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a b s t r a c t

E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) play key roles in protein degradation. 
However, a large number of E3 substrate interactions (ESIs) and DUB substrate interactions (DSIs) remain 
elusive. Here, we present DeepUSI, a deep learning-based framework to identify ESIs and DSIs using the rich 
information present in protein sequences. Utilizing the collected golden standard dataset, key hyperpara-
meters in the process of model training, including the ones relevant to data sampling and number of epochs, 
have been systematically assessed. The performance of DeepUSI was thoroughly evaluated by multiple 
metrics, based on internal and external validation. Application of DeepUSI to cancer-associated E3 and DUB 
genes identified a list of druggable substrates with functional implications, warranting further investigation. 
Together, DeepUSI presents a new framework for predicting substrates of E3 ubiquitin ligases and deubi-
quitinates.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ubiquitination and deubiquitination are common post-transla-
tional modifications in eukaryotic cells, participating in a variety of 
important biological processes [1], including regulation of protein 
homeostasis, cell cycle, DNA repair, cell proliferation, and apoptosis. 
The dysregulation of protein ubiquitination and deubiquitination 
could lead to various diseases including cancer, nervous system and 
immune system diseases [2,3]. The ubiquitin-proteasome system 
(UPS) is a multi-component system, consisting of ubiquitin, ubi-
quitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), 
ubiquitin ligases (E3), 26 S proteasome and deubiquitinating en-
zymes (DUB). E1 enzyme, E2 enzyme and E3 ligases mediate the 

ubiquitination process in a signaling cascade catalytic manner, with 
substrates covalently bound to ubiquitin and then transferred to the 
26 S proteasome complex for degradation. DUB enzymes are cy-
steine protease proteins that reverse the ubiquitination process by 
removing ubiquitin from target proteins [4].

Among the components of the ubiquitination system, E3s and 
DUBs have the most prominent roles in tumorigenesis and cancer 
development [5]. During ubiquitination, E3 ligases and DUBs speci-
fically recognize target substrates, and determines the fate of sub-
strates. Therefore, recognition of E3s/DUBs substrate interactions 
(ESIs/DSIs) is critical for characterizing the ubiquitination process. A 
number of databases, including E3Net [6] and UbiNet [7], have been 
developed to provide a comprehensive collection of experimentally 
validated E3s-substrates interactions. However, identification of 
substrates for E3s and DUBs based on biochemical assay methods 
(e.g. two-hybrid screening, co-immunoprecipitation and mass 
spectrometry) is often time-consuming and resource-intensive, and 
some E3s are difficult to characterize using the standard experi-
mental techniques [8]. Therefore, few bioinformatic tools have been 
developed to predict ESIs/DSIs based on machine learning models. 
Wang et al. developed UbiBrowser based on Bayesian model [9] to 
predict ESIs/DSIs, considering enriched domains, GO term pairs, 
protein-protein interactions, and inferred E3 recognition consensus 
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motif. Chen et al. developed ESINet [10] using random forest model 
to predict ESIs from proteomic data, transcriptomic data, protein- 
protein interactions, and pathway-based associations. However, 
protein sequences have not been fully utilized in these tools. It is 
known that the structures of a protein are encoded by its sequences 
[11], and the interaction between enzymes and substrates could be 
dependent on structural pairing [12]. Therefore, it is feasible and 
necessary to make full use of protein amino acid sequence in-
formation to explore the interaction patterns of ubiquitination re-
lated enzymes and substrates.

Recently, with the great success of deep learning methods in 
biomedical field [13,14], especially in sequence-based analysis 
[15,16], deepDegron [17] and Degpred [18] have been developed to 
recognize the potential binding sites (termed degrons [19]) in a 
substrate, by deep learning-based modeling (forward neural net-
work for deepDegron, and BERT for Degred) using protein sequence 
information. However, due to the limited data available for training, 
degron cannot be identified for a majority of E3 ligases by current 
approaches [17].

