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A B S T R A C T   

The cognitive mechanisms underlying sequential action selection in routine or everyday activities may be un
derstood in terms of competition within a hierarchically organised network of action schemas. We present a 
neurobiologically plausible elaboration of an existing schema-based cognitive model of action selection in which 
the basal ganglia implements an activation-based selection process that mediates between assumed cortical 
representations of rule-based schemas. More specifically, the model employs a network of basal ganglia units 
with computations performed by individual BG nuclei, embedded in a corticothalamic loop that disinhibits 
schemas according to the received feedback. We provide bridging assumptions for linking the operation of the 
model with ERP components that describe the error-related negativity (ERN) and the parietal switch positivity 
(PSP), and evaluate the model against behavioural and neural markers of performance of the Wisconsin Card 
Sorting Test by healthy control participants and Parkinson’s Disease patients.   

1. Introduction 

In an influential account of the control of thought and action, Nor
man and Shallice (1986) drew a distinction between routine or 
over-learned behaviours and non-routine behaviours. Routine behav
iour, they argued, reflects the enactment of learned schemas, via a 
system they called contention scheduling, while non-routine behaviour 
was held to reflect the operation of a deliberative system, the supervisory 
system, that operates on behaviour indirectly by selectively biasing the 
representations of schemas within contention scheduling. The account 
was motivated by both the slips and lapses in action of neurologically 
healthy participants (e.g., Norman, 1981; Reason, 1979, 1984) and the 
action errors of neurological patients (e.g., Duncan, 1986; Lhermitte, 
1983; Luria, 1966). 

A basic premise of the contention scheduling/supervisory system 
framework is that much of everyday action (and thought) is schema- 
based. At a relatively low level, consider the steps involved in chang
ing down a gear when driving a manual car and slowing for traffic lights 
or for a sharp corner. One must first engage the clutch with the left foot, 
then use the gear stick to deselect the current gear and select the new 
(lower) gear while simultaneously touching the accelerator with the 
right foot to match the engine revs to the gear selection, and then slowly 
release the clutch. A critical part of learning to drive a manual car is 

automating these steps into a single routine — an action schema — that 
can be performed as a single unit, seemingly without conscious or 
deliberate control of each step. 

Schemas are also held to organise routine behaviour at higher levels. 
Consider the morning routine, and specifically preparing breakfast. 
While performance of the activities involved is subject to the specifics of 
the environment (and so any two instances of breakfasting, are not 
identical), the subcomponents for any individual often remain relatively 
fixed (e.g., preparing coffee and cereal, with each having sub
components, such as, in the case of preparing cereal: locating a bowl, the 
cereal box, milk and a spoon, and then pouring cereal and milk into the 
bowl). Similar arguments apply for other everyday behaviours, such as 
dressing and grooming, or commuting, or the evening routine and its 
elements. 

The schemas referred to in the previous paragraphs have a number of 
critical properties. First, like schemas in other domains (e.g., memory, 
language) they are structured abstractions over instances of specific 
items. Thus, the schema for changing down gears in a manual car is an 
abstraction over many instances of the behaviour, and while each 
instance involves a specific sequence of actions performed in a specific 
vehicle at a specific moment in time, the abstract schema does not refer 
to such specifics. 

A second key property of action schemas is that they are 
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hierarchically structured. That is, higher-level schemas (like preparing 
cereal) consist of partially ordered sets of lower-level schemas (the 
components listed above), and those lower-level schemas may them
selves consist of partially ordered sets of even lower-level schemas (such 
as visually searching for an object, grasping an object, etc.). Higher-level 
schemas are more temporally extended in nature than their component 
schemas, and schemas at each level may occur in any number of super- 
ordinate schemas (so locating a bowl might be involved in several 
higher-level schemas such as preparing breakfast cereal or preparing 
soup). 

This view of action, as being constructed from instances of schemas, 
raises the question of how schemas might be selected from the pool of 
those known to an agent and then instantiated in order to control action. 
This is the function of contention scheduling. The contention scheduling 
theory proposes that representations of schemas, such as those described 
above, compete for the control of action on a moment-by-moment basis. 
Representations may be triggered or partially activated by learned 
contingencies in the environment (e.g., the presence of a red-light or a 
sharp bend ahead when driving) or by excitation from higher-level 
schemas.1 Contention scheduling selects between schemas by 
combining these sources of excitation (environmental or bottom-up 
triggering and top-down excitation), with the most active schema or 
schemas (above a threshold) being selected and thence controlling 
behaviour. Critically, the supervisory system operates not by directly 
selecting actions but by constructing temporary control structures (i.e., 
temporary schemas) which bias schema representations within conten
tion scheduling by exerting top-down excitation. Pathologies of action 
are held to arise when this biasing fails or is inappropriately applied, or 
as a result of dysfunction in the flow of activation within contention 
scheduling. 

Cooper and Shallice (2000) provided an interactive activation model 
of the contention scheduling system and demonstrated that, when 
lesioned in theoretically motivated ways, the model was able to produce 
disturbances of action selection that were qualitatively analogous to 
those of patients showing various pathologies of sequential action 
(specifically, those of Schwartz et al., 1998, 1995; Schwartz et al., 1991). 
Cooper and Shallice (2000) also argued that the model could account for 
utilisation behaviour — a tendency to use objects in the immediate 
environment in object-appropriate ways, despite instruction and 
apparent intention to the contrary (e.g., Boccardi et al., 2002), through 
either increased bottom-up or decreased top-down excitation, and the 
bradykinesia of Parkinson’s Disease, through either increased lateral 
inhibition or decreased self activation within the schema network. 
Moreover, in subsequent work the model was shown to be capable of 
producing the quantitative error profiles of Action Disorganisation 
Syndrome (Cooper et al., 2005) (resulting from frontal injury in patients 
and following from addition of noise to activations in the schema 
network in the model) and Ideational Apraxia (Cooper, 2007) (resulting 
from damage to left temporo-parietal cortex in patients and following 
from disconnection between the representations of schemas and objects 
in the model). 

Despite these neuropsychological links, the model was agnostic with 
regard to the neural bases of the subprocesses of schema selection. For 
example, it accounted for bradykinesia (slowed action initiation) in 
Parkinson’s Disease (PD) patients purely in terms of an imbalance be
tween self activation and lateral inhibition within an interactive acti
vation network in which nodes corresponded to schemas. No lower-level 
mechanistic account of these processes was provided, beyond pointing 

to the possible involvement of dopamine in regulating competition, and 
no attempt was made to relate the model to executive function deficits 
known to be associated with Parkinson’s Disease, such as deficits 
relating to set shifting, inhibition, and selective attention (see Kudlicka 
et al., 2011, for a metareview), or to increased impulsivity in medicated 
Parkinson’s patients (Martini et al., 2018). 

Moreover, the original model did not learn, either at the cortical or 
the subcortical level, yet there is brain-based evidence for learning 
within the action selection system at both levels. For example, several 
imaging studies have shown that, when learning a sequential task, 
prefrontal cortical activity declines as the task becomes more well- 
practiced (e.g., Jenkins et al., 1994). Raichle et al. (1994) found 
similar effects of learning on prefrontal activation in a non-motor (ver
bal learning) task. These studies suggest that prefrontal cortex is 
involved in the generation and active maintenance of temporary sche
mas. Other studies have shown involvement of the basal ganglia and 
more specifically the dopamine system in the learning of action-related 
tasks and cognitive skills (e.g., Poldrack et al., 1999; Schultz et al., 
1993). Montague, Dayan, and Sejnowski (1996) interpret such findings 
as evidence for the dopaminergic encoding of a reward-prediction error 
(i.e., the difference between anticipated and received reward) within the 
basal ganglia. Consistent with this, subsequent imaging work within a 
reinforcement learning theoretical framework (Sutton and Barto, 1998) 
has found high reward prediction error to be associated with activity in 
the striatum while high state prediction error (i.e., large differences 
between anticipated and observed states of the environment) has been 
associated with prefrontal activation (e.g., Gl€ascher, Daw, Dayan, & 
O’Doherty, 2010). From the perspective of the contention sched
uling/supervisory system theory, this evidence suggests that the crea
tion and active maintenance of temporary schemas is probably 
performed within frontal neocortical tissue, while subcortical learning 
would involve tuning the selection of appropriate schemas according to 
their prior reinforcement history. This cortical/subcortical distinction is 
quite coarse, and it may only apply to motor programmes that are 
ontogenetically and phylogenetically more recent, as there is also evi
dence for action selection mechanisms in the brainstem (Humphries 
et al., 2007). 

In the remainder of this paper we present an elaboration of the 
Cooper and Shallice model, in which activation-based selection pro
cesses are implemented by a neurobiologically plausible model of the 
basal ganglia that mediates between assumed frontal representations of 
schemas. Critically, the model includes learning mechanisms both 
within the cortical and basal ganglia components. We illustrate the 
model within the context of the Wisconsin Card Sorting Test (WCST) as 
used by Lange, Seer, et al. (2016), who tested healthy participants and 
PD patients in the so-called “Madrid” version of the task (Barcelo, 2003). 
It is data from this work that we use to evaluate the extended model. Our 
model demonstrates how the WCST can be performed by a hierarchically 
organised set of schemas. Higher-level schemas in the model correspond 
to the three sorting rules required for successful completion of the task, 
while lower-level schemas correspond to sensorimotor procedures for 
placing cards at each of the various target locations (see Cooper, 2009). 
In constrast to earlier work, instead of using mutual lateral inhibition 
among the schemas, the model employs a network of basal ganglia (BG) 
units with computations performed by individual BG nuclei, as 
described by Gurney et al. (2001), embedded within corticothalamic 
loops that disinhibit schemas according to the received feedback. Per
formance within the model is controlled by parameters that alter the 
relationship between schemas without altering their content. We anal
yse how the main parameters affect errors in performance and how 
variation of their values simulates the type of performance seen in pa
tients with Parkinson’s Disease. Then, we relate the internal variables of 
the model to two ERP components (ERN and PSP) that have been 
observed in the WCST task by Lange, Seer, et al. (2016), and which are 
considered indices of conflict detection and set-shifting, respectively. 
This allows the identification of the internal computational processes 

1 Such higher-level schemas may be learned, as a consequence of automa
tising behavioural sequences, or constructed on the fly and temporarily main
tained by the supervisory system, in response to the perceived need for 
deliberate control (see Shallice and Burgess, 1993), as might be required, for 
example, when confronted by roadworks when driving and hence when a 
change of route is required. 
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that give rise to these ERP components and allows the teasing out of the 
contribution of the basal ganglia to these frontostriatal processes. The 
model thus constitutes a bridge between neural and behavioural data. 

