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Abstract

Human social behavior crucially depends on our ability to reason about others. This capacity for 

‘theory of mind’ plays a vital role in social cognition because it allows us not only to form a 

detailed understanding of the hidden thoughts and beliefs of other individuals but to also 

understand that they may differ from our own1–3. Although a number of areas in the human brain 

have been linked to social reasoning4, 5 and its disruption across a variety of psychosocial 

disorders6–8, the basic cellular mechanisms that underlie human theory of mind remain undefined. 

Using a rare opportunity to acutely record from single cells in the human dorsomedial prefrontal 

cortex, we discover neurons that reliably encode information about others’ beliefs across richly 

varying scenarios and that distinguish self- from other-belief related representations. By further 

following their encoding dynamics, we show how these cells represent the contents of the other’s 

beliefs and accurately predict whether they are true or false. We also show how they track inferred 

beliefs from another’s specific perspective and how their activities relate to behavioral 

performance. Together, these findings reveal a detailed cellular process in the human dorsomedial 

prefrontal cortex for representing another’s beliefs and identify candidate neurons that could 

support theory of mind.

Humans have the ability to form remarkably detailed representations about other individuals 

and to understand that others may hold thoughts or beliefs that are distinct from their 

own1, 3, 9. This capacity for ‘theory of mind’ develops early during human ontogeny3, 10, 11 

and plays a vital role in social cognition. Yet, unlike most sensorimotor processes that are 

based on the observed relation between sensory input, actions and outcome and which have 
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been broadly studied in animal models 12, little is known about the single-neuronal 

mechanisms that underlie theory of mind.

Functional imaging studies have provided an important understanding of the network of 

brain areas that supports social reasoning including the temporal-parietal junction (TPJ), 

parts of the superior temporal sulcus and dorsal medial prefrontal cortex (dmPFC)4, 13, 14. 

The TPJ, for example, has been shown to display changes in activity when individuals form 

mental representations of others or their beliefs4, 5, and the dmPFC has been found to 

activate when attributing mental states to others3, 15–17 or when distinguishing another’s 

beliefs from reality4, 5, 10, 17, 18. The precise cellular constructs and logic by which humans 

reason about others or represent their beliefs, however, remain largely unknown.

A critical test for theory of mind is the false belief task which requires individuals to make 

inferences about another’s beliefs1, 4, 5, 19. In these tasks, a participant may be given a brief 

story narrative describing a social agent that may or may not hold false beliefs about events 

in their worlds4, 17, 20. For example, they may be given a narrative such as “You and Tom see 

a jar on the table. After Tom leaves, you move the jar to the cupboard”, followed by the 

question “Where does Tom think the jar is?”. This approach, therefore, incorporates two 

core components thought to be essential for theory of mind – the ability to reason about the 

beliefs of other individuals and the ability to distinguish another’s beliefs and perspective of 

reality from an individual’s own. Here, we took the opportunity to record from single 

neurons in the superior frontal gyrus of the human dmPFC – an area previously implicated 

in social reasoning and theory of mind3, 15–18 – in order to begin investigating these 

processes at the cellular level.

Neuronal predictions of another’s beliefs

We used custom-adapted multi-electrode microarrays (Fig. 1a) to stably record from 212 

well-isolated single units in the dmPFC (Extended Data Fig. 1) of 11 participants (Extended 

Data Table 1a) as they performed a verbal version of the false belief task21. Another 112 

single units were recorded from 4 participants performing additional controls, for a total of 

324 putative neurons. All trial events were aligned to neural activity at millisecond 

resolution and analyzed off-line (Fig. 1b, Methods).

To first distinguish neuronal signals that reflect another’s beliefs from those that may reflect 

other more generalized non-social representations17, 22, the participants were given brief 

story narratives followed by questions about them (Extended Data Table 2a). Here, the 

narratives provided richly detailed information about social agents and events in their 

worlds, requiring the participant to consider either another’s beliefs of reality (i.e., other-
belief trials) or its physical state (i.e., physical trials; Fig. 1c, 1e left). Whereas both trial 

conditions entailed a discrepancy between the past and present state of reality (e.g., as the 

result of moving a jar from a table to a cupboard), only the former required the participant to 

consider another’s beliefs. To further identify neural signals that may reflect another’s 

specific beliefs rather than simply any beliefs, we also required the participants to consider 

others’ beliefs that were either distinctly false (i.e., false-belief trials) or true (i.e., true-belief 
trials; Fig. 1c and Extended Data Fig. 2). All trial conditions were well-matched for 
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difficulty and demand based on behavioral metrics for both other-belief vs. physical trials (t 
= 1.04, p = 0.31) and true-belief vs. false-belief trials (t = 0.05, p = 0.96; Fig. 1d and 

Extended Data Table 1b).

Many neurons in the dmPFC responded selectively when considering another’s beliefs. 

Using linear models that quantified the degree to which the different conditions could be 

decoded from neuronal activity during questioning23, we find that 20.0% (n = 42) of the 

neurons accurately predicted whether the participant was considering another’s beliefs 

(other-belief vs. physical trials; permutation test, p < 0.025; Fig. 1e,f). Collectively, decoding 

accuracy for these neurons was 83 ± 2% and significantly above chance (Fig. 1g; 

permutation test, p < 0.005), suggesting that these neurons distinguished belief-related 

representations from other more generalized non-social representations.

In order to accurately infer the other’s beliefs, it was necessary not only to consider 

another’s beliefs but to also determine whether they were true of false. Here, we find that 

23% (n = 49) of the neurons accurately predicted whether the participants were considering 

another’s false vs. true beliefs (permutation test; p < 0.025; Fig. 2a, b). Collectively, the 

decoding accuracy for these neurons was 78±3% and significantly higher than chance (Fig. 

2c; permutation test, p < 0.005). Similar findings were also observed when using other 

analytic techniques (Extended Data Fig. 3a, b), neural isolation approaches (Extended Data 

Fig. 3c), and time alignments (Methods) as well as when comparing decoding performances 

across the individual participants and clinical conditions (Extended Data Fig. 4). Neuronal 

responses to the other’s beliefs were also robust to differences in cognitive demand 

(Extended Data Fig. 5a–c), complexity (i.e., number of social agents or relevant items; 

Extended Data Fig. 5d–f), and depth of reasoning required (i.e., first- vs. second-order 

beliefs; Extended Data Table 2b and Fig. 2d)24. Therefore, even though the social agents and 

context broadly varied across trials, these neurons appeared to reliably predict the other’s 

beliefs.

Self vs. others’ beliefs and perspective

It could be argued that neurons that were predictive of the other’s beliefs may have simply 

signaled the presence of any inconsistency between past and present reality, irrespective of 

whether another’s belief was involved. To test for this possibility, we required the 

participants to consider physical representations that were previously true but either 

currently false (i.e., false-physical trials) or true (i.e., true-physical trials; Extended Data Fig. 

2). Here, we find however that, of the 49 neurons that distinguished between false vs. true 

beliefs, only 11 distinguished between false- vs. true-physical representations (permutation 

test, p = 0.36; Fig. 3a left). Moreover, by using neurons that were predictive of the other’s 

beliefs and by employing models trained on true- vs. false-belief trials to decode true- vs. 

false-physical trials (‘model-switching’; Methods), we find that decoding performances were 

at chance (50 ± 2% vs. 50% chance; permutation test, p > 0.5 Fig. 3a right), suggesting that 

these neurons reflected the other’s beliefs of reality rather than its physical state.