Therefore, we developed a deep learning-based framework 
DeepUSI to predict substrates of E3 ubiquitin ligases and deubiqui-
tinases (DeepESI/DeepDSI for predicting ESIs/DSIs respectively) 
within human proteome, based on the most comprehensive dataset 
collected to date. The performance of DeepUSI was thoroughly 
evaluated by multiple metrics, and internal and external validation. 
Our pan-cancer analysis identified 24 cancer-associated UPS genes, 
and a list of druggable substrates were found by application of 
DeepUSI, which warrants further investigation for drug repurposing 
opportunities.

2. Material and methods

2.1. Data collections

To construct gold standard positive (GSP) dataset, 2926 human 
ESIs from UbiBrowser 2.0 [9] and a set of 1790 ESIs from ESINet [10]
(integrated in DegPred [18]) were merged. After deduplication, 2854 
ESIs were used as training dataset for ESI modelling, while non-re-
dundant DegPred manual ESIs (ESIs collected from literature by 
DegPred with duplicate entries in the training dataset excluded) 
were used as the independent test dataset. Regarding GSP dataset for 
training DSI model, we used 864 experimentally validated human 
DSIs from UbiBrowser 2.0, while DSIs from DUBase [20] (with du-
plicate entries in the training dataset excluded) were used as the 
independent dataset for testing the generalization performance of 
DeepDSI.

Due to a lack of the negative datasets verified by experiments, we 
constructed the gold standard negative dataset using protein phy-
sical interaction data from the BioGRID [21] (4.4.212, released on July 
25th, 2022). A total of 39,749 unique E3 physical interactions (with 
known E3 substrates excluded), and 7819 DUB physical interactions 
(with known DUB substrates excluded) were obtained. In addition, 
we downloaded the curated protein sequences from Uniprot Swis-
sProt [22] (February 2022 release) as the reference amino acid se-
quences.

2.2. Model performance metrics

To comprehensively evaluate the prediction performance of 
DeepUSI, we used multiple metrics, including Area Under Receiver 
Operating Characteristics curve (AUROC), Area Under Precision 
Recall curve (AUPRC), and F1 score, which were calculated as ex-
plained below:

=
+

Precision
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TP FP

=
+

Recall (also known as Sensitivity)
TP

TP FN

=
+

F1
2*Precision*Recall
Precision Recall

=
+

1 Specificity
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TN FP

Where TP represents the number of ESIs/DSIs identified correctly, TN 
represents the number of non-ESIs/non-DSIs identified correctly, FN 
denotes the number of undetected ESIs/DSIs by prediction, FP de-
notes the number of non-ESIs/non-DSIs mis-identified as ESIs/DSIs 
by prediction.

ROC curve presents the effectiveness of models on a data set by 
showing sensitivity and specificity using different thresholds, with 
the “Sensitivity” on the y-axis and “1-Specificity” on the x-axis [23]. 
PR curve takes “Precision” as the y-axis and “Recall/Sensitivity” as 
the x-axis. F1 score is defined as the harmonic average of “Precision” 
and “Recall”, with the threshold 0.5 of prediction score used to de-
fine TP.

2.3. Model implementation and hyperparameters

DeepUSI was developed based on CNN framework to recognize 
substrates of E3 ubiquitin ligases and deubiquitinases, which was 
implemented using the DeepPurpose library [24]. Hyperparameters 
are critical for machine learning model training, in which epoch is 
the most important one [25]. To determine the appropriate number 
of epochs, repeated experiments were carried out using datasets 
with different proportions of positive and negative samples. It was 
shown that both AUROC value (Fig. S1A) and cross-entropy loss (Fig. 
S1B) could converge on the validation set within 20 epochs. Thus, 20 
epochs for model training were applied in the following analyses. 
Moreover, an 'early stop' strategy was employed, in which the model 
with the best performance (based on the validation set) within all 
iterations will be selected to prevent overfitting due to too many 
iterations.

