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PON-SC – program for identifying steric
clashes caused by amino acid substitutions
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Abstract

Background: Amino acid substitutions due to DNA nucleotide replacements are frequently disease-causing
because of affecting functionally important sites. If the substituting amino acid does not fit into the protein, it
causes structural alterations that are often harmful. Clashes of amino acids cause local or global structural changes.
Testing structural compatibility of variations has been difficult due to the lack of a dedicated method that could
handle vast amounts of variation data produced by next generation sequencing technologies.

Results: We developed a method, PON-SC, for detecting protein structural clashes due to amino acid substitutions.
The method utilizes side chain rotamer library and tests whether any of the common rotamers can be fitted into
the protein structure. The tool was tested both with variants that cause and do not cause clashes and found to
have accuracy of 0.71 over five test datasets.

Conclusions: We developed a fast method for residue side chain clash detection. The method provides in addition
to the prediction also visualization of the variant in three dimensional structure.
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Background
Amino acid substitutions (AASs) are common variants
and can have numerous effects and mechanisms [1]. A
large number of prediction methods is available for in-
vestigating the tolerance of variants [2–4] as well as their
mechanisms including effects on protein stability [5–7], dis-
order [8], aggregation [9, 10], localization [11], interactions,
electrostatics, RNA splicing [12, 13], tRNA molecules
[14, 15] etc. [16, 17]. Specific predictors are available
for variants in some proteins including BRCA1 and 2
[18, 19], mismatch repair system proteins [20, 21], and
Bruton tyrosine kinase (BTK) [22]. Recently it has become
possible to predict also the phenotypic severity of disease-
related variants [23].
Among the most common effects are structural alter-

ations originating because the substituted residue cannot
fit into the structure without causing (major) structural al-
terations. When the substituting residue does not fit in
the structure, more or less drastic conformation change
occurs as the consequence. Due to structural and physical

reasons all side chain conformations are not possible or
structurally favorable, instead there are certain most
favored conformations called for rotamers. Structural al-
terations may occur due to several other reasons including
new or deleted interactions such as salt bridges or disul-
fide bonds, altered ligand binding specificity and modified
allosteric site.
Libraries of side chain rotamers have been determined ei-

ther from crystal structures [24, 25] or based on molecular
dynamics simulations [26]. These libraries contain residue
rotamers independent of the backbone conformation or
dependent on the local backbone, especially secondary
structures. Methods have been described for side chain
optimization [27, 28]. These tools typically utilize a rotamer
library, then apply an energy function to estimate rotamers
and search algorithm to cover the three dimensional space.
Only a few tools have been developed for the prediction

of the effect of AASs on protein structure [29–31]. These
methods are either not available, do not have easy to use
interface, or they are too slow to apply to large datasets,
such as those generated by modern next generation se-
quencing (NGS) techniques. Methods for optimizing the
side chain rotamers could be used for the task; however
they are not designed to answer this question. To fill the
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gap, we developed a novel and fast method, PON-SC, to
predict whether AASs are structurally compatible or if
they form clashes. The method is applicable both for pro-
tein engineering applications when planning either stabil-
ity increasing [32–34] or decreasing [35, 36] variations, as
well as for the interpretation of variants [22, 37, 38]. If the
introduced variant cannot be accommodated into the
structure without severe clashes and consequent
structural alterations, the variant is harmful, even disease-
causing. The performance of the method was bench-
marked with known harmful and structurally compatible
cases that were collected from several sources.

Method
A novel method was developed for side chain clash de-
tection. The flowchart of the protocol is shown in Fig. 1.
PON-SC analysis is based on fitting AASs to protein

structures, thus three dimensional structure is needed.
Even structural models can be used, but then it is up to
the user to estimate how reliable the predictions are.
The method has decision points depending on the

submission and prediction request (Fig. 1). The predictor
was programmed with Python. Two approaches are
used to make decisions about side chain compatibil-
ity; assumptions based on the location and type of
the original and substituting residue as well as rota-
mer testing predictions.

