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On the evaluation of hydrogen 
evolution reaction performance 
of metal‑nitrogen‑doped carbon 
electrocatalysts using machine 
learning technique
Alireza Baghban1*, Sajjad Habibzadeh1,2* & Farzin Zokaee Ashtiani3

Single‑atom catalysts (SACs) introduce as a promising category of electrocatalysts, especially in the 
water‑splitting process. Recent studies have exhibited that nitrogen‑doped carbon‑based SACs can 
act as a great HER electrocatalyst. In this regard, Adaptive Neuro‑Fuzzy Inference optimized by Gray 
Wolf Optimization (GWO) method was used to predict hydrogen adsorption energy (ΔG) obtained 
from density functional theory (DFT) for single transition‑metal atoms including Sc, Ti, V, Cr, Mn, 
Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, and Au embedded in 
N‑doped carbon of different sizes. Various descriptors such as the covalent radius, Zunger radius of the 
atomic d‑orbital, the formation energy of the single‑atom site, ionization energy, electronegativity, 
the d‑band center from − 6 to 6 eV, number of valence electrons, Bader charge, number of occupied 
d states from 0 to − 2 eV, and number of unoccupied d states from 0 to 2 eV were chosen as input 
parameters based on sensitivity analysis. The R‑squared and MSE of the developed model were 0.967 
and 0.029, respectively, confirming its great accuracy in determining hydrogen adsorption energy of 
metal/NC electrocatalysts.

Hydrogen has been treated as a renewable energy resource, diminishes fossil resource consumption, and cop-
ing with global  warming1,2. Water splitting is a competent technique to produce  hydrogen3. It exploits renew-
able resources to provide  electricity4,5. This process is basically performed in acidic and alkaline solutions. The 
reported reaction rate of the HER in acidic solutions is approximately 2–3 orders of magnitude higher than that 
in alkaline  solutions6,7. Researchers and experimentalists have primarily investigated acidic HER in terms of 
theoretical and experiments, but the energetics and kinetics aspects of alkaline HER, especially in computational 
chemistry, have been  neglected8. Hence developing design principles for alkaline HER electrocatalysts has been 
a challenging subject in recent  years8.

However, to employ water splitting, it is required to tackle a number of challenges, such as finding an abun-
dant, affordable, and stable catalyst for use in place of effective hydrogen evolution reaction (HER) catalysts, such 
as precious metals (e.g., Pt)8–11. Metal compounds, including sulfides, phosphides, and nitrides, have recently 
been found to be promising in  HER12–18. Moreover, research has shown the viable catalytic performance of 
two-dimensional substances, including graphene-supported  metals19–22 and the dichalcogenides of transition 
 metals23–27. Graphene-supported single-atom catalyst (SAC) transition metals enjoy significant advantages, 
including full metal utilization, large chemical property turnability, and significant activity. Graphene serves as 
a substrate of high conductivity and stability and provides a great surface area for the support of single  atoms28.

So far, remarkable studies have been carried out in designing advanced non-noble metal catalysts to substitute 
noble metal-based catalysts such as Pt or Ru-based  catalysts29–31. These researches introduced some structures 
with heteroatoms (i.e., N, P, S, or B) doped carbon materials as one of the most promising substitutes for the HER 
process, owning their remarkable features such as low cost, high activity, and robust stability.
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For example, it is possible to dope nitrogen to tune graphene further and achieve enhanced performance. 
In general, single atoms appear in the vacancies of N-doped or pristine graphene support. As many as three or 
four M–N or M–C covalent bonds may stabilize such  structures32,33. A large number of studies investigated and 
characterized single atoms in different areas (e.g., HER); however, their catalytic performance and design fac-
tors are yet to be adequately clarified. It is believed that SAC performance is dependent on the transfer of charge 
between the metals of atomic dispersion and substrates and the chemical  bonding34–36.

Researchers have applied several techniques, such as SAC element change, SAC coordination environment 
alternation, and the S, P, and N doping of the substrate, so that SAC catalytic performance could be  tuned37. 
Apart from doping graphene with non-metals, changing the size of the substrate (from a two-dimensional peri-
odic structure into graphene nano-molecules with different sizes) can improve the tuning controllability of the 
electronic structure of the substrate. Furthermore, research has shown that macrocycle single atoms have high 
stability and may exhibit high molecular catalytic  activity38,39. The use of the electronic structure of the substrate 
to modular SAC properties is an efficient method. Thus, the present study adopted it to evaluate SACs in terms 
of HER performance by transforming a substrate of metallic graphene into a nano- or macro-cyclic substrate 
with molecule-like states.

