus captures different image features
than sub-path 1. The hybrid features learned from sub-paths of different filter sizes and multi-
ple scales can provide comprehensive local and global information for accurate classification
of voxels. Our En-DeepMedic method also performed well in evaluating clinical data with sat-
isfactory geometric accuracy and ROC curve analysis (Figs 9 and 10). The achieved AUC was
0.98+0.01, which indicates good performance.

The sample case shown in Fig 8 didn’t achieve high DC with En-DeepMedic method, even
though the location of lesion was correctly identified. The main reason for this low DC is that

(a) (b)

Fig 8. Segmentation results of Pt #2. (a) Segmentation of lesion in the left choroid plexus; (b): zoomed-in of
the transverse view in (a).

https://doi.org/10.1371/journal.pone.0185844.g008
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Table 3. Quantitative geometrical accuracy of each lesion of sample cases.

Patient #
Pt. #1

Pt. #2

Lesion position

right globus pallidus
left paracentral lobule
left mid frontal

left choroid plexus

DCs MSSD(mm) SDSSD(mm)
0.87 0.5 0.5
0.85 0.4 0.5
0.79 0.5 0.5
0.20 12.6 8.8

https://doi.org/10.1371/journal.pone.0185844.t1003

two contours are merged together. The targeted lesion in the left choroid plexus is close to the
abnormality in the post temporal lobe that was treated 5 months ago. The shortest separation
between two lesions boundaries is ~ 1mm, which is the size about or smaller than the voxel res-
olution as highlighted by the blue circle in Fig 8(B). Our En-DeepMedic delineation method
was failed to separate them. To overcome this problem, contour post-processing is needed.

Compared to our previous intensity-based method, the En-DeepMedic method achieved
superior results in small tumor segmentation, while the previous method often fails to detect
tumors smaller than 1.500cc. We chose 10 cases that varied from 6.918cc to 0.129¢cc and used
both methods to conduct segmentation. Both methods succeeded in auto-segmenting lesions
larger than 1.500cc, but the intensity-based method failed on four of the six small cases, while
the En-DeepMedic method worked robustly (Table 4). The two methods are, however, de-
signed for different applications [7]. The intensity-based method can capture abnormalities
without any prior information; the only input is the image set’s intensity. Generally, this
method requires larger tumor volumes that have adequate voxels representing discriminative
information. This constraint limits its application for small lesion segmentation. The En-Deep-
Medic method is better suited to small lesion segmentation, as it employs a deep learning strat-
egy and classifies each voxel individually based on knowledge learned from a training dataset.
This method considers multi-scale information and the nonlinear relationship between neigh-
boring voxels. Theoretically, this voxel-wise segmentation strategy has the capability to seg-
ment a tumor, even if it is formed by only one voxel. However, the En-DeepMedic method
results in a relatively zigzag contour when delineating large targets compared to our previous
intensity-based method (Fig 11(B)), because the voxel-wise classification strategy cannot guar-
antee a smooth contour, while our previous method includes a contour evolving step that
smoothes contours automatically. To overcome this limitation, additional postprocessing
methods, such as using a localized active contour model [36], could be employed to refine the
final contours, but the postprocessing step would increase computation time.

The input image patch size affects the performance of En-DeepMedic algorithm. A large
image patch size requires a big memory allocated on the GPU. Our study is conducted on a

H
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Fig 9. Box plots of clinical patient data 5-fold cross validation results. (a) DCs, (b) MSSD, and (c)
SDSSD using the En-DeepMedic method. The red line and the cyan diamond inside each box denote medium
value and mean value, respectively.

https://doi.org/10.1371/journal.pone.0185844.g009
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Fig 10. ROC curves of using En-DeepMedic for patient data segmentation.
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laptop with an NVIDIA Quadro M2000M graphic card and an Intel Xeon E3-1505 processor.
The largest local image patches the computer can handle is (37,37,37). We evaluate the En-
DeepMedic performance with local patch sizes varied from (19,19,19) to (37,37,37) on our
clinical dataset. One thing we have to point out is that some hyper parameters (training, vali-
dating, and testing batch size) are revised to fit GPU computation resource limit. For the local
patch size (19,19,19) and (25,25,25), batch sizes are the same as those given in Table 1. For the
local patch size (31,31,31), the batch size for training, validation and testing are 5,9, 10, respec-
tively. For the local patch size (37,37,37), the batch size for training, validation and testing are
revised as 1, 9 and 10, respectively. The results of quantitative geometry metrics are listed in
Table 5 and ROC curve are plotted in Fig 12. As results shown, the best The best geometric
metric and ROC are both achieved at a local patch size of (25,25,25).

ation of physician
of previous method

Fig 11. Segmentation results. (a) the large tumor (2.532cc), auto-contours from intensity-based method
(blue) and En-DeepMedic method (green) overlaid on physician drawn contour (red); (b) zoomed-in view of
ROl in orange rectangle in (a); (c) the small tumor (0.537cc), auto-contours from En-DeepMedic method
(green) overlaid on physician drawn contour (red); (d) zoomed-in view of ROI in orange rectangle in (c).

https://doi.org/10.1371/journal.pone.0185844.9011
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Table 4. Comparison geometrical metric values of En-DeepMedic and intensity-based method on small- and large-size brain metastases tumors.