2. An illustrative task: the Wisconsin Card Sorting Test 

While the model is intended to illustrate the general mechanisms of 
schema competition and selection as mediated by the basal ganglia, we 
ground it here in a specific task, namely the Wisconsin Card Sorting Test 
(WCST), and specifically the version described by Barcel�o (2003) and 
subsequently used in several studies, including those of Lange, Seer, 
et al. (2016), with PD patients and age-matched controls. This task was 
chosen for several reasons. Firstly, as with the standard WCST, it exer
cises hierarchical schema-based control, in the sense that successful 
performance of the task requires simultaneous selection of a higher-level 
schema (e.g., sort the cards according to the colour of the images on 
them) and lower-level schemas (e.g., pick up or select the card to be 
sorted and place or drag it to beneath the matching target card). Sec
ondly, Lange, Seer, et al. (2016) provide detailed behavioural and ERP 
data for PD patients and age-matched controls. Thirdly, that data shows 
between-group differences (in both behavioural and ERP measures) that 
have previously been attributed at the neural level to differences in 
sub-cortical dopamine concentration between the two groups and at the 
cognitive level to differences in conflict-detection and set-shifting 
behaviour. Finally, with the addition of bridging assumptions linking 
model variables to ERPs, it is possible to simulate these ERP components 
within the model. 

2.1. The WCST of Barcel�o (2003) 

Within the standard Wisconsin Card Sorting Test, participants are 
required to sort a series of cards into four categories based on binary (i. 
e., correct/incorrect) feedback. Each card shows one, two, three, or four 
identical shapes (triangle, star, cross, or circle), printed in one of four 
colours (red, green, yellow, or blue), as shown in Fig. 1. It is therefore 
possible to sort cards according to the colour, number or shape of images 
on the cards. To succeed at the task, participants must match each 
successive card with one of four target cards, and use the subsequent 
binary feedback to discover the appropriate sorting rule (i.e., sort by 
colour, number or shape). Once they have discovered the rule they 
should continue applying it for as long as they continue receiving pos
itive feedback, but the experimenter periodically changes the rule 
without notice — in most versions after 10 successive correct responses. 
The participant then has to discover and adapt to the new rule. The task 
thus assesses multiple abilities, including hypothesis generation, task set 
maintenance, and cognitive flexibility. 

There are several differences between the standard WCST as 
described in the manual of, for example, Heaton (1981) and the version 
employed by Barcel�o (2003) and Lange, Seer, et al. (2016) and modelled 
here. Firstly, in the standard version participants must infer the potential 
sorting rules, while in the latter version participants are explicitly told 
that they should choose between the three sorting rules. This removes a 
degree of complexity from the task. Secondly, in the standard version of 
the task the deck of stimulus cards includes all possible combinations of 
features (colour, shape, number — 64 combinations in total). This 
means that stimulus cards can match target cards on more than one 
feature. For example, a stimulus card might show two blue circles, which 

would match the second target card in Fig. 1 on one feature but the 
fourth target card on two other features. In the Barcel�o (2003) variant of 
the task this stimulus ambiguity is removed. Only the 24 cards that 
match a single target card feature are included in the deck. This removes 
ambiguity both from the feedback to participants and in scoring 
participant responses.2 

2.2. Dependent measures and key relevant findings 

The WCST is a complex task that generates multiple dependent 
measures. Perhaps the simplest of these is response time (RT) — the time 
taken to sort each stimulus card. While the WCST is not traditionally a 
timed test, Lange, Seer, et al. (2016) report response times for both 
healthy control and PD participants, and show systematic differences 
with respect both to type of trial and to group. Thus both healthy con
trols and PD participants were slower on trials requiring a rule change 
than on trials not requiring a rule change, and PD participants were 
slower on all types of trial than healthy age-matched controls, but the 
two factors (trial type and group) did not interact. 

More generally, the variables of interest in the WCST are the fre
quencies with which various types of errors (i.e., responses leading to 
negative feedback) are made by participants. Following Lange, Kr€oger, 
et al. (2016), we consider three types of errors that might be made on 
each card sorting trial: perseverative errors (PE), set loss errors (SL), and 
integration errors (IE). A perseverative error (PE) is scored when a 
participant’s response is incorrect but is consistent with the previously 
successful rule, despite negative feedback on the previous trial. A set loss 
(SL) error is scored when the participant’s response indicates a change of 
sorting rule despite having received positive feedback on the previous 
trial. An integration error (IE) is scored when a participant’s response 
indicates a change of sorting rule following negative feedback, but when 
the new sorting rule adopted by the participant could have been ruled 
out by feedback on the trial before. 

Thus, perseverative errors occur when the participant fails to switch 
rules despite negative feedback, perhaps because either the feedback is 
ignored or inhibition of the currently selected rule is insufficient. In 
contrast, set loss errors may be due to loss of the mental representation 
of the current rule, to a diminished reward sensitivity (reflecting, for 
example, a form of habituation) or, as we show below, to the lack of 
stability of sensorimotor schemas, which in turn allows a stimulus to 
drive the response. Finally, integration errors, at least as argued by 
Lange, Kr€oger, et al. (2016), reflect a failure in remembering either 
recently tried rules or previous negative feedback. 

Consistent with a previous meta-analysis (Kudlicka et al., 2011), 
Lange, Seer, et al. (2016) found that their PD patients made more 
perseverative errors than their healthy age-matched controls. PD pa
tients also made more set loss errors than the controls, but not more 
integration errors (see Lange et al., 2017). 

A key advance in the work of Lange, Seer, et al. (2016) was the 
reporting of ERP components related to WCST performance. They 
focused in particular on two components, the P3a — a positive 
fronto-central potential occurring approximately 250–280 msec after 
presentation of a stimulus, and whose amplitude is thought to reflect 
attentional orienting — and the SPP (Sustained Parietal Positivity, also 
known as the PSP: Posterior Switch Positivity) — a more posterior 

Fig. 1. The four target cards used in the Wisconsin Card Sorting Test.  

2 There are at least two further differences between the standard task and the 
so-called Madrid version of Barcel�o (2003). Firstly, in the Madrid version par
ticipants are told not whether their responses are “correct” or “incorrect”, but 
whether they should “repeat” or “shift” their sorting criterion. Thus, rule 
shifting is prompted not by participants making an error but by participants 
being explicitly told to shift rules. Secondly, the Madrid version features 
frequent rule shifts — on average after 3 to 4 trials, while in the standard 
version rules are maintained for 10 trials. The model presented here assumes 
the standard presentation of feedback and the standard frequency of rule shifts. 
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positive component occurring late in processing and held to reflect 
set-shifting. Lange, Seer, et al. (2016) argued that the amplitudes of 
these ERP components should correlate with corresponding behavioural 
measures. In particular, they found (across their entire sample, including 
PD participants and controls) that the amplitude of the P3a correlated 
(negatively) with the proportion of perseverative errors, perhaps indi
cating that stronger attentional orienting results in more successful set 
switching, and that the amplitude of the SPP correlated (negatively) 
with the proportion of set loss errors, suggesting that stronger SPP re
flects better set maintenance. 

Given these findings, and the well-known basal ganglia pathology 
arising from PD (see Gale et al., 2008, for a review), the WCST is 
therefore a highly appropriate task for evaluating a model of schema 
selection that incorporates basal ganglia function. 

3. A neurobiologically-plausible model of schema selection 

3.1. Overall architecture 

The model consists of two sets of schema nodes (see Fig. 2) and, for 
each schema node, a set of basal ganglia units as described below. Each 
node/unit has an associated activation value which varies over time as a 
function of excitation and inhibition received from other nodes/units in 
the model. One set of schema nodes corresponds to the sorting rules — 
one node each for sort by colour, sort by shape and sort by number. The 
second set of schema nodes corresponds to sensorimotor schemas for 
placing stimulus cards below target cards. As there are four target cards 
(Fig. 1), there are four sensorimotor schema nodes. We refer to the 
sorting schemas as cognitive because it is assumed that they receive 
excitation from the supervisory system. In contrast, the sensorimotor 
schemas receive a signal when a stimulus is presented, while their 
activation entails selection of a motor response. 

Each set of schema nodes feeds into and receives output from a basal 
ganglia “layer”, as shown in Fig. 3 (for cognitive schemas), where the 
basal ganglia layer consists of five units for each schema node, as shown 
in Fig. 4. Thus, each schema node participates in a simulated cortico- 
subcortical loop. The basal ganglia units and their interconnectivity 
are based on our understanding of the functional biology of the basal 
ganglia (Gurney et al., 2001). The baseline activity of the basal ganglia 
and thalamic complex acts to suppress cortical activity (Wichmann and 
DeLong, 1996), which is represented by cognitive and sensorimotor 
schemas in our model. The joint action of the basal ganglia units reg
isters the activity in all schema nodes and, while suppressing the acti
vation of most of them, it partially or totally disinhibits one or a few of 
them, thereby increasing their chances of selection. The computation 
occurs in units corresponding to the caudate and putamen (str 
subscript), the subthalamic nucleus (stn subscript), the globus pallidus 
external segment (gpe subscript) and the globus pallidus internal 
segment (gpi subscript). 

3.2. The cortical component 

3.2.1. Activation calculation 
For both cognitive and sensorimotor schemas, activation is calcu

lated at successive time-steps according to three equations (see Equation 
(1) for cognitive schemas and Equation (2) for sensorimotor schema 
nodes). In each case, the first equation determines the strength of the 
input (ut

i) to node i at time t, the second implements a simple low-pass 
filter that evens out the input signal over time, and the third applies 
the logistic function σ, with parameters that determine its gain or slope α 
and its threshold β, to constrain the node’s activation to between zero 
and one. 