To further confirm that neuronal predictions of the other’s beliefs reflected the other’s 

perspective of reality distinctly from the participant’s own, we introduced an additional set 
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of controls. On 20% of other-belief trials, we included false-belief [aware] trials in which the 

social agents were made explicitly aware of the critical manipulation events. For example, 

the participant may hear “…after Tom leaves, you move the jar to the cupboard as he 

watches you through the window.” Therefore, when compared to the standard false-belief 

[unaware] trials, the other’s beliefs were now true from the social agent’s perspective (i.e., 

since they watched through the window). Here, we find that neurons that accurately 

predicted the other’s beliefs on the standard other-belief [unaware] trials also accurately 

predicted the other’s beliefs on other-belief [aware] trials (permutation test, p < 0.001; Fig. 

3b). Moreover, considered collectively, decoding accuracies on these trials (false- vs. [aware] 

true-belief) were similar to those decoded from the standard other-belief trials (77 ± 2% vs. 

78 ± 3% respectively; Permutation test, p = 0.61); Extended Data Fig. 6a) and positively 

correlated on a cell-by-cell basis (Pearson’s correlation; r = 0.3, p = 0.04; Extended Data 

Fig. 6b). Neuronal predictions of the other’s beliefs, therefore, reflected the other agent’s 

specific perspective.

Finally, given these findings, we asked whether neurons that were predictive of the other’s 

beliefs distinguished self- from other-belief related representations. While it is not possible 

for one to simultaneously hold a false belief and to know that one’s belief is false, it is 

possible to evaluate how neurons may represent one’s own imagined false beliefs. To test for 

such representations, we recorded from an additional 112 neurons while the participants 

judged their own beliefs as false or true (Extended Data Table 2b). Using these self-belief 
trials, we find 31 (27.7%) neurons that accurately predicted whether the participant’s own 

imagined beliefs were true or false (Fig. 3c). These neurons, however, were also largely 

distinct from those that reflected the other’s beliefs (permutation test, p = 0.14). Moreover, 

when using neurons that were predictive of the other’s beliefs to decode the participant’s 

own false vs. true beliefs (Methods), prediction accuracy on these self-belief trials was at 

chance (49 ± 3% vs. 50% chance; permutation test; p = 0.33; Fig. 3d). These findings 

therefore together suggested that neurons that were predictive of the other’s beliefs were 

largely uninformative of the participant’s own belief-related representations (i.e., they 

distinguished self- from other-related beliefs and perspective).

Predicting the other’s beliefs contents

In order to provide the correct answer, it was necessary for the participants to infer not only 

whether the other’s beliefs may be false but also the specific beliefs being considered. For 

example, whereas certain trials required the participant to consider another’s beliefs of 

‘what’ an item may be, other trials required them to consider ‘where’ it is located. Here, we 

find that 60% of the neurons accurately predicted whether the other’s beliefs may be false 

about an item’s identity and 34% accurately predicted their beliefs about its location (Fig. 4a 

and Extended Data Fig. 7). Moreover, when considered collectively, decoding accuracies for 

these neurons were similarly high at 81 ± 4% and 84 ± 4% respectively (Permutation test, p 
= 0.15), suggesting that these populations reliably encoded information about beliefs of what 

or where the items may be.

In order to accurately infer the other’s beliefs, it was also necessary for the participants to 

determine the specific item being considered; for example, whether Tom believes the jar to 
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be on the “table” or in the “cupboard”. Therefore, to examine whether and to what degree 

the neuronal population may reflect such information, we further divided the items into six 

groupings – objects (e.g., table), containers (e.g., cupboard), foods (e.g., vegetables), places 

(e.g., park), animals (e.g., cat), and item appearances (e.g., red; Methods). Here, we find that 

the neural population predicted the specific item grouping with an accuracy of 64 ± 3% 

when compared to all other groupings (H0 = 50% chance; permutation test, p < 0.005; Fig 

4b). Moreover, when taken together, the probability of correctly predicting (i) whether 

another’s belief was involved, (ii) whether the other’s belief was false, (iii) whether the 

other’s belief was of an item location or identity, and (iv) the specific item being considered 

was 36±2% (H0 = 6.25% chance, permutation test; p < 0.0001; Fig. 4c). Therefore, when 

taken at the level of the cell population, these neurons appeared to encode highly detailed 

information about the content of the other’s beliefs on a trial-by-trial level.

Population predictions and performance

Finally, we asked whether and to what degree the activities of these neurons reflected the 

participants’ behavioral performances. Using a matched number of correctly and incorrectly 

answered trials, we find that population prediction accuracy of the other’s false vs. true 

beliefs was 72% for correctly answered trials but only 56% for incorrectly answered trials 

(permutation test, p < 0.005; Fig 4d; see Extended Data Fig. 8 for other-belief vs. physical 

trials). A similar drop in decoding accuracy was also observed when considering all task-

relevant features (37% vs. 13%; permutation test, p < 0.001), suggesting that the activities of 

these neurons correlated with the ability of the participants to correctly infer the other’s 

beliefs. By comparison, we found no net difference in mean activity between correctly vs. 

incorrectly answered trials across any of the false-belief, true-belief, false-physical, or true-

physical trials (one-way ANOVA, F(3, 2268) = 0.56, p = 0.64), suggesting that diminished 

decoding was not explained by more generalized processes such as lapses in attention or 

judgment. The participants’ ability to accurately predict the other’s beliefs was therefore 

reflected by the specific cell pattern of population activity on a per-trial level.

Discussion

By recording the activities of dmPFC neurons in participants performing a structured false 

belief task across richly varying naturalistic conditions, we observed that these neurons 

provided progressively granular levels of details about others’ beliefs – from whether or not 

another’s belief was involved, to whether these beliefs were true or false, to which particular 

item was being considered. Importantly, the activity of these cells distinguished another’s 

beliefs from other non-social physical representations and disambiguated self- from other-

belief representations and perspective; computations that together are essential to human 

theory of mind3, 10, 25, 26.

These findings are notable because they reveal neurons in the human dmPFC that encode 

information about another’s beliefs, even when those beliefs are false or distinct from one’s 

own. Whereas canonical ‘mirror neurons’ in premotor and supplementary motor areas have 

been previously shown to reflect information about the observable behavior of others and to 

represent another’s actions similarly to one’s own 27, 28, it has remained unclear whether or 
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how neurons represent another’s beliefs, which are inherently unobservable and unknown. 

Further, while neurons in non-human primates have been found to predict another’s actions 

or expected reward29, 30, understanding whether or how individual neurons reflect another’s 

beliefs or perspective has largely remained out of reach. Here, we identify putative neurons 

in the human dmPFC that may support these computations.

A final notable finding from these studies is that single-cellular representations of the other’s 

beliefs were largely insensitive to differences in task difficulty or demand; reliably 

predicting the other’s beliefs across broadly varying social contexts and themes. They were 

also robust to differences in depth of reasoning required, suggesting that these neuronal 

representations of the other’s beliefs are likely generalizable; a property that would be 

necessary for supporting theory of mind. It was also notable to find, though, that many of the 

neurons encoded non-social information about the physical state of reality which could 

potentially explain why certain lesions in the dmPFC can lead to overlapping deficits, some 

of which are not necessarily specific to social reasoning26. Taken together, our observations 

provide a rare look into the cellular-level processing that underlie human theory of mind and 

a new understanding of how neurons in the human brain may reflect another’s beliefs, with 

prospective implication to human social cognition and its dysfunction6–8.