Processing of the input
BioPython package [39] is used to parse the input file in
PDB format. φ and ψ torsion angles of amino acid back-
bones and accessibility of the side chains are calculated
with STRIDE [40]. KDTree algorithm from scikit-learn
package [41] is used to prepare the structures for rotamer

Fig. 1 The scheme of the method to identify amino acid substitutions causing clashes. Using PDB file as an input, the program iterates through
all positions of interest in the structure, making assumptions and performing calculations for every substitution of interest, and providing
information on whether the amino acid substitutions cause clashes in the structure or not
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tests. The amino acid side chain rotamers are added to the
Cα atom of the substituted residue.

Assumptions about side chain alterations
We use backbone-dependent rotamer library [24] for test-
ing the space of potential side chain conformations. For φ
and ψ torsion angles of the selected residue, common
rotamers for the substituting amino acid are considered.
To simplify and speed up the calculations, the follow-

ing assumptions are made. First, if the ratio between the
accessibility of the original residue and the highest pos-
sible accessibility of that residue type [42] is ≥0.5 and
the side chain is 3 or more heavy atoms long, all substi-
tutions are assumed to fit into the structure. Thus, the
method finds accessible positions that structurally allow
all changes. Second, when the original amino acid is lar-
ger than the substituting one, no clashes are expected.
Glycine is allowed in all positions, and smaller than
original residues throughout the structure if they have a
fitting structure. As an example, valine or leucine which
have short but branched side chains are not directly as-
sumed to be able to replace e.g. for arginine or lysine
which have longer side chains. In these cases, the
method tests whether the amino acid rotamers fit into
the structure.

Identifying fitting amino acids with calculations
The furthermost possible clash is calculated to be in the
distance to the Nƞ atom of the straightest possible con-
formation of arginine and adding the van den Waals ra-
dius of nitrogen (1.64 Å). Hydrogen atoms are ignored
in the calculations. Variants left after the initial test are
fitted in the available space around the residue. Side
chain rotamers are tested to find one that fits into the
structure. If the residue does not have any rotamer that
would fit the substitution, it is considered to cause a
clash and to be harmful (Fig. 2).
To calculate if a rotamer fits in the available space, rota-

tion matrix for that rotamer is calculated and the clash de-
tection is initiated. All atoms in the surroundings that
possibly could form a clash are considered. For every atom
starting after Cβ (atom1), the clash with every atom in the
surrounding space (atom2) is calculated as follows:

c ¼ ratom1 þ ratom2−datoms−dallowed;

where c is the size of the overlap between the atoms,
ratom is the van der Waals radius of the atom, datoms is
the distance between two atoms, and dallowed is the
allowed clashing distance. The default dallowed value is
0.4 Å [42]. The sum of the radii of atoms is set to 2.5 Å
when they form a hydrogen bond [43]. If both atoms are
a part of cysteine side chain, the calculation is adjusted
so that the minimal allowed distance between Cα atoms

is 4 Å [44]. If the clash value is positive, the rotamer is
discarded as not fitting and a new rotamer is taken until
all of them have been tested or a fitting one is found.

Datasets for validating the method
The method was tested with structures from the PDB
database [45]. First, PDB structure pairs differing by one
amino acid were identified. After cleaning the data from
incompatible PDB entries that either lacked information
or when the positions in the structures did not match
with the positions in corresponding protein sequences,
the final set of 7795 variations was obtained. All the
datasets used in this paper are available at VariBench
database for variation prediction and testing database
[46]. For comparison, clashing substitutions were identi-
fied by coupling SCWRL4 [27] and Probe [47] programs.
SCWRL4 was used to build structures with the variant
residues and Probe to detect clashes in them.
To further validate the method, several known cases of