In addition, we used 0.001 as the learning rate and 128 as the 
batch size, with Adam method used to optimize the gradient des-
cent, according to the literature experience. Moreover, we used 
dropout regularization to reduce overfitting with 0.1 as drop rate in 
the neutral network of decoder. More hyperparameters are listed in 
Supplementary Table 1.

2.4. Proportion allocation and random sampling

The proportion of positive and negative samples is one of the 
important issues for classification, which is often overlooked. When 
training data were imbalanced, the developed model could be likely 
biased towards to the categories with larger number of samples. Our 
data sets were found to be imbalanced due to much more negative 
samples for ESIs (Supplementary Table 2a). To systematically explore 
what proportion of positive and negative training samples could lead 
to an optimal prediction performance, we tested six different pro-
portions of negative samples with the total ESIs (1:1, 1:2, 1:3, 1:4, 1:5 
and all negative samples included). Followingly, each proportion of 
positive and negative samples were divided with a ratio of 7:1:2 for 
training, internal validation, and internal testing, respectively. We 
found that different proportions of positive and negative samples 
have little effect on AUROC, whereas it showed a significant impact 
on the PR curve and F1 score, which were higher (indicating a better 
prediction precision) when the proportion is closer to 1:1 (Fig. S1C).

To evaluate the impact of random sampling of negative samples, 
1: 1 random sampling were also conducted for both ESI (Fig. S2A) 
and DSI (Fig. S2B) negative samples. As expected, random sampling 
of negative samples has little impact on model performance (Fig. S2). 
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Together, our evaluation results suggested that when a model 
trained with a balanced proportion of positive and negative samples, 
it can better fit the characteristics of different classification.

2.5. Performance evaluation by cross validation and an independent 
dataset

To evaluate the predictive performance of our models, cross va-
lidation was applied to the models trained with the balanced dataset 
(positive: negative =1:1) and imbalanced dataset (all negative data 
included) for both ESIs (Supplementary Table 2b) and DSIs 
(Supplementary Table 2c) modeling. Ten-fold cross validation was 
used to obtain the final ESI and DSI prediction model, while five-fold 
cross validation was also calculated for comparing the reported 
performance with the published methods [10,26] (Fig. S3A-B). Fur-
thermore, to evaluate the generalization performance, both models, 
trained using the balanced and the imbalanced dataset by ten-fold 
cross validation respectively, were tested on an independent dataset 
for further comparison (Supplementary Table 2d-e). Although both 
models showed little difference of AUROC in the original dataset, the 
ESI model trained using the balanced dataset showed a better 
AUROC in the independent dataset (Fig. S3C-D). Therefore, the model 
trained using the balanced dataset by ten-fold cross validation was 
selected as the final prediction model.

2.6. Identifying the optimal threshold of prediction score

To identify the optimal threshold to stratify positive and negative 
interactions, Youden Index was applied. Briefly, it measures the 
difference between true positive rate (TPR) and false positive rate 
(FPR) for each threshold, and the threshold was selected as the "best 
cutoff", when TPR and FPR has the largest difference as shown 
below:  

index = argmax (TPR−FPR)                                                          

best_cutoff = thresholds [index]                                                   

Where ‘thresholds’ represents the list of different threshold values; 
TPR and FPR represents the true positive rate and false positive rate 

using each threshold value; index represents the index value cor-
responding to the maximum difference between TPR and FPR.

2.7. Predicting novel human ESIs and DSIs

Based on the final ESI/DSI models, we made a human proteome- 
scale predictions, with 11,159,034 possible substrate interactions for 
710 E3 ligases and 1,890,405 possible substrate interactions for 118 
DUBs tested respectively. Utilizing the aforementioned optimal 
thresholds, 6,238,978 ESIs and 1,178,694 DSIs predicted to be posi-
tive were. The predicted ESIs/DSIs with top 5% scores were defined 
as high confidence ones.