Cortex (Cognitive Schemas): The three cognitive schema nodes are 
assumed to receive a constant excitatory signal, oext , plus input from 
their corresponding thalamus unit in the basal ganglia (see below): 

ut
i←oext þ ot� 1

thal;i

at
i←δ⋅at� 1

i þ ð1 � δÞ⋅ut
i

ot
i←σβpfc ;αpfc

�
at

i

�
(1) 

Cortex (Sensorimotor Schemas): The four sensorimotor schema nodes 
are assumed to receive input from cognitive schema nodes (scaled by 
wrule

i;j , the weight of connection from each cognitive schema node j to each 
sensorimotor schema node i), plus ostim if a stimulus card is present and 
matches the corresponding target card on any feature (so a card showing 
two red crosses will activate the first, second and third sensorimotor 
schema units; see Fig. 1), plus input from the corresponding thalamus 
unit in the basal ganglia: 

Fig. 2. Schema nodes within the model. The top three (cognitive) schemas 
represent the sorting rules (C: colour, S: shape, N: number) while the bottom 
four (sensorimotor) schemas represent the acts of placing a stimulus card below 
one of the four target cards. 

Fig. 3. Schematic of the connections between cortical schema units and the 
basal ganglia (C: colour, S: shape, N: number). The sensorimotor units have 
analogous connections with the basal ganglia. 

Fig. 4. Basal ganglia units associated with each schema node (for both cortical 
and sensorimotor schemas). (CTX-THAL: corticothalamic complex/input of the 
model; STR D1: Striatum with D1 modulation; STN: Subthalamic Nucleus; STR 
D2: Striatum with D2 modulation; GPe: Globus Pallidus external segment; GPi: 
Globus Pallidus internal segment.) 
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ut
i←
X

j
wrule

i;j ot
ctx;j þ ostim þ ot� 1

thal;i

at
i←δ⋅at� 1

i þ ð1 � δÞ⋅ut
i

ot
i←σβsma ;αsma

�
at

i

�

(2) 

For the third clause in Equation (1) and Equation (2) above (and all 
other equation sets below), σβ;α, often referred to as the logistic function, 
is given by Equation (3): 

σβ;αðxÞ¼
1

1þ e� α⋅ðx� βÞ (3)  

3.2.2. Schema selection 
A schema is selected when its activation exceeds a static threshold θs 

and the area below the activation value from the last trial reaches a 
threshold θA, where both θs and θA are parameters of the model. The 
former reflects the possibility that no schema may be selected, resulting 
in no action. The latter reflects the assumption of integrators that 
accumulate data until a decision can be made (Forstmann et al., 2016). 
Only selected cognitive schemas pass excitation to sensorimotor sche
mas. Thus wrule

i;j in Equation (2) is zero for non-selected cognitive sche
mas. Selected sensorimotor schemas trigger corresponding motor acts (i. 
e., placement of the stimulus card under the target card corresponding to 
the selected sensorimotor schema). 

3.2.3. Cortical learning 
We assume that the slope or gain of the saturation functions of 

cortical units dynamically adapts to the level of conflict between those 
units. In particular, when the activation of several cortical representa
tions is very similar, and the basal ganglia alone cannot arbitrate be
tween different representations because feedback/reward has not yet 
been received and computed, a mechanism is required to resolve this 
conflict and make a decision. Moreover, the stability of cognitive rep
resentations needs to be sensitive to the need to trade off exploration and 
exploitation at different levels of the schema hierarchy (Goschke and 
Bolte, 2014). Allowing the gain of the activation function at each level of 
the hierarchy to vary in response to conflict provides a mechanism for 
this. 

Here, we implement a mechanism that allows the cortical sensori
motor nodes to change the gain of their saturation function αsma via the 
free parameter εsma according to Equation (4): 

αsma←ð1þ ζsmaÞ
YN

i
ð1þ εsma þ osma;iÞ (4)  

where ζsma is the sensorimotor unit noise and the product is over all 
sensorimotor units (so N is 4 in the model of WCST). For simplicity we do 
not include the analogous dynamic slope adjustment for cognitive 
schema nodes. 

Psychologically, increasing the gain is akin to reducing hesitancy in 
responding, given the same level of evidence. Equation (4) has the 
desirable property of a conflict construct, as illustrated by Berlyne 
(1957) (see also Botvinick et al., 2001). Thus, conflict should increase 
with the number and the activation value of competing representations, 
and it should peak when all activations peak. These criteria can be met 
by an infinite number functions, but a simple solution is provided by the 
product of activation values. Conflict should drive change to the schema 
activation values so as to stabilise or destabilise them as a function of 
their input, and this is therefore implemented through the change of 
slope of the saturation function in the sensorimotor units. Computa
tionally, cognitive control acts by first detecting processes that make 
performance suboptimal and then adjusting control by changing atten
tional focus. This mechanism can carry out the stabilisation of the 
activation of any of the four sensorimotor schemas, pulling their acti
vation to either side of the threshold value more quickly. The value of 
αsma is updated each time feedback is given. 

3.3. The basal ganglia component 

3.3.1. Activation calculation of basal ganglia units 
Activation of basal ganglia nodes is calculated in a way analogous to 

activation of cortical units. Thus, in each case input, ut , at time t is 
calculated. This is then smoothed using a weighted average and fed to a 
saturation function, which in all cases is the standard sigmoid function 
(Equation (3)) with parameters defining threshold and slope. Connec
tivity of basal ganglia units (and hence input to each unit) is as shown in 
Fig. 4. 

All striatal channels receive a copy of the signal from the cortex, both 
in the cognitive (higher order) and the sensorimotor (lower order) loops, 
therefore the subscript ctx in the equations below indicates either 
cognitive or sensorimotor schemas. 

Striatum (STR D1 and STR D2): The input to each striatal unit is just 
the current activation of the corresponding cortical unit: 

ut
i←ot

cxt;i

at
i←δ⋅at� 1

i þ ð1 � δÞut
i

ot
i←σβstr ;αstr ðaiÞ

(5) 

Subthalamic Nucleus (STN): Subthalamic Nucleus units receive 
excitatory input from the cortex (weighted by wstn) and inhibitory input 
from the External Segment of the Globus Pallidus (weighted by wgpe;stn): 

ut
i←wstnot

ctx þ wgpe;stnot� 1
gpe;i

at
i←δ⋅at� 1

i þ ð1 � δÞut
i

ot
i←σβstn ;αstn ðaiÞ

(6) 

Globus Pallidus External Segment (GPe): Units in the External Segment 
of the Globus Pallidus receive excitatory input from the Subthalamic 
Nucleus (weighted by wstn;gpe) and inhibitory input from the D2 channel 
of the Striatum (weighted by wstrD2;gpe): 

ut
i←wstn;gpe

X

j
ot

stn;j þ wstrD2;gpeot� 1
strD2;i

at
i←δ⋅at� 1

i þ ð1 � δÞut
i

ot
i←σβgpe ;αgpe ðaiÞ

(7) 

Globus Pallidus Internal Segment (GPi): Units in the Internal Segment 
of the Globus Pallidus receive excitatory input from the Subthalamic 
Nucleus (weighted by wstn;gpi) and inhibitory input from the Globus 
Pallidus External Segment (weighted by wgpe;gpi) and the D1 channel of 
the Striatum (weighted by wstrD1;gpi): 

ut
i←wstn;gpi

X

j
ot

stn;j þ wgpe;gpiot
gpe;i þ wstrD1;gpiot

strD1;i

at
i←δ⋅at� 1

i þ ð1 � δÞut
i

ot
i←σβgpi ;αgpi ðaiÞ

(8) 

In the summation here, the index j ranges over all competing inputs 
from the Subthalamic Nucleus. This ensures that the basal ganglia units 
scale their interactions with each other and their outputs according to 
the global input signal, ultimately in order to appropriately promote 
competition among the cortical units. 

Thalamus (THAL): Finally, units in the Thalamus receive input from 
the Globus Pallidus Internal Segment: 

ut
i←ot

gpi;i

at
i←δ⋅at� 1

i þ ð1 � δÞut
i

ot
i← � σβthal ;αthal ðaiÞ

(9) 

The negation in the last clause of Equation (9) reflects the fact that 
the thalamus is tonically active and disinhibited by the basal ganglia 
complex. 

The model contains three corticobasal pathways (see Fig. 4). These 
are traditionally called the direct, indirect, and hyperdirect pathways 
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(Alexander et al., 1986). The direct pathway projects from the striatum 
directly into the globus pallidus (internal segment), while the indirect 
one passes through the external segment of the globus pallidus and the 
subthalamic nucleus. The hyperdirect pathways does not pass through 
the striatum at all, and reaches the globus pallidus (internal segment) 
directly from the cortex. As in the model by Gurney et al. (2001), direct 
and indirect pathways can be renamed according to their functionality, 
to selection and control pathways, respectively, in that action selection 
is mainly executed by the selection pathway, whilst the control pathway 
scales the output and thus affects the overall selection threshold. 

3.3.2. Basal ganglia learning mechanism 
The basal ganglia units are regulated in a different fashion from the 

cortical nodes. While cortical nodes are solely regulated by their online 
state, regardless of history of activation and external stimuli, basal 
ganglia units change their characteristics with a history-based and 
reward-driven time course. This is reflected by adjusting βstr, the 
threshold of the saturation function in striatal units, which is assumed to 
be related to the level of striatal dopamine. A mechanism that alters this 
threshold as a function of current feedback and past history of activation 
in the respective cortical units is shown in Equation (10): 

βstr;i ← ðβstr;i � εstrδiÞ⋅ð1þ ζstr;iÞ (10)  

where the calculated value of βstr is clipped to within the range [0, 1] if it 
falls below 0 or above 1. 

In this equation, δi is the reward prediction error (RPE), expressed as 
the difference between the current feature matching value fi and the 
median activation value in the last trial ai (Equation (11)): 

δi ← ri⋅ðfi � aiÞ (11)  

where ri is either þ1 or � 1, according to whether the feedback is 
positive (correct response) or negative (incorrect response). This allows 
the model to bias βstr in the correct direction. 