AASs having clashes were used. These included variants
in CD40 ligand that is expressed in lymphocytes [37]. The
structural effects of AASs were studied by bioinformatics
methods in the structure of CD40LG tissue necrosis factor
(TNF) homology domain (PDB ID 1ALY). 13 variations
were reported to cause conformational damage and 19
not to affect the structure negatively.
Another dataset was for pathogenic Src homology 2

(SH2) domain variations in 12 SH2 domains in 8 proteins
[48]. The structures included the SH2 domain-containing
1A (SH2D1A), the zeta chain of T cell receptor associated
protein kinase 70 (ZAP70) N-terminal SH2 domain, the
phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1)

Fig. 2 An example of a clash between atoms caused by amino acid a
substitution. Substitution of Leu98 (white) by Glu (top) in SH2D1A
protein (PDB id 1D4W) causes no clashes with the surrounding residues,
while substitution with Arg (bottom) causes clashes with Ile84 and Tyr29
(indicated by circles)
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SH2 domain, the signal transducer and activator of tran-
scription 1α (STAT1) SH2 domain, the BTK SH2 domain,
and the RAS p21 protein activator 1 (RASA1) SH2 do-
main with corresponding PDB IDs 1D4W, 1M61, 2IUG,
1YVL, 2GE9 and 2GSB, respectively. Totally 28 structur-
ally incompatible and 71 structurally compatible or neu-
tral variations were obtained.
For human elastase, neutrophil expressed (ELANE,

1PPF) 23 AASs of which 3 were structurally compatible
were obtained [38]. Variants in tumor protein p53
(TP53) [29] were included. There are 94 structures in
the PDB database for the TP53 core domain/DNA com-
plex, staphylococcal nuclease and the SH3 domain, PDB
IDs 1TSR, 1STG and 1FMK, respectively. Totally 43
AASs cause clashes, while the number of amino acid
substitutions not causing clashes is 121.
Colorectal and breast cancer variations in TP53, KRAS

proto-oncogene, GTPase (KRAS) and SMAD family
member 4 (SMAD4) (1TSR, 1DD1 and 3GFT) [49] have
been investigated at structural level. 10 out of the 31
studied substitutions were found to cause steric clashes.
All the datasets are available at VariBench at http://

structure.bmc.lu.se/VariBench/sidechain.php.

Performance measures
The method performance was assessed by using six per-
formance scores [50] following guidelines for reporting
[51]. When TP is the number of clash-causing variations
predicted as not fitting into the structure, TN is the num-
ber of structure compatible variants that fit into the struc-
ture, FP is the number of fitting variations predicted as
causing clash and FN is the number of clashing variations
predicted as fitting into structure, the equations for com-
puting the six performance measures are as follows:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

;

Positive predictive value.

PPV ¼ TP
TPþ FP

;

Negative predictive value

NPV ¼ TN
TNþ FN

Sensitivity/True positive rate

TPR ¼ TP
TPþ FN

Specificity/True negative rate

TNR ¼ TN
TNþ FP

and Matthews Correlation Coefficient

MCC ¼ TP� TNð Þ‐ FP� FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FNð Þ � TPþ FPð Þ � TNþ FNð Þ � TNþ FPð Þp ;

where NPV is negative predictive value and PPV is posi-
tive predictive value and MCC is Matthews correlation
coefficient.

Implementation
The program has web interface that was programmed
with Python using Django platform. There are several
options for submitting variants. By providing PDB ID,
the structure will be downloaded from PDB. Users need
to note that PON-SC will consider clashes with all atoms
in the PDB file. It may be necessary to exclude solvent
atoms other than waters, which are automatically ex-
cluded from the calculations. It is possible to submit var-
iants in several proteins at one time. Further, the user
can choose to submit own PDB coordinates.
The variants to be analyzed are listed one per line. If

only the position number is provided PON-SC predicts
all 19 AASs in that position. The variant visualizations
are available by JavaScript Protein Viewer (https://
biasmv.github.io/pv/). The results can be obtained while
waiting or by e-mail. PON-SC is freely accessible at
http://structure.bmc.lu.se/PON-SC.