2.8. Pan-cancer analysis to identify cancer-associated UPS genes

By integrating data from the literature [17] and ubiquitination-re-
lated databases (iUUCD 2.0 [27], UbiNet 2.0 [7] and UbiBrowser 2.0 [9]), 
we collected a total of 819 ubiquitin-proteasome system (UPS) genes. 
Based on pan-cancer RNA-seq data [28] from TCGA, we compared the 
expression levels of these UPS genes between tumor and paired ad-
jacent normal tissues to identify UPS genes that were significantly up- 
regulated in tumor tissues. Additionally, based on RNA-seq profiles of 11 
normal tissues from the GTEx project [29], we investigated the ex-
pression levels of these UPS genes in a large set of normal tissues. 
Combining the analysis results, we screened the UPS genes that are 
significantly up-regulated in tumor tissue, and with no or low expres-
sion in normal tissues of the same tissue type in the GTEx dataset.

Next, we evaluated the effect of the above UPS genes on tumor 
cell proliferation by correlating the expression level of each UPS gene 
with the proliferation marker Ki-67 respectively [30]. In addition, for 
each TCGA cancer type (n = 15), we evaluated the prognostic value of 
these UPS genes, by associating gene expression levels with patient 
survival (including overall survival, disease-free interval, progres-
sion-free interval, and disease-specific survival). Finally, a list of 24 
candidate UPS genes was summarized by combing the results of the 
previous parts. These genes met the following conditions simulta-
neously: i) Significantly up-regulated in tumor tissue and with no or 
low expression in the corresponding normal tissue; ii) positively 
correlated with Ki-67 expression; iii) significantly associated with 
poor patient prognosis.

Fig. 1. Schematic of the DeepUSI framework. DeepUSI takes amino acid sequence as input feature, which was decomposed and one-hot encoded with an embedding layer for 
feeding into convolutions, followed by a global max pooling layer and a fully connected layer. Convolution operations were performed three times to extract features. The neutral 
network with dropout was used to generate the final USI (ESI/DSI) prediction score based on the pair of embeddings of input proteins.
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3. Results and discussion

3.1. DeepUSI framework

As one of the most known deep learning frameworks, CNN 
(convolutional neural network) could extract features from biolo-
gical sequences efficiently and have been successfully applied in 
DNA and protein sequence-based applications [31,32]. Thus, we 

developed DeepUSI based on CNN framework to recognize sub-
strates of E3 ubiquitin ligases and deubiquitinases. A pair of protein 
amino acid sequences were used as input, representing an E3/DUB 
and a protein of interest respectively. Each amino acid sequence was 
decomposed to individual character and one-hot encoded with an 
embedding layer, which were then fed into CNN convolutions. Fol-
lowingly, the pair of generated latent vectors from input protein 
sequences were concatenated and fed into a fully-connected neutral 

Fig. 2. Flow chart of collection and processing for GSP datasets. Data sources, number of entries, and subsequent use were shown in this figure. Data types were indicated by 
different colors.

Fig. 3. Comparison with existing models. A. Performance comparison between UbiBrowser and ESINet based on cross validation using training dataset, and independent test 
using external dataset (datasets explained in Fig. 2). B-C. ROC curves showing the performance of DeepESI (B) and DeepDSI (C) evaluated by five-fold cross validation (training 
dataset). D-E. Venn diagrams showing the relationship of ESIs (D) and DSIs (E) identified by DeepUSI and UbiBrowser based on the corresponding independent test dataset.
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network, which output was a prediction score (between 0 and 1) for 
the likelihood to be an ESI or DSI (Fig. 1).

To help building models with more power, we integrated mul-
tiple datasets and constructed the largest ESI and DSI gold standard 
positive (GSP) datasets by far based on our knowledge (see Material 
and methods 2.1). There were 2854 ESIs and 864 DSIs collected in 
total for model training, while 628 additional ESIs and 504 addi-
tional DSIs were used as independent datasets to test the general-
ization performance of DeepESI and DeepDSI respectively (Fig. 2).