In order to calculate the striatal saturation threshold, the feature 
match, fi, is assigned to each cognitive schema according to Equation 
(12): 

fi←

( �
2wneg � 1

�
�
�
mr⋅f t� 1

i ⋅rt� 1
i

�
if ​ no ​ matching ​ feature

þ1 if ​ at ​ least ​ one ​ matching ​ feature

(12)  

where mr is a parameter that determines the extent to which feedback 
from previous trials affects the calculation. 

If the correct rule matches the given response, fi assumes a value of þ
1. Otherwise, if wneg is 0 and mr is 0, the resulting value is � 1, but 
increasingly higher values of wneg correspond to decreased negative 
reward sensitivity, while increasingly higher values of mr result in 
persistence of feedback from the previous trial. The RPE can therefore 
assume positive or negative values; for instance, if the external feedback 
is incorrect (the model selected the wrong card), the target card matches 
two features, and the schema has a high median activation value during 
the last trial, then the RPE will be negative but of small absolute value. 

The mechanism defined by equations (10)–(12) tends to bias the 
activation for one of the three cognitive schema nodes through the basal 
ganglia units, as a function of a) the reward/feedback received, b) the 
immediately past value of βstr (which is updated each time feedback is 
given) and c) the learning parameter εstr. This generally results in 
selecting the action that has received the most immediate positive 
feedback, as in reinforcement learning algorithms (Sutton and Barto, 
1998). Note that the parameter βstr varies for the cognitive cortical units 
only. It is assumed that lower level actions represented in the sensori
motor schemas are not reinforced as strongly as higher-order actions, as 
stimuli are distributed randomly and so no sequence is discernible. 

3.4. Parameters of the model 

The full set of model parameters and their default values are shown 
in Table 1. The parameters specify: the strength of input to schema nodes 
(oext and ostim); the strength of connections between units (w); the slope 
(α) and threshold (β) of saturation functions; the smoothing constant in 
saturation functions (δ); learning rates for the striatum (εstr) and for 
sensorimotor schemas (εsma); thresholds for schema selection (θ); and 

Table 1 
The complete list of model parameters and their default values.  

Parameter Default Value Description 

δ 0.60 Smoothing constant in all integrations 
oext  0.75 External input to cognitive schema units 
ostim  0.50 Input to sensorimotor schema units when a stimulus 

card is presented 
wrule

i;j  0.40 Weight values from cognitive to sensorimotor 
schema 

wneg  0.00 Negative Reward Sensitivity 
mr  0.00 Memory for negative feedback 
wstn  1.20 Weight from cortex to subthalamic nucleus 
wstr;gpi  � 1:00  Weight from striatum to globus pallidus (internal 

segment) 
wstn;gpe  � 1:00  Weight from subthalamic nucleus to globus pallidus 

(external segment) 
wstn;gpi  0.90 Weight from subthalamic nucleus to globus pallidus 

(internal segment) 
wstn;gpe  0.90 Weight from cortex to globus pallidus (external 

segment) 
wgpe;gpi  � 0:30  Weight from globus pallidus (external) to globus 

pallidus (internal) 
εstr  0.40 Striatum learning rate 
εsma  0.50 Sensorimotor schema learning rate 
θA  N ð4000;

4002Þ

Schema integration selection threshold (normally 
distributed) 

θs  0.50 Static schema selection threshold 
αsma  8.00 Activation gain of SMA units 
αpfc  8.00 Activation gain of PFC units 
αstn  8.00 Activation gain of Subthalamic Nucleus units 
αgpi  8.00 Activation gain Globus Pallidus (int.) units 
αgpe  8.00 Activation gain of Globus Pallidus (ext.) units 
αthal  8.00 Activation gain of Thalamus units 
αstr;pfc  8.50 Activation gain of striatal units for cognitive 

schemas 
αstr;sma  8.50 Activation gain of striatal units for sensorimotor 

schemas 
βthal  0.45 Activation threshold of Thalamus units 
βsma  0.40 Activation threshold of SMA units 
βpfc  0.50 Activation threshold of PFC units 
βstr;pfc  0.50 Activation threshold of striatal units for the PFC 
βstr;sma  0.50 Activation threshold of striatal units for the 

sensorimotor schemas 
βstn;pfc  0.30 Activation threshold of subthalamic units for the 

PFC 
βgpe;pfc  0.25 Activation threshold of globus pallidus (ext) units for 

the PFC 
βgpi;pfc  0.25 Activation threshold of globus pallidus (int) units for 

the PFC 
βstr;sma  0.50 Activation threshold of striatal units for the SMA 
βstn;sma  0.30 Activation threshold of subthalamic units for the 

SMA 
βgpe;sma  0.25 Activation threshold of globus pallidus (ext) units for 

the SMA 
βgpi;sma  0.25 Activation threshold of globus pallidus (int) units for 

the SMA 
ζstim  U ð � 0:2; þ

0:2Þ
Uniformly distributed noise added to external 
stimulus ostim  

ζstr;i  U ð � 0:1; þ
0:1Þ

Uniformly distributed noise in βstr calculation  

ζsma  U ð � 0:1; þ
0:1Þ

Uniformly distributed noise in αsma calculation   
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noise (ζ). 
Most parameters are self explanatory, but further comment is 

required on some. Firstly, the noise parameters ensure variability or 
stochasticity in the model’s behaviour, while the variable schema inte
gration threshold introduces variance into the model’s response time. 
Secondly, following, e.g., Amos (2000), we associate βstr, the saturation 
threshold of the striatum, with the concentration of striatal dopamine, 
and hypothesise that εstr, which governs adaptation of βstr (see Equation 
(10)), is compromised in PD. Thirdly, we assume that cortical learning 
involves adaptation of the slope of the saturation function of cortical 
schemas (since decreased slope lessens sensitivity and provides more 
opportunity for competition). This is governed by the parameter εsma. 
Finally, as noted above (Equation (12)), wneg determines the model’s 
sensitivity to negative reward, i.e., the degree to which feedback in
fluences adaptation of βstr. 

3.5. Operation of the model 

When a card is presented its features activate the respective senso
rimotor schemas by the quantity ostim. For instance, two red crosses 
activate the first, the second, and the third schema, but not the fourth 
(four blue circles) because there is no common feature (see Fig. 1). In the 
meantime, the top-down constant excitation oext feeds the cognitive 
units. Once the cognitive schemas are activated they pass activity down 
to the sensorimotor schemas according to the selected schema rule. The 
signal is scaled by wrule, and added to the previous values gathered from 
the stimuli, and then integrated over time until a selection can be made, 
in the same manner as the higher level nodes. When cognitive schemas 
are not strong enough to influence motor schemas, action selection may 
be driven by stimulus features only. This basic model is complemented 
by a mechanism that resolves competition between schemas within each 
hierarchical level: cognitive and sensorimotor schema nodes feed into 
two parallel computational mechanisms that simulate basal ganglia 
functions and each returns a signal in the form of inhibition to the in
dividual channels at each level (Fig. 3). 

4. Simulation study 1: basic model performance 

With appropriate settings of parameters (see Table 1), the model as 
described above is able to complete the WCST with few errors and high 
sorting accuracy. Thus, Table 2 shows standard descriptive statistics (for 
cards correctly sorted, categories achieved and errors of each type) 
based on 100 simulated runs when the parameters are set to their default 
values (i.e., the values in Table 1). Studies including ambiguous cards 
and longer standard run lengths (e.g. Stuss et al., 2000) typically report 
healthy control participants correctly sorting about 50 cards out of 64 
cards, while achieving on average 4 categories and producing 7 
perseverative errors and 1 set loss error. With the default parameter 
values, the model does slightly better than this, but direct comparison of 
behavioural measures with previous empirical work is not possible 
because of procedural differences in administration of the task. In 
particular, in the studies of Barcel�o (2003) and Lange, Seer, et al. (2016), 

which used unambiguous cards (as used here and as required to identify 
integration errors), rule changes occurred very frequently (for example, 
the feedback “shift” appears after a random number of correct sorts with 
a median value of 3.5 trials in the study of Lange, Seer, et al., 2016) 
rather than after 10 consecutive correct sorts. Such frequent shifts 
severely limits the number of opportunities for set loss errors. Moreover 
previous work has also shown that more frequent rule changes increase 
the likelihood of perseverative errors (Grant and Berg, 1948). 

Table 2 also shows the mean (and standard deviation) response time 
(in processing cycles) following positive and negative feedback (i.e., on 
trials after a correct response, and on the trials following an error). Like 
the healthy controls of Lange, Seer, et al. (2016), the model takes longer 
to respond on trials following an error (where a rule change is required) 
than on trials following positive feedback. 

The activations of cognitive schema nodes and sensorimotor schema 
nodes for a part of one instance of a model run with default parameter 
settings are shown in Figs. 5 and 6 respectively. As can be seen from 
Fig. 6 (red line) the model selects one motor response following pre
sentation of each card. As can be seen from Fig. 5, the model establishes 
one sorting schema (e.g., sort by colour) following the first trial. This 
remains active until negative feedback is received after 10 correct trials 
(around cycle 1900). Following this, there is a period of exploration 
before the new sorting schema (sort by number) is determined, and then 
applied on successive trials. The basic model is therefore able to use 
initial feedback to correctly determine and activate the appropriate 
cognitive level schema and to switch to a new sorting schema following 
negative feedback. 

5. Simulation study 2: modelling Parkinson’s disease 

5.1. Rationale 

As noted above, we hypothesis that εstr which determines sensitivity 
of learning within the basal ganglia system to reward prediction error 
(see Equation (10)), and which subsequently affects the gain of striatal 
units, is compromised in Parkinson’s disease. In order to model PD we 
therefore reduce εstr from its default of 0.4. However, PD is not a ho
mogenous disorder and other aspects of basal ganglia adaptation are 
likely to be disrupted in the disorder. Two possibilities (from Equation 
(12)) are sensitivity to reward (wneg) and the extent to which the 
calculation of feedback is sensitive to feedback from previous trials (mr). 
In modelling PD we therefore consider four scenarios in comparison to 
the default parameter settings: reduced εstr; reduced εstr with increased 
wneg; reduced εstr with increased mr; and reduced εstr with both increased 
wneg and increased mr. 

5.2. Method 

Four virtual participant groups, PD1 to PD4, were defined by altering 
the key parameters from their default values as described above. Table 3 
shows the values of the three critical parameters for each group. 100 
simulations were then run for each group and dependent measures 
(corresponding to those in Table 2 for the healthy control simulations) 
were calculated. 