The quantum chemistry calculation is a powerful technique to investigate theoretically chemical phenom-
ena like reaction, adsorption/desorption, electrical and thermodynamic properties of chemical  structures40–43. 
Moreover, machine learning approaches have recently been applied in different areas such as chemistry, catalyst, 
energy, chemical processes, etc.44–49. Support vector machine (SVM)50, artificial neural network (ANN)51,52, fuzzy 
logic system (FLS)53, and adaptive neuro-fuzzy inference system (ANFIS)54,55 are the most familiar categories of 
machine learning which can be optimized by different optimization algorithms such as particle swarm optimi-
zation (PSO)48, genetic algorithm (GA)56, gray wolf optimization (GWO)46, imperialist competitive algorithm 
(ICA)57, teaching learning-based optimization (TLBO)58, etc. In the present contribution, we predict hydrogen 
adsorption energy (ΔG) obtained from density functional theory (DFT) for single transition-metal atoms embed-
ded in N-doped nanographene of different sizes using optimized GWO-ANFIS approach.

Computational methods
Density functional theory (DFT). The present study employed the Vienna ab inito simulation package 
(VASP) to carry out the spin-polarized calculations of density functional theory (DFT). The Perdew–Burke–
Ernzerhof (PBE) generalized gradient approximation (GGA) functional was exploited to represent the elec-
tron exchange–correlation59. Also, the projector-augmented wave (PAW) technique was used to describe the 
interaction of ions with electrons. The present work set the plane-wave cutoff to 400 eV, performing geometry 
relaxation using a conjugate gradient technique until the interatomic forces fell below 0.025 eV/A. Moreover, 
the Grimme’s semi-empirical dispersion-corrected density functional theory (DFT-D2) was applied to consider 
weak interactions with great accuracy.

Graphene supper cells of 5 × 6 sizes with fifty-four C atoms were used to model N-doped graphene-supported 
SACs. A 20-A vacuum was applied to the two-dimensional monolayer of N-doped graphene in the z-direction. 
It was periodic on the XY plane. Also, a (3 × 3 × 1) Monkhorst–Pack k-point mesh was used to sample the 
Brillouin zone.

The modeling of N-doped nanographene-supported SACs (various nanographene sizes) was carried out 
within 30 × 30 × 30 A cubes, where a SAC was situated at the center of a nanographene. As shown in Fig. 1, the 
numbers of C atoms in the small, medium, and large nanographene were 22, 56, and 102, respectively. Also, the 
k space was sampled using the Γ point.

T h e  p r e s e n t  s t u d y  o b t a i n e d  t h e  a d s o r p t i o n  e n e r g y  o f  h y d r o g e n  a s 
�EH = E

(

catalyst +H
)

− E
(

catalyst
)

− 1
2E(H2) , in which the term E

(

catalyst +H
)

 denotes the total of the 
catalyst energy and the energy of a H atom that is adsorbed, the term E

(

catalyst
)

 stands for the total catalyst 
energy, and the term E(H2) is the total gaseous  H2 molecule energy. Moreover, for the adsorption of H, the Gibbs 
free energy was calculated as �GH = �EH +�EZPE − T�SH , in which �EZPE denotes the zero-point energy 

Figure 1.  Structures of metal/N-doped carbon of different sizes: Key: C, purple; H, white; N, orange; metal, 
pink.
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difference of the adsorbed H atom and the H atom of the gaseous  H2 molecule, while �SH stands for the differ-
ence in entropy between the adsorbed H and gaseous ½H2 in standard conditions. Furthermore, the vibrational 
frequencies were summed up over normal models to obtain the zero-point energy as EZPE =

1

2

∑

hω.
The NIST database was utilized to obtain the free  H2 molecule entropy at 1 atm and 298.15  K60. The pre-

sent work derived the SAC formation energy as Ef = E
(

catalyst
)

− E(substrate)− E(TM) , in which the term 
E(substrate) denotes the total N-doped graphene energy, while E(TM) stands for the total transition metal atom 
energy. The formation is desirable when the formation energy is negative.