Methods

Participants

Participant recruitment: All study procedures were performed under ethical standards 

provided by the Massachusetts General Hospital Internal Review Board and in compliance 

with Harvard Medical School ethical guidelines. Prior to consideration, candidates for the 

study were evaluated by a multidisciplinary team of neurologists, neurosurgeons, and 

neuropsychologists 31–34 and decisions for surgery were unrelated to study participation. 

Prospective candidates who displayed cognitive scores that lay outside 1.5 standard 

deviations of their age-defined means (e.g., WAIS-IV, WCST, and WMS-IV) were excluded 
35, 36. Consideration for inclusion in the study was only made after patients were scheduled 

for elective placement of deep brain stimulation. Their cases were reviewed for study 

candidacy based on the following inclusion criteria: 18 years or older, able to give informed 

consent, intact preoperative baseline language function and English fluency, and plan for 

awake surgery with intraoperative microelectrode recordings. All participants gave written 

informed consent to take part in the study. The patients were freely able to withdraw from 

the study without any consequence to their clinical care at any point in the study, including 

during the intraoperative phase.

A total of 15 participants were included for neuronal recordings (Extended Data Table 1). Of 

these, 11 participants (5 female and 6 male, mean age: 62 years, range: 32–73 years) 

underwent single-neuronal recordings while performing the main false-belief task. Of those 

participants, 7 had essential tremor (ET), 3 had Parkinson’s disease (PD) and 1 had dystonia. 

An additional 4 participants (3 female and 1 male, mean age: 54 years, range: 19–72 years) 

also underwent single-neuronal recordings while performing a false-belief task but that 

further tested for first-order vs. second-order false beliefs as well as self- vs. other-beliefs. 

Finally, a separate set of 14 healthy participants (age range 25–62 with 6 males and 8 
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females) were used to confirm the dependency between verbal response to the questions and 

the preceding narratives.

Neuronal recordings

Intraoperative single-neuronal recordings: Individuals undergoing deep brain 

stimulator placement at our institution normally undergo standardized micro-electrode 

recording as part of their clinically planned surgery in order to optimize anatomical 

targeting32, 37. Here, we adopted a surgical approach that allowed us to obtain acute single-

unit recordings of this area as the micro-electrodes were advanced to target 31–33. These 

recordings did not perturb the planned operative approach or alter clinical care (Extended 

Data Fig. 1a).

Neuronal recordings from the dmPFC was conducted in three main steps. First, to mitigate 

pulsations or movement at the cortical surface, we used a biodegradable fibrin sealant 

(Tisseel, Baxter; Deerfield, IL, USA), between the cortical surface and the inner table of the 

skull 2. The sealant is normally used after deep brain stimulation placement but, in our 

setting, placement before micro-electrode targeting allowed for cortical pulsations to be 

additionally locally mitigated (Fig. 1a). Second, using a motorized microdrive, we 

incrementally advanced the micro-electrodes along the cortical ribbon at 10–100 μm 

increments in order to identify and isolate individual units (Alpha Omega Engineering, 

Nazareth, Israel). Here, we employed the same array of 5 tungsten microelectrodes (500–

1000 kΩ) normally used for deep targeting. Once putative neurons were identified, the 

microelectrodes were held in position for 4–5 minutes in order to confirm signal stability 

(we did not screen putative neurons for task responsiveness). The electrodes were then left 

untouched until the end of the task session. The electrodes were then again advanced (by an 

additional 0.4 to 1.2 mm on average) until a different set of stable unit waveforms were 

obtained and another session commenced. Finally, a multielectrode recording (MER) system 

and I/O DAQ were used to precisely time-stamp task events (1kHz) and sample the neuronal 

data (44 kHz) at millisecond resolution. Neuronal signals were amplified, bandpass filtered 

(300 Hz and 6 kHz) and stored off-line (Alpha Omega Engineering, Nazareth, Israel). Audio 

recordings were obtained at 22 kHz sampling frequency using two microphones (Shure; 

Niles, IL USA) that were integrated into the Alpha Omega rig for high fidelity temporal 

alignment with neuronal data. After recordings from the dmPFC, subcortical neuronal 

recordings and deep brain stimulator placement proceeded as scheduled.

Single-unit isolation: Single-units were identified and sorted off-line (Plexon offline 

sorter, Plexon Inc. Dallas, TX). To ensure the identification of single, well-isolated units, we 

first constructed a histogram of peak heights from the raw voltage tracings on each channel. 

A minimum threshold of three standard deviations was used to differentiate between neural 

signals from background noise. Next, template matching and principal component analyses 

were used to classify action potentials and sort prospective neurons. Candidate clusters of 

putative neurons needed to clearly separate from channel noise (>3 s.d. above baseline), 

display a voltage waveform consistent with that of a cortical neuron, and to have at least 

99% of action potentials separated by an inter-spike interval of at least 2 msec. Any 

prospective units that displayed significant overlap in their principal component analysis 
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(PCA) distributions by multivariate analysis of variance (p < 0.0001) or overlapped with the 

baseline signal/noise were excluded from the single-neuronal analysis. Finally, any units that 

did not demonstrate waveform stability over the course of the trial were excluded from 

further analysis. Extended Data Fig. 1b, c illustrates two examples of spike waveform 

morphologies and associated PCA clusters. In total, we recorded from 212 putative neurons 

across 17 recording sessions for an average of 1.5 recording sessions per participant in the 

main task. The average number of neurons isolated per recording session was 12 ± 1, 

amounting to approximately 2 well-isolated units per electrode per session across the 5 

recording electrodes 33, 34, 38, 39.

Multi-unit isolation: To provide further comparison to our single-neuronal data, we also 

separately analyzed multi-unit activity (MUA). MUAs represent the combined activities of 

multiple neurons from within local populations recorded from the same electrode. Here, as 

described previously 40, 41, MUAs were isolated from the same electrodes in which single-

units were isolated. Like single-unit activity, they were separated from noise by baseline 

thresholding but, unlike single-unit activity, they were not processed for waveform 

morphology or separability.

Audio processing: Audio recordings were obtained at 22 kHz sampling frequency and 

time-aligned to spiking activity using the Alpha Omega recording system. The starting and 

ending time points of each narrative and question were then annotated using WaveSurfer 

software (KTH Royal Institute of Technology, Sweden). Each word that was heard (i.e., 

narrative and question) and spoken (i.e., answer) was then manually transcribed and 

confirmed for alignment using custom written software in MATLAB (MathWorks, Inc.; 

Natick, MA, USA). Finally, the narratives, questions, and answers were tabulated based on 

whether and what type of belief was being considered (e.g., self-belief trial, other-belief 

trial, etc.; Extended Data Table 2).

Task design

The behavioral task was administered in an automated fashion using customized software 

written in MATLAB. After stability of neuronal recording was confirmed, the patients were 

then given, in auditory format, varied narratives followed by questions about them over 

multiple trials. To ensure that the presentation of the narratives was naturally ‘blinded’, the 

narratives and questions were pre-recorded in audio and were given to the participants via 
computer. The narratives lasted, on average, 7.68 ± 0.07 seconds per trial and described 

simple events such as an object being moved from one location to another or a box being 

opened, and the questions focus on the state of the objects or a social agent’s belief of them. 