5.3. Results 

Table 4 shows the mean (and standard deviations) for all dependent 
measures and for each simulated patient group. For the most part, the 
four groups show similar profiles in relation to the data from simulation 
study 1 (i.e., simulated healthy control participants). Thus, in all cases 

Table 2 
Mean (s.d.) of dependent measures for simulation study 1, based on 100 
simulation runs, each with default parameter values (as given in Table 1) and 
including 64 unambiguous cards.  

Measure Value 

Card correctly sorted 54.38 (1.85) 
Categories achieved 4.87 (0.37) 
Perseverative Errors 5.39 (0.85) 
Set Loss errors 0.34 (0.62) 
Integration Errors 0.02 (0.14) 
RT (post positive feedback, in cycles) 129.10 (1.14) 
RT (post negative feedback, in cycles) 144.01 (6.47)  
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fewer cards are sorted correctly and fewer categories are achieved.3 

With respect to errors, in all cases more perseverative errors and more 
integration errors are produced than in simulation study 1. However, set 

Fig. 5. Extract from a typical simulation run. The top plot represents the sort by colour schema, the middle one represents the sort by shape schema and the bottom one 
is the sort by number schema. The thick black line represents the schema activation value. The dashed red line represents the value of βstr . The black dashed vertical 
line indicates a new trial and the activation of sensorimotor schemas (and therefore a response). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

Fig. 6. Extract from a typical simulation run. The four plots represent the four sensorimotor schemas. The dashed red line represents the value of ostim, that is the fact 
a stimulus card has a feature in common with that target. The dark blue line indicates the activation of the cognitive schemas, while the light blue line is the top-down 
input resulting from multiplying that by the relevant weights. The green line is the minmax normalised value of αsma. As in Fig. 5, trials are indicated by the black 
dashed vertical line. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Parameter values for each virtual participant group in simulation study 2.  

Parameter PD1 PD2 PD3 PD4 

εstr  0.10 0.10 0.10 0.10 
wneg  0.00 0.65 0.00 0.65 
mr  0.00 0.00 0.60 0.60  

3 Pairwise comparisons indicate that these effects are all statistically signifi
cant, but such comparisons are not particularly meaningful given that their 
results can be manipulated by manipulating the simulated sample sizes. 
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loss errors show a different profile. They are elevated with respect to the 
healthy control simulations only in the PD2 group. 

In comparison to simulation study 1, response times on trials 
following positive feedback also vary across the groups, being substan
tially longer in the case of PD2 and PD4, marginally longer in the case of 
PD3, and similar in the case of PD1. As in the healthy control simulations, 
response times are longer on trials following negative feedback than on 
trials following positive feedback, but the difference in response times 
between the trial types varies across the groups, being less than in 
simulation study 1 for PD2, similar in PD4, and greater in PD1 and PD3. 

5.4. Discussion 

Recall that, in comparison to healthy control participants, Parkin
son’s disease patients sort fewer cards correctly and hence achieve fewer 
categories. They also tend to produce more perseverative errors and 
more set loss errors, though the work of Lange et al. (2017) suggests that 
they do not produce more integration errors. At the same time, PD pa
tients are slower at sorting cards than healthy controls, and this slowing 
is independent of feedback. That is, the slowing following positive 
feedback is similar in magnitude to that following negative feedback. 

These qualitative findings are largely, though not completely, 
replicated by the four groups considered here. All groups show fewer 
cards correctly sorted and fewer categories achieved than in simulation 
study 1. Equally, all groups show elevated rates of perseveration, but in 
contrast to the patient data, groups PD1 and PD3 do not show elevated 
rates of set loss errors (and the increase in these errors for group PD4 is 
relatively small). Also in contrast to the patient data, all groups show 
elevated levels of integration errors in comparison to simulation study 1, 
however this may be because such errors were almost completely absent 
in that simulation study. With respect to response time, only groups PD2 
and PD4 show a substantial lengthening in comparison to simulation 
study 1, with the effect of negative feedback being smaller for PD2 than 
in simulation study 1 (10.10 cycles versus 14.91 cycles), but similar for 
PD4 (16.38 cycles). 

To summarise, based purely on the simulated dependent measures 
reported here, groups PD2 and PD4 probably provide the most empiri
cally adequate accounts of PD patient behaviour, suggesting that PD is 
plausibly accounted for within the model by reduced εstr (equivalent to 
reduced sensitivity to striatal dopamine) and increased wneg (equivalent 
to increased sensitivity to negative reward). That is, the simulated data 
suggest that PD is better modelled by variation of multiple parameters 
than by variation of a single parameter. 

As an aside, these simulations also suggest that within the model the 
tendencies towards perseveration and set loss can dissociate, in that 
groups PD1 and PD3 show elevated perseverative errors in the absence of 
elevated set loss errors. Arguably, the two types of error have different 

sources, with perseverative errors reflecting a failure in reactive control 
(i.e., following negative feedback) and set loss errors reflecting a failure 
in proactive control (and in particular in task set maintenance). Indeed, 
some studies of WCST and healthy aging have shown dissociations be
tween the two types of error (e.g., Caso & Cooper, in preparation; Paolo 
et al., 1996). This is consistent with arguments such as those of Rhodes 
(2004), who suggested on the basis of a meta-review that age-related 
perseveration is moderated by the number of years of education, with 
more educated participants tending to commit fewer perseverative 
errors. 

Note that in the simulations studies presented thus far, each group is 
simulated by a single set of parameter values. This is tantamount to 
considering each group to consist of a number of identical individuals. 
This is an implausible assumption, though it is helpful in determining 
the central tendencies of dependent measures in each group. Clearly 
individuals within a group are likely to differ in the settings of the 
various parameters. Furthermore, one parameter not considered in this 
stimulation study and whose value might possibly be affected by Par
kinson’s pathology is εsma, which regulates cortical learning (cf. Equa
tion (4)). This is because dopamine depletion caused by Parkinson’s 
disease may not only impact striatal areas, but also cortical areas that 
receive dopaminergic projections from the ventral tegmental area in the 
midbrain, and this could potentially affect both learning and active 
maintenance of temporary representations (Narayanan et al., 2013; van 
Schouwenburg et al., 2010). A full exploration of the effect of varying 
this parameter in conjunction with the other three parameters consid
ered here is provided in the appendix, where it is shown that decreasing 
εsma increases response time, and that low values of εsma generally result 
in more set lose errors than higher values. Given this, and the previous 
comment about modelling groups of non-identical individuals, in sub
sequent simulations we assume that healthy control participants are 
plausibly modelled by a four-dimensional region of parameter space 
containing the point identified in simulation study 1, and that Parkin
son’s disease patients are plausibly modelled by a non-overlapping re
gion in which εstr and εsma are reduced and wneg and mr are elevated. 

6. Simulation study 3: mapping internal processes to ERP 
components 

As seen in simulation study 2, the model reliably shows how the 
mapping between the stimuli generated by the environment and error 
frequencies is plausibly altered by neurobiologically grounded param
eters. We now turn to examining the internal processes of the archi
tecture, and how they relate to two ERP components, the error-related 
negativity (ERN) and the posterior switch positivity (PSP), and specif
ically to how those components are modulated as a consequence of 
Parkinson’s pathology. 

6.1. Error-related negativity (ERN) 

The error-related negativity (ERN) is a brain potential with a fron
tocentral distribution that peaks approximately 100 ms after a specific 
event, usually an error committed by participants performing reaction 
time tasks (Gehring et al., 1993). The ERN is generally believed to be 
generated by the Anterior Cingulate Cortex (ACC; van Veen and Carter, 
2002) but several other brain areas present a signal with the same 
signature. Br�azdil et al. (2002) analysed intracerebral recordings in a 
simple visual oddball paradigm and showed how an ERN signal may be 
generated in the rostral ACC as well as the pre-supplementary motor 
area (pre-SMA), the orbitofrontal cortex (OFC) and, somewhat unusu
ally, the mesiotemporal areas. In addition to the presence of multiple 
sources for this signal, the latency differences between posterior and 
anterior components suggested that signals originate from caudal areas 
and are later processed in frontal regions. Critically for the current work, 
across a range of tasks the ERN has been found to be attenuated in PD 
patients (Falkenstein et al., 2001). 

Table 4 
Mean (s.d.) of dependent measures for simulation study 2, based on 100 simu
lation runs each including 64 unambiguous cards, for each simulated PD group.  

Measure PD1 PD2 PD3 PD4 

Card correctly sorted 45.57 
(3.20) 

41.43 
(10.71) 

43.53 
(2.86) 

38.18 
(9.76) 

Categories achieved 3.96 
(0.35) 

3.07 (1.39) 3.84 
(0.39) 

2.94 (1.45) 

Perseverative Errors 12.33 
(1.62) 

10.12 
(4.59) 

13.40 
(1.76) 

12.81 
(4.73) 

Set Loss errors 0.36 
(0.61) 

0.94 (1.23) 0.25 
(0.46) 

0.47 (0.72) 

Integration Errors 0.86 
(1.12) 

1.13 (1.93) 1.67 
(1.56) 

1.95 (2.65) 

RT (post positive 
feedback, in cycles) 

130.80 
(1.87) 

138.95 
(14.97) 

133.00 
(2.63) 

141.22 
(12.41) 

RT (post negative 
feedback, in cycles) 

148.16 
(6.92) 

149.05 
(16.10) 

154.92 
(7.35) 

157.60 
(15.15)  
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In order to be an accurate representation of the ERN, a function of the 
internal variables of the model must satisfy a number of criteria. First, its 
value after an error must be greater than when a response is correct 
(Coles et al., 2001). Secondly, the value of the signal has to drop below 
baseline immediately before response and then peak after response. 
Since the model functions in processing cycles rather than real time, and 
since not all variables are continuous, the relative positions of the signal 
compared to the response is a meaningful criterion to assess whether the 
signal is a proxy for the ERN. Finally, if it is to reflect error it must be at 
least moderately correlated with the conflict values at response. Equa
tion (13) satisfies these requirements. 