Adaptive neuro‑fuzzy inference system (ANFIS). The adaptive neuro-fuzzy inference system (ANFIS) 
was developed by  Jang61. It integrates the capabilities of the ANN, and FIS approaches to cope with the disadvan-
tages of individual ANN and FIS, e.g., membership function definition sensitivity and overfitting. The Sugeno 
FIS is the most commonly used technique in ANFIS training. It determines the model parameters by using a 
robust learning  framework62. In general, the structure of ANFIS involves five layers. The first layer applies the 
generalized Gaussian membership function μ to the inputs in order to generate the output as:

In which Ai and Bi are the membership values, while

where pi and σi represent the sets of hypothesis parameters. Then, the node output in the second layer is obtained 
as:

Subsequently, the third layer normalizes the output of the previous layer as:

The fourth layer subjects the output of the previous layer to adaptive nodes:

in which p, q, and r stand for the consequent parameters of node i. Eventually, the model output is obtained as:

The membership function parameters should be optimally determined during the training process. There are 
various optimization algorithms such as genetic algorithm (GA), particle swarm optimization (PSO), imperialist 
competitive algorithm (ICA), gray wolf optimization (GWO), etc., which can be coupled with ANFIS to find the 
best tuning parameters. Consequently, for complex problems, especially in quantum chemistry and molecular 
modeling, this approach can help chemists to have a simple-to-apply model by using the combination of learning, 
adaptability and nonlinear problem-solving features of artificial neural networks plus the significant notions of 
approximate reasoning and treatment of information suggested by the fuzzy set theory.

Gray wolf optimization. Mirjalili et al. developed the gray wolf optimization (GWO) algorithm with a 
hierarchical architecture based on the social hunting behavior of  wolves63. GWO has a population-based frame-
work and identifies the optimal solution straightforwardly. It incorporates four groups of wolves, including 
alpha, beta, delta, and omega wolves, for hierarchical leadership simulation. Prey search, besiege, and hunt are 
the primary hunting steps. Alpha wolves can be either male or female and serve as the leaders. They manage 
the herd in, for example, resting and hunting. The beta wolves provide help to the alpha wolves with decision-
making and may be promoted to the alpha group. The delta group involves baby-care, hunter, and older wolves. 
The omega wolves have the lowest rank of the hierarchical structure. They do not contribute to decision-making.

Alpha, beta, and delta wolves are employed to perform optimization. An alpha wolf is selected to lead the 
algorithm, and a beta wolf and a delta wolf are selected to contribute to the leadership. They are followed by the 
remaining wolves of the herd. The prey position and wolf position are mathematically formulated as:

and

Respectively, where −→A  and −→B  denote the coefficient vectors, −→X  is the wolf position vector, and −→X p denotes the 
prey position vector. Also, t represents the iteration number. Vectors A and C are found as:

Out1i = µAi(x), i = 1, 2

(1)Out1i = µBi(x), i = 3, 4.

(2)µ(x) = e
−(x−

pi
σi
)
2

,

(3)Out2i = µAi(x)× µBi−2

(

y
)

.
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∑2
i=1 ωi

.
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In which the a-components undergo a linear reduction from 2 to 0 in iterations and the random vectors −→r 1 
and −→r 2 vary from 0 to 1. The position of the prey is approximated by the alpha, beta, and delta wolves, with the 
remaining wolves randomly updating their positions around the prey. The wolves besiege the prey, and the alpha 
wolf makes an attack. The solutions are evaluated in suitability, selecting the top three solutions are the alpha, 
beta, and delta wolves, respectively. This process continues to be iterated, updating the positions of the wolves 
until the discontinuance criterion has been met. The final alpha wolf position is selected as the optimal solution.

Results and discussion
Screening N‑doped graphene‑supported TM as HER SACS. The first HER step is the Volmer step 
that results in the adsorption of  H64,65. The Gibbs free energy in the adsorption of hydrogen is a good HER 
descriptive factor in a large number of  catalysts66. Therefore, the adsorption of H was evaluated at N-doped 
graphene-supported 3d, 4d, and 5d single TM atoms. Figure 2 shows the optimized adsorption geometries of 
H at single graphene-supported TM atoms. It was observed that H was properly adsorbed onto the top of TM 
atoms. In addition, it was discovered that TM atoms had in-plane positions on graphene before and after hydro-
gen adsorption for most SACs (e.g., Co-NG). Moreover, both early and late transition metals, in particular the 
elements of groups 3 and 12, had out-of-plane positions (e.g., Sc-NG and Zn-NG). An explanation is the greater 
early TM radius and lower nitrogen-metal interaction for NG and the late TM.