3.2. Comparison with existing prediction models

In comparison with the published prediction models [9,10], both 
DeepESI and DeepDSI showed a better AUROC than their reported 
performance metrics (Fig. 3A), by both cross validation (training 
dataset, Fig. 3B-C) and external validation using respective in-
dependent test dataset (Fig. S3C-D). Furthermore, we utilized the 
independent test datasets (Fig. 1) for a direct comparison. Based on 
our proteome-scale predictions (see Material and methods 2.7) and 
proteome-wide predictions from UbiBrowser (top 20% scores), 116 
out of 628 (18.47%) ESIs in the independent test dataset were suc-
cessfully predicted by both DeepESI and UbiBrowser, and DeepESI 
strikingly identified 262 (42.52%) additional true ESIs compared 
with only 45 (7.2%) additional true ESIs identified by UbiBrowser 
(Fig. 3D). A higher proportion of true DSIs (186 out of 504, 36.9%) 

were identified by DeepDSI and UbiBrowser in common, while si-
milar portions of specific DSIs (100 vs 73, i.e. 19.84% vs 14.48%) were 
identified respectively (Fig. 3E). The improved performance of Dee-
pUSI could be due to our design based on CNN models, which mined 
and utilized global sequence information (determining protein 
structure and function) in comparison with classical machine 
learning methods. Additionally, the most comprehensive gold stan-
dard datasets we collected by far may help model training.

We continued the comparison using an E3 ligase with biological 
implications on its potential substrates. TRAIP is an E3 ubiquitin li-
gase and well-known as a key regulator of interstrand cross-link 
repair, protecting genome stability in response to replication stress 
[33]. There were 695 high-confidence TRAIP substrates predicted by 
DeepUSI and 317 predicted by UbiBrowser, in which 52 predicted 
substrates were in common. Gene ontology analysis [34] identified 8 
out of 52 (15.4%) common substrates were in the cellular response to 
DNA damage stimulus pathway (GO:0006974) with a statistical en-
richment (adjusted P = 9.25E-08), including tumor suppressor gene 
TP53 [35] (Supplementary Table 3a). Moreover, 35 out of 643 Dee-
pUSI-specific substrates (5.4%) were found to be in the same 
pathway (Supplementary Table 3b) with a statistical enrichment as 
well (adjusted P = 4.02E-19). However, only 5 out of 265 UbiBrowser- 
specific substrates (1.9%) were identified to be in this pathway 
(Supplementary Table 3c) with no statistical enrichment (adjusted 
P = 0.078). Therefore, to some extent, it indicates that the substrates 

Fig. 4. The workflow of pan-cancer analysis of 819 UPS genes. After data collection and preprocessing, pan-cancer functional analysis identified 24 cancer-associated UPS genes by 
applying multiple filters. Substrate analysis by DeepUSI for 22 E3s and DUBs provide candidates for further investigation, including prognostic association, targets of FDA approved 
drugs, and cancer-related genes.
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predicted by DeepUSI could be more consistent with its corre-
sponding ubiquitin enzymes regarding biological functions.

3.3. Key UPS genes screened by pan-cancer analysis

To identify the UPS genes associated with tumorigenesis and 
cancer development, we systematically analyzed 819 UPS genes in 
15 cancer types using published TCGA cancer datasets and GTEx 
datasets for matched normal tissue (See Material and methods 2.8 
and Fig. 4). As a result, a list of 24 potential cancer-associated UPS 
genes were identified, with the following criteria simultaneously 
met in at least two cancer types: i) significantly up-regulated in 
tumors, with no expression or low expression in matched normal 
tissues; ii) positively correlated with expression of Ki-67, a cell 
proliferation marker; 3) high-expression was significantly associated 
with poor patient prognosis. Among these 24 cancer-associated UPS 
candidate genes (Fig. 5), 14 E3s and two DUBs have known substrates 
with experimental evidence, confirming the ability to induce de-
gradation of substrate proteins. However, there are six E3s without 
known substrates reported, which could therefore benefit from 

predicted substrates for further experimental validation and in-
vestigation.