Tumor

(cc)

6.918
3.928
2.532
1.476
0.825
0.537
0.326
0.293
0.163
0.129

1

En-DeepMedic

method
0.93
0.93
0.89
0.89
0.86
0.88
0.90
0.87
0.80
0.87

DCs MSSD(mm) SDSSD(mm)
Intensity-based En-DeepMedic Intensity-based En-DeepMedic Intensity-based
method[7] method method[7] method method[7]
0.93 0.6 0.7 0.6 1.4
0.34 0.5 2.5 0.6 1.5
0.94 0.8 0.4 0.9 0.5
0.94 0.7 0.4 0.7 0.5
----- ! 0.5 0.5
----- 0.5 0.5
----- 0.4 0.5
----- 0.5 0.5
0.80 0.3 0.4 0.5 0.5
0.74 0.4 0.7 0.5 0.5

https://doi.org/10.1371/journal.pone.0185844.t1004

- - - indicates there are no values associated with the intensity-based method, since the intensity-based method is not able to detect tumor.

Based on the results above, we choose the local patch size (25,25,25), the corresponding
global patch size is (57,57,57), and the down-sampled global patch size is (19,19,19).

Another advantage of the En-DeepMedic method is computational efficiency. Though it
takes time to train a CNN model, segmentation itself is fast. In our study, the entire workflow
was implemented using a laptop with an NVIDIA Quadro M2000M graphic card and an Intel
Xeon E3-1505 processor. The training of each fold of clinical data takes about two days, but
auto-segmenting tumors on a typical image set with the size of 256 x 256 x 176 takes approxi-
mately two minutes. Moreover, the segmentation time is independent of the number of
tumors, since it classifies voxels in an image all at once.

The En-DeepMedic method is also image modality-independent. It can be applied to both
multi-modality and mono-modality images, as long as the training data used are the same
modality as the images to be segmented. Since our application focuses on SRS of brain metas-
tases, we thoroughly evaluated its performance on mono-modality T1c image data. However,
the training and testing results on multi-modality BRATS data already show its promise for
expanding to multi-modality image segmentation. Another important feature of our En-Deep-
Medic method is that it is parameter-less. No parameters need tuning after the model is estab-
lished, so the segmentation is more robust and requires less human intervention.

Conclusion

In this work, we developed a deep convolutional neural network machine learning method for
automatic segmentation of small brain metastases. We validated the method comprehensively
on both BRATS and clinical data sets, and it demonstrated superior performance when com-
pared with reported algorithms in the BRATS challenge. The developed auto-segmentation

Table 5. The quantitative metrics of the En-DeepMedic with different local patch size.

Local patch size

(19,19,19)
(25,25,25)
(31,31,31)
(37,37,37)

https://doi.org/10.1371/journal.pone.0185844.t1005

DCs MSSD(mm) STSSD(mm)
0.52+0.25 1.410.9 11207
0.70 +0.19 0.8+0.6 0.7+0.3
0.60+0.23 0.9+0.4 0.7+0.2
0.52+0.28 0.9+0.4 0.7+0.3

PLOS ONE | https://doi.org/10.1371/journal.pone.0185844  October 6, 2017 14/17


https://doi.org/10.1371/journal.pone.0185844.t004
https://doi.org/10.1371/journal.pone.0185844.t005
https://doi.org/10.1371/journal.pone.0185844

o @
@ : PLOS | ONE A convolutional neural network-based automatic delineation strategy for brain metastases

ROC curve

= = 7
—local patch size (19,19,19)
—local patch size (25,25,25)|

-local patch size (31,31,31)
—local patch size (37,37,37)| |

07}

0.6 |

sensitivity
e =2 <9
(O8] N W

o
o

0.1F

0 ‘ . . .
0 0.2 04 0.6 0.8 1

1-specificity

Fig 12. ROC curve of the En-DeepMedic with different local patch size.
https://doi.org/10.1371/journal.pone.0185844.g012

strategy achieved high accuracy and efficiency and shows promise as a tool for accurate and
efficient SRS treatment planning.
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