Results and discussion
To identify AASs causing clashes in structures, various
properties of the amino acids and polypeptides have to
be considered. These include different radii of interact-
ing atoms, bond lengths, hydrogen and disulfide bonds,
the limited flexibility of the side chain in the structure,
errors in resolved protein structures, etc. PON-SC con-
siders clashes if the substituting residue comes too close
to other atoms in the structure. The method considers
clashes also with ligands and heteroatoms, if included to
the structure. Waters are automatically removed from
the calculations.

Performance of the program
PON-SC is very fast, it takes on average 0.05 s to evalu-
ate a substitution once the PDB file is downloaded.
SCWRL4 [27] is a widely used method for side chain
rotamer optimization. It is used together with Probe
[47], an atomic packing evaluation tool, to detect
clashes. These programs are substantially slower than
PON-SC because several intermediate steps are required
e.g. to create new protein structures for every amino
acid substitution and parsing the outputs of the pro-
grams. Calculation for a variant takes on average 1.3 s
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per substitution for SCWRL4 + Probe, i.e. it is 26 times
slower than PON-SC. Note that SCWRL4 and Probe are
not combined into a package, instead are run separately.
SCWRL4 and PON-SC use the same rotamer library.
We tested the method performance with datasets of

known cases. Data for clashes are limited as there are usu-
ally no structures for them. AASs that are clash-free were
collected by identifying PDB structures that had only one
residue difference. 7795 such cases were found and pre-
dicted both with PON-SC and SCWRL4 + Probe (Table 1).
77.4% of these AAS were predicted by PON-SC not to
cause clashes. The performance of SCWRL4 + Probe is
somewhat higher, having correct predictions in 83.6% of
the cases. This test was made to address how many nega-
tive cases i.e. tolerated AASs are correctly predicted.
The reason for detecting clashes among these cases is

at least partly due to structural rearrangements outside
the variant position. Alterations due to AASs can appear
in several amino acids [29, 52] not only in the substitu-
tion site. Neither PON-SC nor SCWRL + Probe combin-
ation can detect these. However, SCWRL4 + Probe
performs better since SCWRL4 allows flexibility for the
backbone and side chain as it is an optimization tool.

Performance for different AASs
Neither of the methods had problems fitting smaller amino
acids in the available space in the structure (Table 1).

Substitutions to alanine or glycine did not cause clashes.
Substitutions to cysteine and serine formed clashes only in
a few cases. The reason behind SCWRL4 + Probe identify-
ing clashes in the case of introducing cysteine could be that
the method didn’t account for disulfide bridges in the struc-
ture. PON-SC did not have any problems with substitutions
to cysteine.
In the case of substitutions to larger amino acids, the

situation is more variable. Some of the differences between
the methods can be explained by the higher flexibility
allowed by SCWRL4 including alterations to the polypep-
tide backbone. Proline is the most problematic side chain
for PON-SC to predict. This is because the method pro-
vides freedom only for side chains, whereas in proline sub-
stitutions also the backbone is altered. Therefore, the
method over-predicts clashes in proline substitutions.
In case of asparagine, aspartic acid and phenylalanine

PON-SC identified far less clashes than SCWRL + Probe.
Interestingly, the situation is the opposite for the related
substitutions by glutamine and glutamate. In conclusion,
the two approaches, PON-SC and SCWRL4 + Probe,
performed overall quite similarly; however, there were
major substitution type-specific differences.