Next, to reveal substrates with functional implications, we per-
formed pan-cancer prognostic analysis for these known/predicted 
substrates. Among 160 known substrates of 16 cancer-associated 
UPS candidate genes (14 E3s and 2 DUBs), 59 substrates were found 
to be statistically associated with tumor prognosis in the opposite 
direction to E3 in the same cancer type, while 6 substrates statisti-
cally associated with tumor prognosis in the same direction as DUB 
in the same cancer type, which implied their prognostic significance 
may be regulated through ubiquitination (Supplementary Table 4a). 
In total, there are 60 pairs of ESIs and 6 DSIs between these sub-
strates and UPS genes, in which 46 ESIs and 4 DSIs were predicted by 
DeepUSI. Among these identified substrates with functional im-
plications, five proteins (DNMT1, ESR1, ICAM1, IL3RA, PGR) were 
found to be targets of FDA approved drugs based on the DrugBank 
knowledgebase [36]. For example, E3 ligase UHRF1, and its substrate 
DNMT1, were reported to have a coordinated function in main-
taining DNA methylation in cells [37]. DNMT1 was also found to be 
associated with patient outcome in multiple malignant tumors in-
cluding triple-negative breast cancer [38], pancreatic cancer [39], 

Fig. 5. Key UPS genes identified by pan-cancer analysis. The color of each cell indicates the expression level of the UPS gene in GTEx normal tissues. "+ " indicates a gene 
significantly up-regulated in the tumor tissue for a specified cancer type, while "-" indicates significantly down-regulated gene. "Pos" indicates a gene showing significant positive 
correlation with the expression of Ki-67 for a specified cancer type. "Good" indicates a gene associated with better prognosis for a specified cancer type, while "Poor" indicates 
association with poor prognosis. The histogram on the right shows the distribution of expression levels of each gene in 11 GTEx normal tissues. The upper histogram shows the 
distribution of expression levels of 24 UPS genes in each normal tissue. The multi-colored annotation bars in the left panel indicate a gene is: a UPS component, with a known 
substrate, tumor driver gene (oncogene or tumor suppressor gene), essential gene, with available drugs.
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and gastric cancer [40]. Therefore, its approved target therapy pro-
cainamide, used to treat ventricular arrhythmias, might be a good 
candidate for drug repurposing in cancer research.

Moreover, there are 452 novel substrates with prognostic asso-
ciation identified for these 16 UPS genes by DeepUSI (Supplementary 
Table 4b). Within these novel substrates, 42 substrates have FDA- 
approved drugs with other indications. Moreover, 21 out of these 42 
substrates are known tumor suppressors or oncogenes, indicating 
the potential of drug repurposing in cancer.

Lastly, for the remaining six cancer-associated E3 candidates 
without known substrates, we applied the same strategy and iden-
tified 361 novel substrates (36 have known targeted drugs, 17 known 
cancer-related genes) with functional implications by DeepUSI and 
prognostic analysis (Supplementary Table 4c), which provides a va-
luable catalog of candidate substrates for future investigation.

4. Conclusions

Ubiquitination is an important type of post-translational mod-
ifications required by many cellular processes [41], and it is essential 
to recognize the substrates of human E3s and DUBs. Here, we de-
veloped DeepESI for ESI prediction and DeepDSI for DSI prediction, 
by a deep learning-based approach integrating experimentally vali-
dated ESIs and DSIs, to make full use of the information contained in 
global protein sequences. Compared with existing prediction 
methods, DeepUSI showed a better performance based on amino 
acid sequence and convolutional neural network, providing new 
insights for E3 and DUB substrate recognition.

Moreover, the predicted list of ESIs and DSIs provides a rich re-
source for future investigation of ubiquitination networks. Through a 
pan-cancer functional analysis of human E3s and DUBs, 24 ubiqui-
tination-related genes were identified with a potential key role in 
tumorigenesis and cancer development. Further prognostic analysis 
of their known and DeepUSI-predicted substrates revealed a list of 
actionable targets with potential drug repurposing opportunities in 
cancer.
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