Figure 3 depicts the Gibbs free energy results for the adsorption of H. As can be seen, the largest negative 
adsorption energy occurs on the early transition metals. It becomes positive (weaker) from the left side to the 
right side. The H adsorption energy of group 10 is dramatically higher than that of group 9, leading to signifi-
cantly undesirable adsorption onto the transition metal atoms of groups 10 and 11. Also, H adsorption increases 
for atoms in a lower position in each group (Mo > Cr, for example). This is specifically the case with groups 3–9. 
Research has reported the same trend for other SAC  systems67.

(9)−→
A = 2−→a .−→r 1 −

−→a ,

(10)−→
C = 2−→r 2.

Figure 2.  Optimized structures of H adsorption on the metal/NC: C, purple; H, white; N, orange; Co, green; Sc, 
pink; Zn, blue.
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Figure 3.  Comparison of hydrogen adsorption energy different metal/NC structures.
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The calculated free energy results agree with earlier SAC  works36,37, and the present study sampled a larger 
number of elements. It should be noted that the free energy values could be dependent on the functional (Y@N4 
SAC, for example)36. The present study, however, focuses on overall trends. N-doped graphene-supported Co has 
been known as the most efficient catalyst in HER based on the Gibbs free energy. Several works experimentally 
demonstrated that it had significant HER  performance35,68. As a result, the proposed computational technique 
is verified. Furthermore, Ir, Rh, Fe, V, and SC are assumed to have good catalytic activity in NG as their Gibbs’s 
free energy values are almost zero. Cd was not considered an efficient catalyst as it has a dramatically smaller 
negative SAC formation energy and thus lower stability than others.

HER activity turning through graphene size. HER process in acid can be performed in three steps, as 
shown below.

where  H* and H∗
2  stand for the hydrogen atom and molecule adsorbed onto a surface atom, respectively. As 

seen in Eqs. (11) to (12), one hydrogen from the hydronium molecule is adsorbed on the catalyst surface, and 
radical hydrogen is formed. From the Tafel reaction, a hydrogen molecule can be created from the reaction of 
two radical hydrogens.

The rate‐determining step (RDS) in HER process is the adsorption of hydrogen in Volmer–Heyrovsky path-
way, and the relative importance of the energy barrier in the Volmer reaction is much higher than the Heyrovsky 
reaction.

According to Fig. 3, the Gibbs free energy values of elements can have significant differences (by more than 
3 eV for TM SAC on NG). The present study systematically explored the effects of the graphene size on the Gibbs 
free energy to be further turned toward zero. Three hydrogen-terminated N-doped nanographene structures 
with successively smaller sizes were employed, including small twenty-two C atoms), medium (fifty-six C atoms), 
and large (102 C atoms), as shown in Fig. 1. The SACs supported by N-doped nanographene of the three sizes 
along with those in the extended N-doped graphene, are illustrated in Fig. 4. It should be noted that solely the 
SACs with Gibbs free energy values of − 0.5 to 0.5 eV are illustrated. The nanographene of large and medium 
sizes showed no significant changes, while small nanographene exhibited a largely weakened H binding (by 
0.1–0.3 eV). As mentioned, the exchange current density j0 may be altered (by a magnitude of order three) due to 
a 0.3 eV difference in the Gibbs free  energy24,69. The embedment of extended NGs, e.g., Rh, Tc, V, and Ti, in small 
N-doped nanographene is expected to improve their HER performance for SACs with hydrogen over-binding 
(i.e., a larger negative Gibbs free energy value). This is a macrocyclic ligand of the SAC center. In particular, it 
was observed that the Gibbs free energy of small N-doped nanographene-embedded V was − 0.03. This value is 
closer to zero compared to other SACs that have been investigated (e.g., Co-NG). It should be mentioned that 
Tc is a radioactive substance and was incorporated into the study for solely comparison purposes.

In order to realize the origin of the weaker adsorption of H onto small N-doped nanographene-embedded 
SACs, the d-state centers were examined, finding a downward change as compared to several two-dimensional 
graphene-embedded SACs.