Therefore, in one trial, the participant may be given a narrative such as “You and Tom see a 

jar on the table. After Tom leaves, you move the jar to the cupboard”. This would then be 

followed by the question “Where does Tom believe the jar is?” Other narratives, by 

comparison, may present a scenario such as “You placed an apple inside a shoebox while 

Sallie was not watching. Sallie then opens the shoebox” followed by the question “What 

does Sallie expect to find in the box”. To further allow for generalizability, we also 

alternated between words such as “Tom” and “he” or “think” and “believe” during 
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questioning. Overall, the participants were given 144 ± 22 unique narrative and question 

combinations, with the average question duration being 1.96 ± 0.15 seconds per trial

To evaluate for neuronal responses that may selectively reflect another’s beliefs, it was 

important to dissociate information relevant to the scenarios within the narratives from the 

information being considered during the questioning period. It was also important to prevent 

the participants from using simple learning strategies when given particular story scenarios 

to anticipate which question will be given. To this end, we also randomized the type of 

questions following the narratives. For example, certain trials would present the narrative 

“You and Tom see a jar on the table. After Tom leaves, you move the jar to the cupboard”. 

Whereas some trials would be followed by the question “Where does Tom believe the jar 

is?”, other trials would be followed by the question “Where do you think the jar is?” Specific 

narrative-question variations and controls are given further below and in Extended Data 

Table 2a.

Primary task conditions

In our study, we used the story narratives and questions about them to vary the content and 

theme under which the participants had to consider another’s belief (Extended Data Fig. 2). 

As detailed below, we also used them to test for changes in neuronal activity that may reflect 

information specifically related to another’s beliefs as well as to evaluate for features that 

describe another’s belief in progressively granular details.

Other-belief vs. physical trials: To evaluate for neurons that responded selectively 

when considering another’s beliefs, we compared trials that required the participant to 

consider another’s beliefs of reality vs. those that required them to consider its physical 

representation. For example, the participant may be presented with the narrative “You and 

Tom see a jar on the table. After Tom leaves, you move the jar to the cupboard” followed by 

the question “Where does Tom believe the jar is?” These other-belief trials would therefore 

require the participant to consider the other’s belief during questioning. Other trials, by 

comparison, would present the participant with the narrative “You take a picture of a jar on 

the table. After the picture, you move the jar to the cupboard” followed by the question 

“Where is the jar in the picture?” These physical trials would therefore require the 

participant to consider the physical state of reality and would not involve another’s beliefs.

True- vs. false-belief trials: Next, to identify putative signals that may be predictive of 

others’ specific beliefs, other belief trials were further divided into those that required the 

participant to consider beliefs that were false vs. those that required them to consider beliefs 

that were true. Thus, for example, on false-belief trials, the participant may be presented 

with the narrative “You and Tom see a jar on the table. After Tom leaves, you move the jar to 

the cupboard” followed by the question “Where does Tom believe the jar is?” On true-belief 

trials, by comparison, they would be presented by the narrative “You and Tom see a jar on 

the table. After Tom leaves, you open the jar and leave it in place.” This would then be 

followed by the question “Where does Tom think the jar is?” Therefore, even though the 

questions for both trials are the same, only the former reflects a belief that is false.
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True- vs. false-physical trials: To test for the possibility that neurons encoding others’ 

beliefs may have simply signaled the presence of any inconsistency between past and 

present reality, irrespective of whether another’s belief was involved, similar orthogonal 

manipulations were made for physical trials. Whereas certain trials involved other’s beliefs 

that were true vs. false other trials involved physical representations that were true vs. false. 

For example, certain trials may contain a narrative such as “You take a picture of a jar on the 

table. After the picture, you then move the jar to the cupboard”. Other trials, by comparison, 

may contain a narrative such as “You take a picture of a jar on the table. After the picture, 

you open the jar and leave it in place”. Therefore, whereas the former trial requires the 

participant to consider a false physical-representation of reality when asked “Where is the 

jar in the picture?”, the latter trial requires them to consider a true physical-representation.

Additional task variations and controls

Other-belief aware vs. unaware trials: On false-belief trials, the social agents held 

representations of reality that were false and distinct from the participant’s own because the 

agents were unaware of events. For example, when presented with the scenario “...After Tom 

leaves, you move the jar to the cupboard”, Tom is not aware that the jar was moved. 

Therefore, to evaluate whether neuronal responses reflected variations in the other’s 

perspective of reality independently of the participant’s own, we introduced an additional set 

of control trials in which the social agent’s awareness was implicitly varied (20% of other-

belief trials). For instance, whereas certain trials contained narratives such as “...After Tom 

leaves, you move the jar to the cupboard,” other trials contained narratives such as “...After 

Tom leaves, you move the jar to the cupboard while he watches through the window.” 

Therefore, even though both trials describe the same manipulation events (e.g., moving the 

jar to the cupboard), the social agent in the latter is implicitly aware of them.

Self-belief vs. other-belief trials: While it is not possible for one to simultaneously hold 

a false belief and to know that one’s belief is false, it is possible to evaluate how neurons 

may respond to representations of one’s own imagined false beliefs. Therefore, to evaluate 

for neurons that may distinguish self- from other-belief related representations, the 

participants were given trials in which their own belief had to be judged as false or true. For 

example, the participant may be given the narrative “You see a jar on a table. After you leave 

the kitchen, the jar falls off the table onto the floor.” followed by the question “Where will 

you expect to find the jar?” (Extended Data Table 2b).

First-order vs. second-order other belief trials: While first-order false beliefs require 

the participant to consider another’s beliefs, second-order false beliefs require the participant 

to consider another’s beliefs of another’s beliefs 42. For example, on a second-order false 

belief trial, the participant may be presented with the narrative “Mary and Tom see a jar on a 

table. Tom leaves the kitchen and Mary moves the jar to the cupboard. Tom returns.” 

followed by the question “Where does Mary think Tom will look for the jar?” (Extended 

Data Table 2b). Therefore, while both require consideration of a false belief, the latter 

involves a higher depth of reasoning and task demand. Here, we theorized that, if our results 

were explained by a difference in depth of reasoning or difficulty, then we should expect to 
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find differences in neuronal activity or decoding accuracy when comparing these first- and 

second-order belief trials.

Other-belief trials for item identity vs. location: To examine the consistency of 

neuronal response across belief contents, the participants had to consider another’s beliefs 

about either an item’s location or its identity; thus, trials were divided into two groups 

accordingly. Therefore, for trials that required the participant to consider an item’s location, 

they may be given a narrative such as “You and Tom see a jar on the table. After Tom leaves, 

you move the jar to the cupboard” followed by the question “Where does Tom believe the jar 

is?” Other trials, by comparison required the participant to consider the item’s identity. Here, 

for example, they may be given a narrative such as “You and Tom see a jar on the table. 

After Tom leaves, you replace the jar with an apple” followed by the question “What does 

Tom believe is on the table?”

Other-belief trials for item groupings: To investigate whether neuronal signals may 

reflect the specific content of the other’s beliefs, we varied the items being considered by the 

social agents in the narratives. When asked “Where does Tom think the jar is?”, for example, 

the participant had to correctly infer that Tom believed the jar to be on the “table” rather than 

“cupboard”. Therefore, in order to further evaluate whether and to what degree neurons in 

the population may be informative of the items being considered, we divided the items into 

six groupings. These included common objects (e.g., chair), containers (e.g., cupboard), 

food items (e.g., vegetables), places (e.g., street), animals (e.g., cat) and appearances (e.g., 

red). For example, when asked “What does Jim believe is in the garden?” the participant had 

to consider “vegetables” which are a food item whereas, but when asked the question 

“Where will Ned look for the car?” they had to consider “street” which is a place.