ERNcorr← � absmax
�
ot

sma � ot� 1
sma

�

ERNincorr← � absmax
�
ot

sma � ot� 1
sma

�

ERN←ERNcorr � ERNincorr

(13)  

where absmaxðxÞ ¼ xargmaxjxi j. 
Equation (13) states that a proxy for the ERN signal is obtained by 

finding the temporal variation for each sensorimotor schema and taking 
the one with the greatest absolute activation, preserving the sign. ERN 
attenuation for each correct and incorrect trial is measured as the dif
ference between ERN signals between time-steps. The final ERN signal is 
then calculated as the (weighted) difference between the ERN in the 
correct conditions and the ERN in the incorrect condition. 

A simulation of the mean signal for twenty virtual healthy controls 
(HC) and twenty virtual PD patients is shown in Fig. 7. Here, HC and PD 
patients are simulated by using the midpoint of each variable in the two 
parameter spaces (HC and PD), as described in Table 5. Critically, the 
ERN is attenuated in simulated PD patients, mirroring the clinical 
findings of Falkenstein et al. (2001) obtained over a range of executive 
tasks. 

6.2. Posterior switch positivity (PSP) 

Empirically, the Posterior Switch Positivity (PSP) is calculated as the 
difference between the sustained peaks from 600 ms to 800 ms (Sus
tained Parietal Positivity; SPP) produced by shift and repeat trials in the 
posterior parietal area (Lange et al., 2017). This neural activity is widely 
believed to reflect set-shifting processes between cognitive sets (Kar
ayanidis et al., 2010). In order to be an accurate representation of the 
PSP, a function of the internal variables of the model must produce a 

signal that is present in the set-shifting trials but attenuated in the 
subsequent ones. The same absmax function previously used for ERN 
meets these criteria if applied to the activation value of cognitive 
schemas. PSP is therefore computed for the model by calculating the 
values of the SPP for both shifting trials and the subsequent ones, as can 
be seen in Equation (14). PSP attenuation is then measured as the mean 
difference between the peaks of two signals. 

SPPt←absmax
�

ot
pfc � ot� 1

pfc

�

PSPatt←SPPshift � SPPfirst cue

(14) 

As shown in Fig. 8, simulated PSP is attenuated in PD participants 
compared to HC controls. 

7. Simulation study 4: relations between behavioural measures 
and ERP amplitudes 

Simulation study 4 explores the relationship between the frequency 
of each error type and signal attenuation, with the aim of comparing and 
generating predictions for Parkinson’s Disease. An accurate comparison 
of performance with previous empirical work is unobtainable because of 
procedural differences in administration and scoring of the task, and the 
fact that the data of Lange, Seer, et al. (2016) are pooled across patients 
with and without dopaminergic replacement therapy. Thus, in order to 
identify a parameter space for healthy controls and individuals with PD 
we supplement the behavioural results of Lange, Seer, et al. (2016) with 
the theoretical considerations illustrated above to generate a set of 
non-overlapping parameter spaces corresponding approximately to the 
two groups, as in Table 5. 

Simulations were first run of 10 virtual participants for all possible 

Fig. 7. The mean ERN signal (smoothed) for twenty virtual HC individuals and 
twenty virtual PD individuals. The signal drops below the baseline and then 
peaks, and it is attenuated for the virtual PD participants. 

Table 5 
Table of the parameter range for Healthy controls (HC) and Parkinson’s in
dividuals (PD). Parameters have been evaluated in 4 equally spaced subintervals 
in the specified range, for a total of 256 (¼ 4� 4� 4� 4) datapoints for each 
group.   

εstr  εsma  wneg  mr  

HC 0.40 – 0.70 0:50 � 0:70  0:00 � 0:20  0:00 � 0:20  
PD 0.05 – 0.20 0:30 � 0:50  0:50 � 0:80  0:50 � 0:70   

Fig. 8. The mean rate of change for set-shifting (left blue dashed line) and 
subsequent trials (right blue dashed lines), from which PSP is calculated. The 
signal is again averaged across twenty virtual HC individuals and twenty virtual 
PD individuals. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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combinations of the four critical parameters in the first row of Table 5. 
This set of parameters should be able to simulate a wide range of young 
healthy participants. Spearman correlation coefficients between ERN 
and PSP attenuations and frequency of each error were calculated. Re
sults are shown in Table 6. 

In the simulation of healthy controls, ERN and PSP show similar 
relations to behavioural measures, and in particular are negatively 
correlated with PE. However, inspection of the relevant scatter plots 
reveals a non-monotonic relationship between the variables (Fig. 9), 
thus limiting interpretation of the values in Table 6. This suggests that 
the HC space we designed is heterogeneous and meaningful inferences 
regarding relations between errors and ERPs are not possible. 

Simulations of 10 virtual participants were then run for the param
eters associated with PD in Table 5. Spearman correlation coefficients 
between ERN and PSP attenuations and the frequency of each error type 
were calculated. Results are shown in Table 7. 

In this case, inspection of the scatter plots shows monotonic re
lationships between variables (Fig. 10), suggesting that the simulated PD 
group is more homogenous than the simulated HC group and that 
confident inferences regarding errors and neurophysiological markers is 
possible. The strong correlation between PE and both the attenuation of 
ERN and of PSP suggests that both decreased set-shifting and decreased 
response conflict may be responsible for Perseverative Errors. Since our 
model implements a response conflict mechanism that generates the 
ERN signal only in the motor schemas independently of dopamine signal 
in the midbrain, this is consisted with Holroyd et al. (2002), who 
differentiate between motor and error-related processes in the context of 
a Flanker task, and suggest that PD disrupts exclusively the motor pro
cess. There is also support for the notion that the PSP signal, which is 
considered to be a signature for cognitive set-shifting (Lange et al., 
2017), is associated with Perseverative Errors, albeit the evidence is 
limited to a pathological state (PD) and does not apply in the general 
case. 

The difference in correlation between Set Loss errors and ERN versus 
Set Loss errors and PSP is also of interest. It constitutes an experimental 
prediction: in participants with PD, the number of SL errors should in
crease as the ERN signal becomes smaller, but be independent of the size 
of PSP. 

8. Simulation study 5: on the relation between model 
parameters and ERP components 

8.1. Rationale and method 

Simulation study 5 complements simulation study 4 by addressing 
the relationship between model parameters (rather than simulated 
behavioural measures) and attenuation of the simulated ERP compo
nents. Firstly, 20 simulations were run for each value of εstr ranging from 
0.00 to 1.00 in steps of 0.05 and three values of εsma (0.2, 0.5 and 0.8). 
All other parameters were held at their default values. Attenuation of the 
ERN and ESP signals was calculated for each point in the parameter 
space. Secondly, the effect of varying εsma (from 0.00 to 1.00 in steps of 
0.05) was explored in a similar manner, for three values of εstr (0.2, 0.5 
and 0.8). Finally, the effect of varying wneg (from 0.00 to 1.00 in steps of 
0.05) was explored in a similar manner, for the same three values of εstr. 

8.2. Results and discussion 

As discussed earlier, reducing εstr is hypothesised to correspond to a 
reduction of dopamine concentration in the basal ganglia circuits, as 
seen in PD pathology. As shown in Fig. 11, reduction in εstr results in 
attenuation of the simulated ERN, This supports the reinforcement 
learning model of the ERN in which this neural activity is a signature of 
prediction error generated by midbrain dopamine neurons and relayed 
to the prefrontal cortex (Holroyd and Coles, 2002). It is also compatible 
with ERN attenuation in PD (Beste et al., 2009). With regard to the PSP, 
attenuation of the signal following εstr reduction is consistent with what 
has been observed in our model, though it runs against the view that PSP 

Table 6 
Spearman’s correlation coefficients between ERN and PSP attenuation signals 
and the frequencies of the different types of error in a parameter space associ
ated with healthy controls. N ¼ 2560. ** is p < :001, * is p < :05   

PE SL IE 

ERNatt  � :37**  :12� :25**  
PSPatt  � :31**  .12 :20*   

Fig. 9. Scatterplot of datapoints in simulated HC (Healthy Controls space). 
Ordinate axis is logarithmic. 

Table 7 
Spearman’s correlation coefficients between ERN and PSP attenuation signals 
and the frequencies of the different types of errors in a parameter space asso
ciated with PD. N ¼ 2560. ** is p < :001, * is p < :05   

PE SL IE 

ERNatt  :37**  :38**  � :08  
PSPatt  :33**  :10  � .09  
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is a product of cortico-cortical computation only (Karayanidis et al., 
2010). 

A suboptimal value of εsma, which we regarded as an indicator of 
deterioration of cognitive control, has an effect on ERN attenuation but 
not on the PSP (see Fig. 12). Despite an increase in Set Loss errors for 
high values of εsma, ERN attenuation is unaffected in that range. On this 
account, this ERP profile may potentially identify prodromal executive 
dysfunctions in PD. These have been clinically recognised but research 
has found them difficult to pinpoint (Fengler et al., 2017). 

Manipulation of reward sensitivity (wneg) also yields interesting re
sults, in that it makes counter-intuitive and opposite predictions 
regarding ERP and PSP attenuations (see Fig. 13). From the clinical 
standpoint, reduction in reward sensitivity is generally believed to 
contribute to apathy, defined as a lack of motivation for goal-driven 
behaviour (Muhammed et al., 2016), and it is present in at least one 
third of Parkinson’s Disease patients. Apathy appears to be unrelated to 
disease progression, personality traits, or depression (Pluck and Brown, 
2002). The neural substrate of apathy is unclear, but dopamine is not the 
only neurotransmitter involved in this disorder (Dujardin et al., 2007). 
One possibility suggested by our results is that the presence of a disso
ciation in ERN and PSP attenuation in the WCST may constitute a po
tential biomarker for diminished reward sensitivity, and hence apathy. 
A caveat is that the parametrisation we introduced directly affects 

negative reward sensitivity, and not positive reward sensitivity, 
although these are known to be dissociated, even at the level of ERN 
signals (Boksem et al., 2008). 