(11)H3O
+ + e → H∗ +H2O(Volmer reaction),
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Figure 4.  Comparison of hydrogen adsorption energy for different sizes of metal/NC structure.
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Implementation of GWO‑ANFIS model. In this study, the ANFIS approach has been applied to pre-
dict hydrogen adsorption energy of different metals in SACs as an essential step in HER. First of all, sensitivity 
 analysis62 based on Fig. 5 has been carried out to identify the most important descriptors as models’ inputs. 
These descriptors were the covalent radius  [rcov (A)], Zunger radius of the atomic d-orbital  [rd (A)], the forma-
tion energy of the single-atom site  [Ef (eV/atom)], ionization energy (IE), electronegativity (EN), the d-band 
center from − 6 to 6 eV [εd (eV)], number of valence electrons (Π), Bader charge (q €), number of occupied 
d states from 0 to − 2 eV  (docc), and number of unoccupied d states from 0 to 2 eV  (duocc). As can be seen, the 
number of valence electrons and the covalent radius are the most effective parameters with a relevancy of 0.74.

We have used 5 clusters and Gaussian membership functions in the suggested ANFIS model. Accordingly, 110 
membership functions parameters should be optimally determined. In this regard, we have used GWO approach 
to determine optimum membership function parameters. Figure 6 indicated the root mean squared error (RMSE) 
between the output and experimental values of adsorption energy during 1000 iterations.

In addition, the optimized membership function parameters for all inputs have been indicated in Fig. 7 for 
different clusters.
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Figure 5.  Relevance factor of different input variables.
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Figure 7.  Optimum membership function parameters of the suggested GWO-ANFIS.
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Different statistical analyses such as R-squared  (R2), percentage of mean relative error (MRE%), mean squared 
error (MSE), root mean squared error (RMSE), and standard deviation (STD) have been reported in Table 1. 
These values confirm great accuracy of developed GWO-ANFIS model.

In Fig. 8, the adsorption energies from the GWO-ANFIS model and experiment were displayed simulta-
neously against the data index. It can be observed that the present model is greatly capable of forecasting the 
hydrogen adsorption energies.

Assessing the proximity of GWO-ANFIS values to actual was carried out by investigating the coefficient of 
determination  (R2). This parameter varies between 0 and 1, which closeness to unity denotes its high accuracy. 
Figure 9 displays the cross illustration of actual and GWO-ANFIS outputs. The main portion of adsorption energy 
values was accumulated around the bisector line, and the obtained  R2 values for training and testing stages of the 
GWO-ANFIS were 0.989 and 0.967, respectively; thus, approving the excellent fitness of the GWO-SVM model.

The relative deviation percentage for the suggested GWO-ANFIS is shown in Fig. 10. The error percentage 
values were mainly within the 20% band, representing the satisfactory accuracy of the model.

In order to find outliers, the Williams plot has been applied and illustrated in Fig. 11. It can be evidently 
observed the most of the adsorption energy values except 2 points, located in the range of ±3 standard residual 
values, signifying that as well as being satisfactory in statistical analysis, the GWO-ANFIS model could also be 
used in different conditions.

Conclusions
In the current study, Adaptive Neuro-Fuzzy Inference optimized by Gray Wolf Optimization (GWO) method 
was used to predict hydrogen adsorption energy (ΔG ) obtained from density functional theory (DFT) for single 
transition-metal atoms including Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, 
Ta, W, Re, Os, Ir, Pt, and Au embedded in N-doped carbon of different sizes. The great accuracy of developed 
GWO-ANFIS with 5 clusters was confirmed by different statistical approaches such as the R-squared and MSE 
of developed models were 0.967 and 0.029, respectively. In addition, it was found from the sensitivity analysis 
that the number of valence electrons and the covalent radius is the most effective parameters with the relevancy 
of 0.74. Consequently, the proposed GWO-ANFIS can be used as a helpful approach to determine hydrogen 
adsorption energy of different metal/NC structures.

Figure 7.  (continued)
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Table 1.  Statistical analyses of GWO-ANFIS model.

Set R2 MRE (%) MSE RMSE STD

Train data 0.989 19.975 0.0124 0.1115 0.0743

Test data 0.967 41.238 0.0293 0.1711 0.1058

Total data 0.984 25.344 0.0167 0.1711 0.0859

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Train Exp. Train Output Test Exp. Test Output
H

yd
ro

ge
n 

A
ds

or
pt

io
n 

E
ne

rg
y 

(e
V

)

Data Index

Figure 8.  GWO-ANFIS versus experimental hydrogen adsorption energy.
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