Confirming the dependency between questions and narratives

The questions given to the participants allowed us to probe for specific information about 

social agents described in the narratives and their beliefs. Therefore, to confirm that the 

participants could not guess the correct answers from the questions themselves, we also 

presented questions without the preceding narratives in a separate set of controls. Here, we 

presented subjects with the same precise pre-recorded questions used for the main task. 

These were then followed by two forced-choice options of what the possible answers could 

be. Thus, for example, they may hear the question “Where does Tom think the jar is?” 

followed by the two options “table” or “cupboard”. Using 14 healthy controls (age range 

25–62 with 6 males and 8 females), we find that the participants selected the correct answer 

on only 52.4 ± 2.0% of the questions. Given a chance probability of 50%, the likelihood of 

answering correctly without hearing the narratives was therefore at chance (t-test, t(13) = 

1.2, p = 0.25).

Statistical Analysis

Single-neuronal analysis: Neuronal activity was analyzed during the question period, at 

which time the participants were considering the specific information being asked. To 

standardize neuronal analysis and to take into account the known time delay between 

stimulus presentation and neuronal response by prefrontal neurons 31, 34, we focused on a 
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1000 msec window starting 200 msec from question onset. To construct the peri-stimulus 

time histograms (PSTH), the spike train of each unit was first converted to a continuous 

spike-density function (SDF) using a Gaussian smoothing kernel with width of 100 msec 
43, 44. To allow for consistency across trials, the firing activities were aligned to the question 

onset.

A Fisher discriminant was used to evaluate whether and to what degree the activity of each 

neuron during questioning could be used to predict specific trial conditions on a trial-by-trial 

basis 45–48. A permutation test was used to evaluate for statistical significance (permutation 

test, p < 0.025) and Bonferroni corrected for other-belief (false vs. true) and physical 

representation (false vs. true) comparisons. As described previously10, the ratio of the 

variance in neuronal activity between the two groups of trials was compared to the variance 

within groups based on:

SW−1SBv = λv,

whereby SW and SB are the within group scatter matrices and between group scatter 

matrices, respectively. The prediction vector v, corresponds to the largest eigenvalue of the 

matrix on the left-hand side of the equation. The prediction vector defines a projection of the 

recorded activity into a scalar unit that is then compared to a threshold, θ; for example, the 

trial type was predicted to be ‘false-belief’ if greater than θ and ‘true-belief’ if less than θ. 

For validation, we divided the neuronal data into a training set consisting of 80% of the trials 

and tested the accuracy of the prediction on the remaining 20% of trials. This operation was 

repeated 200 times using a random sampling of the total trials. A chance distribution of 

decoding performance was also generated using the same procedure while randomly 

shuffling the labels corresponding to each trial (e.g., randomly shuffling true-belief with 

false-belief trials). A decoding performance of 100% therefore indicates a perfect prediction 

whereas a decoding performance of 50% indicates chance. Finally, to visualize the temporal 

structure of the decoding accuracy over the course of the trials, we performed a sliding 

window analysis. Here, we used a sliding window of 1000 msec moving in steps of 100 

msec from −1500 to 2500 msec relative to the question onset.

Model-switch decoding: To quantify the degree to which neuronal responses are 

selective, we used a model-switch procedure whereby models trained on certain trial 

conditions were used to decode a different trial condition on validation trials not used for 

model training. For example, to test for the selectivity of the neuronal response to another’s 

beliefs, we would train models on false- vs. true-belief trials and then use these models to 

decode false- vs. true-physical trials. Therefore, even though both trial conditions involve 

false vs. true representations, a drop in decoding accuracy on model-switching would 

suggest that neuronal responses were selective for another’s beliefs.

Neural population decoding analysis: To further evaluate whether and to what degree 

the activity of the neuronal population was informative of the trials being given, we again 

used Fisher discriminant but now constructed a pseudo-population activity matrix (m × n) of 

neurons of interest. Each cell in the population activity matrix contained the mean firing rate 
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from a single neuron n on a single trial m measured during the task. Only neurons with a 

minimum number of 10 trials per trial type were included in the analysis. Because neurons 

were not simultaneously recorded, trials from different neurons were randomly matched up 

according to their trial type (e.g., false-belief or true-belief trials). This procedure was 

repeated 200 times with different random trial matching. Similar to the procedure used for 

the individual cells, the data was split into a training set consisting of 80% of trials and 

tested on the remaining 20% of trials for validation. We also balanced the number of trials 

from each condition for training and testing. Population decoding accuracy was then 

quantified as the percentage of correctly classified trials, averaged across all 200 iterations of 

random trial matchings. A chance distribution of decoding performance was also generated 

using the same procedure while randomly shuffling the labels corresponding to each trial. As 

before, the decoding performance of the neuronal population was considered significant if 

its average performance fell within the top 2.5% of the chance performance (p-value < 

0.025). Lastly, to investigate the contribution of the cumulative population, we randomly 

selected k neurons (k = 1, 2, 3, … n where n is the overall population size) at each step and 

then determined the average decoding performance by repeating this procedure 200 times. 

Moreover, since our approach ignores the potential contributions from cross-correlations 

between neurons, it likely provides a lower bound for decoding performance.

Statistical validation: A parametric t-test and a non-parametric rank-sum test were 

further used to validate the significance and magnitude of the neuronal response. Here, 

rather than evaluating the probability of correctly decoding the trial conditions compared to 

chance, we evaluated the statistical significance of neuronal response across conditions (p < 

0.025). To further evaluate the magnitude of the effect, we also calculate the t-statistic and z-

value metrics over the course of the trials. Here, similar to our decoding approach, we used 

1000 msec sliding windows that were incrementally advanced in steps of 100 msec but now 

calculated the t-statistic and z-values (Extended Data Fig. 3a, b).

Trial complexity analysis: To evaluate the potential relation between neuronal activity 

and trial difficulty and demand, we used three standard complexity measures: (i) the number 

of relevant items considered during the narratives, (ii) the number of times an agent was 

considered in the narratives, and (iii) the narrative length. For the number of relevant items, 

we considered the number of items that had to be held in the working memory prior to the 

questioning (e.g., 3 for jar + table + cupboard vs. 4 for street + bicycle + car + garage in 

Extended Data Table 2). For the number of social agents, we counted any instantiation of an 

individual. Overall, the number of times that a social agent was mentioned within other-

belief and physical-representation trials was well-matched (3.3 ± 0.1 vs. 3.4 ± 0.1 agents, 

respectively; rank-sum test: z-value = 0.68, p = 0.49).

Trial difficulty analysis: To investigate the perceived difficulty of the questions across the 

participants, we divided the trials into those that were considered easy vs. hard based on the 

participants’ performances. We also divided the trials into those in which the reaction times 

between question offset and answer onset was short vs. long and found no relation between 

neuronal activity and the reaction times of the participants (i.e., short vs. long; rank-sum test: 
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z-value = 1.12, p = 0.26). The divisions were defined based on the median values across all 

trials and participants.

Trial uncertainty analysis: A minority of trials used in our main false-belief task (n = 6 

out of a total of 95 narratives; Extended Data Table 2b) required some degree of inferences 

about the location of the item of interest when answering the questions that were not 

explicitly stated within the narratives. For example, when the participants hear, “Ned and 

you left a car in the street and a bicycle in the garage. While Ned was sleeping, you switched 

them. Tomorrow” followed by the question “Where will Ned look for the car?” The location 

of the car is not explicitly mentioned in the narrative and requires inference through the 

meaning of the verb “switch”. Importantly, we found that the neuronal decoding was robust 

to differences in the degree of inference required 33, 49. To this end, we repeated the 

decoding analysis after excluding the high-inference trials and found no difference in 

decoding accuracy for false vs. true beliefs based on whether the trials involved more or less 

uncertainty (78±3% vs. 77±2% prediction accuracy; t = 0.76, p = 0.45).