9. General discussion 

9.1. Summary of findings 

This work constitutes an important step in the development of a 
computational theory of the cognitive control of schemas. Here we 
focused not on how these knowledge structures are formed or updated 
by experience, but on the way they are controlled to produce flexible 
behaviour. In order to illustrate these processes we produced an 
activation-based model of the Wisconsin Card Sorting Test consisting of 
three higher-order schemas representing the application of sorting rules 
and four lower-order schemas representing actions. We supplemented 

Fig. 10. Scatterplot of datapoints in simulated PD (Parkinson’s Disease space). 
Ordinate axis is logarithmic. 

Fig. 11. The ERN and PSP attenuation (minmax normalised) as a function of 
εstr. The red, blue, and green line represent values of εstr for 0.2, 0.5, 0.8, 
respectively. Error bars show one standard error from the mean. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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this architecture with sets of basal ganglia units that resolve the 
competition between schemas at each level, enabling the evaluation of 
suboptimal performance of the basal ganglia component when dopa
mine is depleted, as in the case of Parkinson’s Disease. We then exam
ined how the internal variables of the model relate to two ERP 
components: the error-related negativity (ERN) and the posterior switch 
positivity (PSP). Finally, we showed that parameterisation distinguishes 
between perseveration and conflict, and produces distinct ERP signa
tures for distinct components of Parkinson’s Disease dysfunction. 

9.2. Contention scheduling and the supervisory system revisited 

In the original model of contention scheduling presented by Cooper 
and Shallice (2000) it was argued that, at the computational level, 
competition between schemas was determined by lateral inhibition, and 

the strength of lateral inhibition was inversely related to striatal dopa
mine concentration. This was held to account for the slowing of action 
initiation in PD patients, but other cognitive deficits associated with PD 
were not considered. The account offered here of the PD deficit is far 
more detailed, both in providing more explicit bridging assumptions 
between the neural and computational levels and in providing an ac
count not just of the slowing of schema selection in PD but also of other 
cognitive deficits associated with PD, such as increased tendencies to
ward perseveration and impairment in set maintenance. 

Perseveration is accounted for with an implementation of basal 
ganglia activity that contributes to making the contention scheduling 
mechanism more neurally grounded. Impairment in set maintenance 
due to a diminished ability to handle conflict at the level of sensorimotor 

Fig. 12. The ERN and PSP attenuation (minmax normalised) as a function of 
εsma. The red, blue, and green line represent values of εstr for 0.2, 0.5, 0.8, 
respectively. Error bars show one standard error from the mean. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 

Fig. 13. The ERN and PSP attenuation (minmax normalised) as a function of 
wneg . The red, blue, and green line represent values of εstr for 0.2, 0.5, 0.8, 
respectively. Error bars show one standard error from the mean. When the 
value of wneg becomes too high, many PE are generated and the model does not 
switch between schemas. Consequently the PSP cannot be calculated. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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schemas is instead a feature that could be ascribed to the supervisory 
system, which biases schemas in a domain-general fashion, irrespective 
of the nature of the representation itself. The idea that these biasing 
processes may act at different levels of hierarchical organisation might 
also constitute a possible account of metacognitive skills (Nelson and 
Narens, 1990), a view also supported by Fernandez-Duque et al. (2000), 
who argue on the basis of imaging studies that there is a high degree of 
overlap between the brain regions supporting metacognitive skills and 
those involved in conflict resolution and error correction. 

The model may also help to better localise some of the hypothesised 
operations of contention scheduling and the supervisory system. Previ
ous work, based on studies of Ideational Apraxic patients with left 
temporoparietal lesions (De Renzi and Lucchelli, 1988) and imaging 
studies of neurologically healthy participants pantomiming action 
related tasks (Rumiati et al., 2004), has suggested that the associations 
by which the representations of objects trigger schemas are localised in 
left temporoparietal regions, while the deficits of frontal patients have 
been modelled with noise in the schema network (Cooper et al., 2005), 
suggesting that schemas, or their activations, are maintained in frontal 
regions. We can, however, be more specific given the theoretical 
framework of Badre and D’Esposito (2009), that posits a rostro-caudal 
gradient of abstraction (with rostral/pre-frontal areas supporting ac
tivity directed towards more abstract, temporally-extended goals and 
caudal/premotor areas supporting activity directed towards more im
mediate, concrete goals). This framework, together with the model, 
implies that the lower and higher schemas are associated with the pre
motor (BA 6) and the DLPFC (BA 9, 46), respectively. The use here of a 
conflict signal for cortical learning (Equation (4)) is novel. Imaging and 
ERP work (e.g., van Veen and Carter, 2002, as cited above) suggests that 
this might be mapped onto the Anterior Cingulate Gyrus and pre-SMA, 
for higher and lower-level conflict respectively. Finally, the model 
suggests that the basal ganglia units connected to the lower and higher 
schemas are mapped onto the sensorimotor and associative striatum, 
respectively. 

9.3. The basal ganglia and competition resolution 

Competition between schemas within our model is effected by the 
model’s basal ganglia component. In contrast to the original model of 
Cooper and Shallice (2000), this does not require a set of weights that 
grows with the square of the number of schemas. The mechanism of our 
model is arguably more energetically efficient and evolutionary plau
sible (Redgrave et al., 1999). Moreover, each set of basal ganglia units 
has the mathematical property of instantiating the multi-hypothesis 
sequential probability ratio test (MHSPR), a test that guarantees an 
optimal solution for action selection in the presence of noisy stimuli 
(Bogacz and Gurney, 2007). In addition to the above, it is well estab
lished neuroanatomically that corticobasal loops are mostly segregated 
(Alexander et al., 1986), and that a gradient exists between sensorimotor 
cortex and association cortex projections to dorsolateral and dorsome
dial striatum, respectively (Yin and Knowlton, 2006). This conceptual 
framework is present in the model, through the independence of infor
mation processed in the basal ganglia units at the two different levels. 

The idea of the basal ganglia operating in segregated corticothalamic 
loops has been widely discussed in the literature, and several compu
tational models have been produced. For instance, the seminal work of 
O’Reilly and Frank (2006) describes a dynamic gating system that 
controls working memory updating. That work makes a clear distinction 
between the type of computation performed by prefrontal structures and 
the basal ganglia. The authors put forward a set of functional demands 
under which working memory needs to operate in order to accomplish a 
simple sequential working memory task. However, that model is not 
directly compatible with schema theory, due to its use of acquired 
distributed representations (which are themselves learned via contras
tive Hebbian learning) rather than explicit schemas. The work by Gur
ney et al. (2001) is instead unique in that the computational (Redgrave 

et al., 1999), algorithmic (Bogacz and Gurney, 2007), and imple
mentational (Humphries et al., 2006) levels are kept distinct, while 
being connected by specific bridge laws. The computational level draws 
on both evolutionary neuroscience and cybernetics, with the basal 
ganglia model having been successfully embedded in an embodied robot 
architecture that processes differently salient sensory and motivational 
states in a foraging task (Prescott et al., 2006). The algorithmic level uses 
a population-level signal-processing approach, while the implementa
tional level uses available neurophysiological data from spiking neurons 
for each population present in the algorithmic level (Humphries et al., 
2006) and has recently been shown to be consistent with the internal 
computations of at least some basal ganglia nuclei (notably the GPe; 
Suryanarayana, Kotaleski, Grillner and Gurney, 2019). The hierarchical 
structure of the Cooper and Shallice (2000) model and the computa
tional capabilities of the Gurney et al. (2001) model dovetail when the 
signal from a schema is conceptualised as channel salience, and further 
justifies the choice of this action selection model for the arbitration of 
schemas. It is important to notice that the need for a schema arbitration 
system does not supersede the need for the supervisory system as 
defined in Shallice and Burgess (1993). The top-down bias coming from 
this system is the result of temporary schemas that are created on the 
basis of overarching (and potentially novel) goals, whilst the basal 
ganglia selection mechanism acts on pre-existing schemas, and is 
dependent on the history of rewards. 

9.4. The ERN, error detection and conflict monitoring 

A key feature of our approach is the linking of the operation of the 
simulated basal ganglia and neural signals corresponding to ERPs 
through explicit bridging assumptions (Equation (13) and Equation 
(14)). One such signal is the ERN. Soon after its discovery, the main 
theory characterising the functional meaning of ERN was the error 
detection theory (Falkenstein et al., 1989), according to which the brain 
produces an estimate or prediction of the output, compares it with the 
response motor signal, and acts on the mismatch by either inducing 
another motor command or by inhibiting the incorrect motor command. 
This theory has been argued to be computationally implausible and 
unable to account for instances where the ERN appears in absence of 
errors (Yeung et al., 2004). 

Our approach is guided by the conflict theory of ERN, but there are 
several important differences between previous models and the 
approach adopted here. Our model is not a feedforward neural network 
architecture (as is the model of Yeung et al., 2004), and nor is it trained 
by means of changing its weights (as in the model of O’Reilly and Frank, 
2006). Rather, it is a signal-based model that assumes a pre-existing 
hierarchical structure. Similarly to Yeung et al. (2004), we implement 
both the conflict detection and the regulative role at the level of the 
response units (recall Equation (4) for its implementation). However, in 
the neural network model conflict monitoring input is computed with 
the response unit values, and the output then affects the task represen
tation units. In our model each conflict is handled at the same level of the 
hierarchy. This is consistent with the possible presence of ERN signals at 
multiple locations in the brain, where conflict evaluation and subse
quent regulations are carried out at the same level of abstraction. 
Another difference between the two models is the presence of the 
simulated basal ganglia as an arbitration device. Adding this structure to 
models of cognitive control has been shown to be important in con
straining action selection mechanisms. Stafford and Gurney (2007), for 
example, demonstrated that a widely accepted model of the Stroop task 
(the model of Cohen et al., 1990) could not account for effects related to 
stimulus onset asynchrony (where the onset of the colour and text of the 
stimulus was not simultaneous), but that this inadequacy of the model 
could be addressed by the addition of a simulated basal ganglia. 

Another key feature of the model is that the selection mechanism at 
the level of the basal ganglia functions independently of the mechanisms 
that support cognitive control. In order to demonstrate this, we ran an 

A. Caso and R.P. Cooper                                                                                                                                                                                                                      



Neuropsychologia 140 (2020) 107359

15

additional simulation and calculated the maximum Spearman’s corre
lation coefficient (across schemas) between the value of ogpi at each time 
unit and the value of osma after an interval of between 1 and 10 cycles. If 
cognitive control and action selection are independent processes this 
correlation should be independent of εsma. This was indeed found to be 
the case, with the correlation coefficient hovering between � 0:55 and �
0:60 across the entire range of εsma (i.e., from 0 to 1), indicating a near 
constant relation of moderate/strong magnitude, and suggesting that 
the selection process remains robust in the absence of cognitive control. 