Comparison to previous studies of steric clashes
A real test for a predictor is to use both positive and
negative cases. We collected five datasets from different

Table 1 Number of predicted clashes by amino acid types in PDB structures that tolerate substitutions

PON-SC number PON-SC (%) SCWRL+ Probe number SCWRL+ Probe (%) Botha number Both (%) Totalb

Alanine 0 0 0 0 0 0 1165

Arginine 86 25.52 11 3.26 15 4.45 337

Asparagine 37 8.22 112 24.89 7 1.56 450

Aspartic acid 38 8.35 125 27.47 13 2.85 455

Cysteine 0 0 4 1.316 0 0 304

Glutamic acid 92 18.70 42 8.54 42 8.54 492

Glutamine 42 15 31 11.07 22 7.86 280

Glycine 0 0 0 0 0 0 393

Histidine 74 21.70 45 13.20 38 11.14 341

Isoleucine 94 33.45 38 13.52 42 14.95 281

Leucine 96 25.26 39 10.26 27 7.11 380

Lysine 53 19.41 6 2.20 5 1.83 273

Methionine 93 32.63 11 3.86 10 3.51 285

Phenylalanine 86 18.86 118 25.88 95 20.83 456

Proline 90 76.92 0 0 0 0 117

Serine 5 0.89 4 0.71 0 0 561

Threonine 78 24.68 30 9.49 28 8.86 316

Tryptophan 54 29.19 29 15.68 58 31.35 185

Tyrosine 110 30.05 76 20.77 71 19.40 366

Valine 122 34.08 41 11.45 42 11.73 358
aDoes not include cases listed in PON-SC and SCWRL+Probe columns. bTotal number of substitutions in the dataset.
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studies. Since protein structures with major clashes can-
not be investigated with e.g. crystallography and since
negative results are not frequently published, there are
not many cases with reported clashes in literature and
databases. After extensive search we found five datasets
that we used to test the performance of the tool.
The average performance over all the datasets is as fol-

lows: sensitivity is 0.66, specificity 0.77, accuracy 0.71
and MCC 0.43 (Table 2). Only the datasets for TP53 and
cancers have specifically addressed the clashes of the
substitutions. PON-SC has typically higher specificity
than sensitivity, i.e. it predicts clashes with somewhat
lower accuracy than tolerated variants. Exception is the
ELANE dataset, but since this is a small set, minor ran-
dom effects may have major impact. The average accuracy
of 0.71 indicates that the method is rather reliable, and be-
cause of its speed, it can thus be used for analysis of even
large datasets. The overall quality scores are more relevant
since the individual datasets are quite small.
The PON-SC program does not give information on

the severity of a clash, only that it occurs. The method is
implemented such that the detected clashes are highly
likely structurally incompatible and therefore harmful.
For visualization of the results the PON-SC tool utilizes
the JavaScript Protein Viewer plugin that shows the
original and variant residues in three dimensional struc-
tures. The rotamer used for the visualization is not neces-
sarily the best fitting one but it is the most common of the
fitting ones, as the rotamers are tested in the decreasing
order of frequency. To save time, the program ends the
search after finding the first fitting rotamer and then that
one is visualized. For the prediction purposes it is sufficient
to find one rotamer that allows fitting the novel side chain.
For comparison, the results for the SCWRL+Probe are

shown in Additional file 1: Table S1. On these datasets
PON-SC has somewhat better performance and also dis-
plays more balanced results in regards to the measures. The
MCC and accuracy are 0.29 and 0.43, and 0.64 and 0.71 for
SCWRL+Probe and PON-SC, respectively. PON-SC had
equal or better values for all the five tested variation sets.

Conclusions
PON-SC is a novel method for varient effect prediction.
It detects structural clashes due to AASs based on

protein three dimensional strucutre, side chain rotamer
library, structural assumptions and calculations. The
method has a relatively high performance, accuracy be-
ing 0.71 over several datasets. PON-SC is currently the
only tool that can be used for large scale analysis e.g. of
NGS datasets. Side chain replacements can be visualized
in protein structures.

Availability and requirements
Project name: PON-SC.
Project home page: http://structure.bmc.lu.se/PON-SC
Operating system(s): Linux.
Programming language: Python.
Any restrictions to use by non-academics: contact

authors.

Additional file

Additional file 1: Table S1. Results for SCWRL + PROBE on validation
dataset. (PDF 13 kb)
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