Consistency of neuronal encoding during questioning: To examine how question 

time-progression influenced neuronal encoding, we aligned neuronal activity to different 

time points during questioning. First, we aligned neuronal activity to the specific word at 

which sufficient information was given to correctly answer the question. Thus, for example, 

when hearing the question “Where does Tom think the pencil is?”, the word “pencil” would 

be tagged as the word of interest. These words were selected through a natural language 

processing module that identifies their dependencies using a long short-term memory 

(LSTM) artificial recurrent neural network and parts-of-speech tagging 50, 51. By aligning 

neuronal activity to the words of interest, we find that decoding for other-beliefs vs. physical 

representations was 72±2% and significantly above chance (H0 = 50% chance probability, 

permutation test, p < 0.005). Similar findings were also made when evaluating decoding 

performances for false- vs. true-belief trials, with a decoding accuracy of 77±2% (H0 = 50% 

chance probability, permutation test, p < 0.005). We also aligned neuronal activity to the end 

of the questions. Here, we found that prediction accuracy for the population was slightly 

lower at 68±2% for other-beliefs vs. physical representations and 74±2% for false vs. true 

beliefs (H0 = 50% chance probability, permutation test, p < 0.005). Neuronal predictions 

about the other’s beliefs therefore appeared to largely peak once sufficient information was 

available (on average) to comprehend and provide the appropriate answer.

Consistency of neuronal encoding across sessions: To rule out the possibility of 

habituation and to confirm the consistency of behavioral performance and neuronal decoding 

over time, we compared the first and second sessions. Most participants performed 2 

sessions (1.5 sessions on average). Overall, we find no difference in the participant’s 

performance when comparing the first to second sessions (81.2 ± 6.3% vs, 78.9 ± 11.0%; 

two-sided paired t-test, t(4) = 0.45, p = 0.68). We also find a similar proportion of task-

modulated neurons when considering belief vs, physical representation trials (session #1: 23 

± 8% vs. session #2: 25 ± 6%; two-sided paired t-test, t(4) = 0.70, p = 0.52) as well as false 

vs. true belief (session #1: 27 ± 3% vs. session #2: 24 ± 5%; two-sided paired t-test, t(4) = 
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0.45, p = 0.67). Both behavioral performance and neuronal encoding were therefore 

consistent across sessions.

Extended Data

Extended Data Figure 1 |. Recording location, waveform morphology and single-unit isolation.
a, Single-neuronal recordings were obtained from the superior frontal gyrus of the dmPFC 

using incrementally advancing microelectrode arrays. The region of recordings in MNI 

coordinates (x = −6, y = 49, z = 42) is shown in a canonical structure MRI. b, Examples of 

waveform morphologies displaying mean waveform ± 3 standard deviations. The top panel 

illustrates a single representative unit isolated from a fine-tip tungsten microelectrode. The 

bottom panel illustrates two representative units that were isolated from another 

microelectrode. The horizontal bar indicates a 500 μs interval for scale. c, Isolation patterns 

corresponding to the waveforms shown in c represented by principal component 

distributions. The gray areas in the PC space represent baseline noise. All putative units 

displayed significant separation by one-way MANOVA (p < 0.0001) and no overlap with 

baseline signal/noise.
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Extended Data Figure 2 |. Schematic depiction of experimental logic and narrative features 
across trial conditions.
On the left, other belief vs. physical trials were used to identify neurons that responded 

selectively to another’s beliefs. Whereas both required the participant to consider false vs. 

true representations, only the former required the participants to consider another’s specific 

beliefs. In the middle, other belief vs. self-belief trials were used to further differentiate 

other- from self-related representations. Whereas both required the participant to consider a 

belief, only the former required the participants to consider another’s false vs. true beliefs. 

Aware vs. unaware trials were given to additionally differentiate other- from self-

perspective. On the right, first- vs. second-order belief trials were used to evaluate for the 

consistency of neuronal response across different depths of reasoning. High vs. low degree 

of inference as well as high vs. low task demand trials were used to evaluate for the 

consistency of neuronal response across different degrees of inference and cognitive 

demand.
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Extended Data Figure 3 |. Consistency of the results across different statistical methodology and 
neuronal isolation approaches.
a, A parametric two-sided unpaired t-test was used to evaluate whether cells displayed a 

significant difference in their responses. Comparisons were made between other belief vs. 

physical trials (top, n = 62 neurons) and between false vs. true other-belief trials (bottom, n 
= 47 neurons). The magnitude of effect (mean ± s.e.m) over the course of the trial is 

displayed based on the t-statistic. Neuronal activity is aligned to the question onset (time 

zero). The insets display the t-statistic values for all neurons that displayed (n = 62 in the top 
and n = 47 in the bottom panel, colored) and did not display (n = 150 in the top and n = 165 

in the bottom panel, gray) significant selectivity. b, A two-sided unpaired non-parametric 

rank-sum test was used with the same conventions as above. Here, the magnitude of effect 

(mean ± s.e.m) is displayed based on the z-value (n = 64 in the top and n = 45 in the bottom 
panel). c, These results also held when considering other neural isolation approaches. 

Decoding performances were obtained for multi-unit activity (MUA) using the same 

modeling and decoding approach as for the single-neuronal data. The bar graphs provide the 

individual MUAs (n = 8) and their corresponding 95% CL. The horizontal line indicates 

chance performance (one-sided permutation test, p < 0.005).
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Extended Data Figure 4 |. Consistency of the results across subjects and clinical conditions.
a, The participants demonstrated a largely similar proportion of task-modulated neurons 

when considering belief vs. physical trials (s.d., of 11.6%) as well as false- vs. true-belief 

trials (s.d., of 10.0%). b, Proportion of neurons displaying task modulations based on 

clinical conditions; Parkinson’s disease (PD) and essential tremor (ET). The p-value by chi-

square test is shown. We also found no difference in the firing rates of the neurons based on 

clinical diagnosis (1.61±0.19 vs. 1.70 ± 0.11 spike/sec for PD and ET, respectively; two-

sided Wilcoxon rank-sum, z-value (1586) = 0.92, p = 0.36). c, A subject-dropping procedure 

was used to determine whether any of the participants disproportionately contributed to the 

population decoding performance. Here, individual participants were sequentially removed 

one at a time and the population decoding was repeated (200 iterations). Population 

decoding performances (mean ± s.e.m.) are separately presented after each participant was 

removed. Chance decoding based on random permutation of the neuronal data is provided in 

black for comparison. The decoding performances were largely unaffected by removal of 

any of the participants when decoding other-beliefs vs. physical representations (top panel; 

one-way ANOVA: F(10,2189) = 1.2, p = 0.29) as well as when decoding other true- vs. 

false-beliefs (bottom panel; one-way ANOVA: F(10,2189) = 0.68, p = 0.75). d, A subject-

adding procedure was further used to determine how the participants cumulatively 

contributed to the population decoding by sequentially adding subjects contributing to the 

neuronal population from 1 to 11 and repeating the decoding analysis (200 iterations). 
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Decoding performances are provided with the same convention as above (mean ± s.e.m.). As 

shown, adding subjects one at a time led to a consistent increase in the decoding 

performance suggesting that the participants made similar contributions.