9.5. Limitations and future research 

One limitation of the present work, which arises from the continuous 
nature of the WCST, is that in the ERP signal stimulus-locked and 
response-locked components overlap, with the next stimulus being 
presented as soon feedback is given. This makes it hard to tease apart 
stimulus-related and response-related processes. The model also con
tains several continuous variables, though some values are updated in a 
discrete fashion. For this reason the shape of the ERP components is not 
as smooth as one might expect. In fact, the signals obtained from the 
functions of the internal processing variables should be viewed as 
proxies for the ERP signals, rather than as precise predictors. Thus they 
are intended to preserve their main properties, such as differences with 
respect to the baseline value and temporal relationship among each 
other, but not the detailed ERP signal. This limitation could be overcome 
in future research by producing a lower-level computational model 
where neuronal firing rate is proportional to the activation of schemas 
and therefore the ERP components preserve their higher-order proper
ties while also displaying a more complex lower-level behaviour. 

The use of discrete approximations to continuous variables 
throughout the model also has some unfortunate consequences. Most 
critically, for some values of the model’s parameters it can cause the 
cortico-thalamic loop to oscillate, sometimes unpredictably. While this 
is a problem related to the nature of model implementation, it needs to 
be resolved in order to fully legitimise the union between schema theory 
and cognitive neurophysiology through a computational lens. 

There are three concomitant priorities for future research: firstly, 
adapting the model to include more continuous variables so as to pro
duce smoother local signals; secondly, developing a more accurate 
quantitative model that compares different groups within the PD cohort, 
in order to distinguish the extent of executive and even emotional dys
functions; and thirdly, applying the model with a similar para
metrisation to other tasks for the purpose of dissociating domain-specific 
and domain-general mechanisms. 

9.6. Conclusion 

We have shown how an existing cognitive model of schema selection 
can be elaborated with a neurobiologically plausible model of the basal 
ganglia, with the combined model including parallel cortico-subcortical 
loops (one per schema) and the basal ganglia component serving to 
select between schemas by disinhibiting one of a set of competing loops. 
The full model is presented within the context of the WCST, though its 
mechanisms are general. The basal ganglia component includes 

parameters held to reflect striatal dopamine concentration (specifically 
εstr), and reduction in the value of this parameter results in the full model 
showing the characteristics of Parkinson’s Disease patients on the WCST 
(e.g., slower responses and an increased tendency towards persevera
tion). Moreover variation of other parameters of the model results in the 
generation of other types of errors (notably set loss errors and integra
tion errors). Finally, we argued that signals within the model may be 
related to ERP components, and considered two such components: the 
ERN and the PSP. We then demonstrated how reduction in the value of 
the εstr results in attenuation of ERN and PSP signals, as has been found 
with PD patients. The work therefore demonstrates how cognitive 
models may make contact with neural-level data (ERPs), and provides 
both strong support for the Gurney et al. (2001) model of the basal 
ganglia and a mechanistic account for how the commonly hypothesised 
relation between striatal dopamine depletion in PD may result in 
response slowing, perseverative tendencies, and attenuated ERP signals. 
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Appendix. Sensitivity of the Model to Parameter Values 

Rationale 

The model has a large number of parameters, as shown in Table 1. It is therefore important to demonstrate the extent to which the model’s 
behaviour is dependent upon specific values of those parameters. At the same time, many parameters relate to the activation functions of each unit 
within the basal ganglia, which are independently parameterised. Moreover, many of the parameters are shared with the original model of Gurney 
et al. (2001). In order to analyse the qualitative behaviour of the model we therefore fix the values of the parameters shared with the original model to 
the values used in that original work, and focus on four key parameters: εstr, εsma, wneg, mr. This appendix considers how variation in these critical 

Fig. 14. Response Time (in cycles) as a function of εsma for four different values 
of εstr. RT decreases as εsma increases, but is largely independent of εstr . Error 
bars show one standard error from the mean. 
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parameters affects model performance. 
Method 

The values of each of the critical parameters were systematically varied between 0 and 1 in increments of 0.05, and across either three or four 
values of each of the other critical parameters. For each point in parameter space 20 simulations (corresponding to 20 virtual participants) were run. 
Each simulation consisted of presentation of 64 unambiguous cards. 

Roberts and Pashler (2000) have raised concerns about the ability of models to fit any dataset given an arbitrary number and range of parameters. 
While these concerns might not necessarily apply to qualitative modelling, it is nevertheless important to show that trends in model behaviour are the 
product of the model architecture rather than a specific set of parameter values. Therefore, in the simulations below a small amount of uniform noise 
(corresponding to a maximum variation of �10% in each parameter’s values) was also added to the values of all three parameters as well as to wrule.4 

Results and Discussion 

We explored the effects of joint variation of εstr and εsma on response time and sorting errors. With respect to the former, as shown in Fig. 14, an 
increase in response time (RT) can be seen as either εstr or εsma decreases. Unlike the steady decrease of RT with changes in εsma, a dramatic drop in RT 
occurs only when εstr falls below an approximate value of 0.2. Since βstr can be associated with the amount of striatal dopamine, and the regulation of 
this parameter is driven by εstr, these results are consistent with the appearance of PD motor symptoms after the destruction of a considerable pro
portion of neurons in the substantia nigra pars compacta (SNpc) (Cheng et al., 2010). Note that this does not require the introduction of any notion of 
plasticity to explain neurobiological compensatory mechanisms. 

Turning to errors, reducing εstr increases the number of perseverative errors (see Fig. 15) but has no effect on set loss errors (see Fig. 16). 
Conversely, reducing εsma has a noticeable effect on perseveration only when εstr is small (Fig. 17) and its relationship with set maintenance (as 
indicated by SL errors) is close to an inverted-U shape, except for smaller values of εsma (Fig. 18). This suggests that there is an optimal level of conflict 
control, which is consistent with the idea that excessive control can interfere with processes where the environment (stimuli, here) provides the 
necessary level of information (Bocanegra and Hommel, 2014). 

Importantly, as shown by Fig. 19, εsma has a much smaller effect on information integration errors (IE) than wneg. This parameter lessens negative 
reward sensitivity, and therefore impairs the search for the correct schema. For instance, a participant might receive negative feedback after sorting by 
colour, and then move to sorting by number. If negative feedback reception is impaired, it is more likely that the participant will return to sorting by 
colour again, committing an IE. This also establishes a direct relationship between reward sensitivity and schema memory, consistent with the ob
servations in Davidow et al. (2016). For the same reasons, wneg has a very similar effect — of increasing the frequency of all other types of error, 
although to different extents. 

The effect of increasing parameter mr is to increase persistence of feedback from the previous trial, both in terms of feature matching and in terms 
of previous reward (the two could potentially be dissociated). A value of mr above around 0.75 sharply increases Set Loss errors (see Fig. 20), while 
Integration Errors increase more gradually starting from mr of 0 (see Fig. 21). The dissociation is regulated by εstr and the interval where SL and IE do 
not correlate may well be regulated by wneg. In summary, this parameter increases the exploration of new rules irrespective of feedback, but it regulates 

Fig. 15. Perseverative Errors as a function of εstr, for four different values of 
εsma. Note that perseverative errors are largely constant except at low values of 
εsma or when both εsma approaches 1 and εstr approaches 0. Error bars show one 
standard error from the mean. 

Fig. 16. Set Loss errors as a function of εstr , for four different values of εsma. 
Note that set loss errors are largely independent of εstr, but are high at extreme 
values of εsma. When εsma is 0.7 set loss errors are negligible except at very low 
values of εstr . Error bars show one standard error from the mean. 

4 This parameter was chosen because the model proved to be slightly more sensitive to this parameter than others around the default value. 
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whether the exploration is directed more towards new states (higher SL) or old states (higher IE), therefore partially dissociating SL errors and IE, 
unlike other parameters in the model. It has been argued that the number of integration errors, but not the number of other types of errors, increases 
with age (Rhodes, 2004), suggesting that aging compromises rule inference (associated with IE) rather than set maintenance (associated with SL). This 
claim is consistent with the fact that weakened rule-inference may be linked to reduced working memory capacity in older individuals (Hartman et al., 
2001). However, the mr parameter also suggests an alternative (or possibly complementary) explanation, namely that persistence of reward and 
feature-matching schemas can also account for integration errors. While this may seem paradoxical at first, it shows that increasing the saliency of 
competing representations increases exploration and therefore SL and IE. 

Note that all three error types are mutually exclusive (i.e., an error cannot be both an IE and a PE, or an IE and an SL, or a PE and an SL), and so an 
increase in the frequency of one type of error tends to decrease the likelihood of occurrence of other types or error. This warrants caution in inter
preting error values towards the boundaries. However, barring situations where one error type dominates (i.e., the boundaries), the relationship 
between the parameters and resultant error types is clearly complex and non-linear. 

Fig. 18. Set Loss errors as a function of εsma, for four different values of εstr. 
Consistent with Fig. 16, set loss errors are largely independent of εstr , but are 
high at extreme values of εsma. When εsma is between 0.45 and 0.75 set loss 
errors are negligible except at very low values of εstr . Error bars show one 
standard error from the mean. 

Fig. 19. Integration Errors as a function of wneg , for three values of εsma. Recall 
that wneg determines reward sensitivity in the striatum, with increasing values 
of wneg corresponding to decreasing reward sensitivity. Decreasing reward 
sensitivity results in an increased tendency to Integration Errors at all values of 
εsma. Error bars show one standard error from the mean. 

Fig. 17. Perseverative Errors as a function of εsma, for four different values of 
εstr. Consistent with Fig. 15, perseverative errors are infrequent except when 
εsma is low or when εstr approaches 0. Error bars show one standard error from 
the mean. 

Fig. 20. Set Loss Errors as a function of mr , for four different values of εstr. Error 
bars show one standard error from the mean. 
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