Extended Data Figure 5 |. Robustness of belief representations.
a, Reaction times (mean ± s.e.m.) from question offset to answer onset during the primary 

task conditions across participants (n = 11) were similar for other-belief vs. physical trials 

(1071 ± 135 vs. 1178 ± 201 msec) and for false- vs. true-belief trials (1130 ± 136 vs. 1028 ± 

147 msec). The p-values obtained using a two-sided unpaired t-test. b, To evaluate how 

differences in neuronal decoding may relate to answer response time, decoding 

performances were first averaged across neurons that displayed significant selectivity and 

then sorted based on the participants’ reaction times (n = 18 time points). There was a 

slightly negative but non-significant correlation between RTs and decoding performances 

both when comparing other-belief to physical trials (r = −0.35, p = 0.16) and when 

comparing other false- to true-belief trials (r = −0.27, p = 0.28). The p-values by Spearman’s 

correlation test are shown. c, We found no relationship between neuronal activity (mean 

firing rates, n = 49 neurons) and trial difficulty (easy vs. hard; Methods) based on the 

participants’ overall performances (two-sided rank-sum test, z-value = 0.85, p = 0.40). d,e,f, 
Neuronal activity was evaluated based on (d) the number of social agents presented to the 

participants (left: n = 4024 trials, right: n = 4527 trials), (e) the number of items (e.g., table, 

jar, cupboard, etc.) that had to be held in working memory prior to questioning (n = 4527 

trials), and (f) the narrative length based on the number of words (n = 4527 trials). Activities 

were z-scored by removing the mean and dividing by the standard deviation. A lack of 

relation was demonstrated by correlation analysis in each condition (Pearson’s correlation, p 
> 0.1).
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Extended Data Figure 6 |. Decoding others’ beliefs based on variations in perspective and 
awareness.
a, Mean decoding profile with 95% CL for all neurons that accurately differentiated between 

false-belief vs. true-belief trials (n = 49; one-sided permutation test, p < 0.025). Here, the 

trials were divided based on whether or not the social agent was made aware of events in the 

narratives. Since the state of reality was the same under these two conditions, demonstration 

of similar decoding performances on the standard other-belief and other-belief aware trials 

confirmed that neuronal predictions of the other’s beliefs reflected the other’s perspective of 

reality independently of the participant’s own. b, Decoding accuracies on other-belief aware 

trials were positively correlated with those decoded from the standard other-belief trials on a 

cell-by-cell basis (n = 49; Pearson’s correlation; p = 0.04).

Extended Data Figure 7 |. Decoding others’ beliefs based on variations in the item’s identity or 
location being considered.

Jamali et al. Page 20

Nature. Author manuscript; available in PMC 2021 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Above, the narratives and questions were varied in whether they required the participants to 

consider an items location or its identity. Below, the decoding performances of the individual 

neurons based on whether the social agent’s beliefs involved an item’s identity or its location 

are displayed. The Venn diagram (inset) shows the overlap between neurons.

Extended Data Figure 8 |. Relation between neuronal predictions and performance for beliefs vs. 
physical trials.
The histograms indicate decoding accuracies for neurons that predicted whether the 

participants were considering another’s beliefs vs. physical representations on trials in which 

the participants provided the correct vs. incorrect upcoming answer (one-sided permutation 

test, p = 0.001). The arrows indicate mean decoding performances.

Extended Data Table 1 |
Participants’ demographics and overall performances.

a, Table summary displaying each participant’s age, sex, underlying pathology, and number 

of trials per task per session. b, Overall, we find that participants with PD and those with ET 

displayed no difference in behavioral performances (mean ± s.e.m) across task conditions 

(two-sided unpaired t-test, t(10) = 0.57; p = 0.59). Analogous observations were also made 

when comparing the participant’s mean reaction times from question offset to answer onset; 

with the participants with PD displaying largely similar response times to those of 

participants with ET (987 ± 56 vs. 1002 ± 41 msec; two-sided unpaired t-test, t(1586) = 

0.20, p = 0.84). Finally, we found no correlation between participants’ age and performance 

(younger vs. older than 65 years, two-sided unpaired t-test, t = −0.07, p = 0.94), together 

suggesting that clinical condition or age had no effect on the participant’s ability to perform 

the task.

a

Case Sex Age Diagnosis # Sessions # Trials per session
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Primary tasks Belief Phy rep.

1 M 72 ET 1 47 50

2 F 73 ET 2 50 50

3 F 72 ET 1 49 49

4 F 32 ET 3 50 50

5 M 65 ET 2 38 38

6 M 51 PD 1 36 36

7 F 59 DYS 2 50 50

8 M 64 ET 2 50 49

9 F 68 ET 1 47 45

10 M 54 PD 1 45 44

11 M 72 PD 1 46 46

Additional control tasks Self-belief Other belief

1 F 54 PD 1 78 78

2 M 19 ET 2 59 59

3 F 72 PD 1 48 48

4 F 71 PD 1 52 52

b

n Performance (%) p-value # Neurons

Primary tasks

 Participants 11 81.0 ± 3.7 – 212

 Age

  <= 65 yrs. 6 81.1 ± 4.5
0.94

145

  > 65 yrs. 5 80.6 ± 6.2 67

 Diagnosis

  Essential tremor 7 82.4 ± 5.3

0.59

156

  Parkinson’s disease or 
dystonia

4 77.7 ± 4.7 56

Additional control tasks

 Participants 4 76.1 ± 3.8 – 112

ET: Essential tremor

PD: Parkinson’s disease

DYS: Dystonia
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Extended Data Table 2 |
Narrative and question examples.

a, Representative examples of narrative and question combinations that were given to the 

participants during neuronal recordings. To allow for generalizability, the narratives were 

varied in content and theme and the questions differed in the way they were asked (e.g., 

whereas certain trials asked “What will Tom...” other trials asked “What will he...”). 

Representative examples are given for both other-belief and physical trials. Additional trial 

variations and controls are described in the main text and Methods. b, Representative 

examples of narrative and question combinations that were given to the participants in order 

to additionally test for (i) self-belief related representations, (ii) second-order belief 

representations, and (iii) differences in the degree of inference required.

a Primary tasks

 Narrative examples Question examples

 You and Tom see a jar on a table. After Tom leaves, you move the jar to 
the cupboard.

Where will he expect to find the 
jar?

 You and Jim take a photo of a bird on a tree. While the photo develops, the 
bird flies to a nearby rock.

Where is the bird in the photo?

 Ned left a car in the street and a bicycle in the garage. While Ned was 
sleeping, the car and bicycle were switched.

Where will Ned look for his car?

 You and Mary are at the movie theater sharing popcorn out of a container. 
She leaves and you eat some of the popcorn.

What does Mary believe is in the 
container?

 Charles put his wallet on the counter as he was leaving the store. The 
wallet then falls to the floor.

Where will Charles expect to find 
his wallet?

 John and you are watching tennis on TV. John leaves and you increase the 
volume.

Which sport does he think will be 
on TV?

 Jim is in a garden labeled vegetables. You pick all the vegetables in the 
garden and replace them with flowers without Jim’s knowledge.

What does Jim believe is in the 
garden?

 You and Tim place flowers in the shopping cart. Tim leaves and you ruffle 
the flowers within the cart.

Where will Tim look for the 
flowers?

 You and Mary are at the movie theater sharing popcorn out of a container. 
She leaves and you replace the popcorn with chocolate.

What does she expect to find in 
the container?

 You placed an apple inside a shoebox while Johnny wasn’t looking. 
Johnny opens the shoebox.

What does he expect to find inside 
the shoebox?

 John and you record a tennis match on TV. After recording, John switches 
the channel to football.

What sport is on the TV 
recording?

 Ned and you left a car in the street and a bicycle in the garage. While Ned 
was sleeping, you turned the car on and off.

Where will Ned look for the car?

 An old map shows a rest stop 10 minutes away. The rest stop has since 
moved further out and is now 30 minutes further away.

How many minutes is the rest stop 
away?

b Additional control tasks

 Narrative examples Question examples

 Self-belief trials

 You see a jar on a table. You leave the kitchen and the jar falls off the table 
onto the floor. You return.

Where will you expect to find the 
jar?

 You put your wallet on the counter and then left the store. The owner 
looked inside the wallet but kept it on the counter. You return.

Where will you expect to find the 
wallet?
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 You place cookies inside a cookie jar. The cookies are replaced with socks 
without your knowledge. You open the jar.

What do you expect to find inside 
the jar?

 You placed shoes inside a shoebox. The shoes get moved around in the box 
while you walk to your car. You open the box.

What do you expect to find inside 
the shoebox?

 Second-order belief trials

 Mary and Tom see a jar on a table. Tom leaves the kitchen and Mary 
moves the jar to the cupboard. Tom returns.

Where does Mary think Tom will 
look for the jar?

 Mary and Tom see a box on a counter. Tom leaves and Mary opens the box 
while keeping it on the counter. Tom returns.

Where does Mary think Tom will 
look for the box?

 Bob and Maia are drinking hot chocolate. Bob leaves and Maia switches 
his hot chocolate for apple cider. Bob returns.

What drink does Maia think Bob 
expects to find in his mug?

 Bob and Maia pour lemonade into a glass. Bob leaves and Maia stirs his 
lemonade. Bob returns.

What drink does Maia think Bob 
expects to find in his glass?

 High inference trials

 Ned and you left a car in the street and a bicycle in the garage. While Ned 
was sleeping, you switched them.

Where will Ned look for the car?

 Ted is browsing his favorite book in the library. Ted leaves and you keep 
his favorite book in place.

Where will Ted look for his 
favorite book?

 Susy and you see flip flops on a chair and sunglasses on a table. She leaves 
and you switch the flip flops for glasses. Susy returns.

Where will she look for the flip 
flops?

 You and Tom see a jar on a table. Tom leaves the kitchen and you lift the 
jar and put it back down. Tom returns.

Where will Tom look for the jar?
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Figure 1. |. Tracking single-cellular representations of another’s beliefs in the human dmPFC.
a, Acute single-neuronal recordings were obtained from the superior frontal gyrus of the 

human dmPFC using microelectrode arrays. b, During recordings, the participants 

performed a verbal variation of the false-belief task. c, Schematic illustration of the main 

task design and trial comparisons (Extended Data Fig. 2 and Extended Data Table 2). d, 
Behavioral performance across the primary task conditions (n =11 participants; self-belief 

trials were tested in 4 additional controls) represented as mean ± standard error of the mean 

(s.e.m.). e, Representative narrative and question examples for other-belief vs. physical trials 

are shown to the left. In the middle is a peri-stimulus time histogram (± s.e.m.) and spike 

raster reflecting the activity of a representative neuron during questioning. On the right, the 

firing rates (inset) and z-scored activities for neurons with (n = 42) and without (n = 170) 

significant modulation are displayed in red and gray, respectively. f, A linear discriminant 

quantified the degree to which the activities of individual neurons (left, n = 42) were 

predictive of other-belief vs. physical trials on a trial-by-trial basis (one-sided permutation 

test, p < 0.025). The time course of mean decoding performance with 95% confidence limits 

(CL) is shown on the right. g, Decoding projections for individual trials as well as decoding 

performance for the neural population (left, n = 42) and its cumulative (right, mean with 

95% CL) are displayed. The p-values by one-way ANOVA and two-sided unpaired t-test in 

d (left and right panels, respectively) are indicated.
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Figure 2. |. Single-neuronal predictions of another’s true and false beliefs.
a, Representative narrative and question examples for false- vs. true-belief trials are shown 

to the left. In the middle is a peri-stimulus time histogram (± s.e.m.) and raster reflecting the 

spiking activity of a representative neuron during questioning. On the right, the firing rates 

(inset) and z-scored activities for neurons that displayed significant modulation (n = 49) are 

in orange and those that did not (n = 163) are in gray. b, A linear discriminant quantified the 

degree to which the activities of individual neurons were predictive of false-belief vs. true-

belief trials on a trial-by-trial basis (left, n = 49; one-sided permutation test, p < 0.025). The 

right traces illustrate the time course of the mean decoding performance with 95% CL. c, 
Mean and cumulative decoding performances for the population of neurons (n = 49) with 

their 95% CL. d, Single-neuronal decoding performances (mean ± s.e.m., n = 32 neurons) 

during first-order and second-order false- vs. true-belief trials (n = 4 participants) were 

similar (two-sided paired t-test, p = 0.53). Similar results were obtained when considering 

mean firing rates (1.47 ± 0.12 vs. 1.49 ± 0.12 spike/sec; two-sided rank-sum test: z-value = 

0.05, p = 0.96), respectively.
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Figure 3. |. Neuronal responses to self vs. others’ beliefs and perspective.
a, The scatter plot illustrates decoding accuracies for each cell comparing false vs. true 

other-belief and false vs. true physical trials. The lack of significant overlap indicates that 

most other-belief encoding neurons encoded no information about the physical state of 

reality (one-sided permutation test, p = 0.36). On the right, decoding performances (mean 

with 95% CL, orange) for these neurons (n = 49) dropped to chance level when the same 

neurons were used to decode true- vs. false-physical trials (blue). b, Similar decoding 

performances (mean with 95% CL) were observed across all false vs. true other-belief 

neurons (n = 49) under situations in which the social agent was aware or unaware of events 

(two-sided paired t-test, p = 0.84, see Extended Data Fig. 6) suggesting that they reliably 

tracked the other’s perspective c, The scatter plot illustrates decoding accuracies for each 

cell comparing false vs. true beliefs for self or other. The lack of significant overlap indicates 

that most other-belief encoding neurons encoded no information about the participant’s own 

imagined beliefs (one-sided permutation test, p = 0.14). d, The time course (left) and the 

corresponding individual neuronal (right) decoding performances (mean with 95% CL) are 

shown for neurons (n = 30) that predicted whether the other’s beliefs were true vs. false 

(orange) as well as when the same neurons were used to decode true vs. false self-belief 

trials (purple).
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Figure 4. |. Population predictions of another’s belief contents and their relation to behavioral 
performance.
a, Mean decoding performance with 95% CL for neurons that accurately differentiated 

between false- vs. true-belief trials (n = 49) based on whether the social agent’s beliefs 

involved an item’s identity or its location. b, The bar graphs indicate the accuracies (mean 

with 95% CL) with which the neurons could predict the specific item grouping being 

considered by the social agents from all other possible groupings (n = 200 repetitions). c, On 

the left are mixed population predictions sorted based on the four primary features that the 

participant had to consider in order to correctly infer the other’s beliefs. On the right are the 

summative decoding performances for the mixed population. d, The histograms demonstrate 

the decoding accuracies for false vs. true other-belief neurons on trials in which the 

participants provided the correct vs. incorrect answers (Extended Data Fig. 8). The arrows 

indicate mean decoding performances (one-sided permutation test, p < 0.0001).
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