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A growing body of evidence has indicated that high-fat diet-induced nonalcoholic fatty liver disease is usually accompanied by
oxidized low-density lipoprotein (ox-LDL) deposited in the liver. The current study aimed to investigate the effect of quercetin
on high-fat diet-induced ox-LDL accumulation in the liver and to explore the potential underlying mechanisms. The results
demonstrate that quercetin supplementation for 24 weeks significantly alleviated high-fat diet-induced liver damage and reduced
hepatic cholesterol and ox-LDL level. Quercetin notably inhibited both mRNA and protein expression of CD36 (reduced by 53%
and 71%, resp.) and MSRI (reduced by 25% and 45%, resp.), which were upregulated by high-fat diet. The expression of LC3II was
upregulated by 2.4 times whereas that of p62 and mTOR was downregulated by 57% and 63% by quercetin treatment. Therefore,
the significantly improved autophagy lysosomal degradation capacity for ox-LDL may be implicated in the hepatoprotective effect

of quercetin; scavenger receptors mediated ox-LDL uptake might also be involved.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD), one of the most
common causes of chronic liver disease, ranging from steato-
sis (simple fatty liver) to nonalcoholic steatohepatitis (NASH)
and to advanced fibrosis and cirrhosis, is determined by mul-
tiple factors or “hits” which may act in sequence or in parallel
[1]. It has been proven that lipid accumulation, inflammatory
process, and insulin resistance (IR) appear to be crucial in the
onset of NAFLD [2]; nevertheless, emerging findings pointed
out an important role for modified lipoprotein, especially
oxidized low-density lipoprotein (ox-LDL) [3]. While the key
role of ox-LDL in the etiology of atherosclerosis and coronary
artery disease has been extensively researched owning to its
implication in the formation of foam cells and macrophage

apoptosis [4], the potential pathological significance of ox-
LDL in NAFLD has not been clarified thus far [5].

Recently, Bieghs and his colleagues reported the presence
of bloated Kupfter cells (KCs) in hyperlipidemic mice fed
with a western diet [6, 7] and lysosomal trapping of ox-
LDL in KCs with concomitant hepatic inflammation in
Ldlr /" mice exposed to ox-LDL via tail vein injection [8];
nonalcoholic steatohepatitis in mice reduced with specific
immunization strategies against ox-LDL [3]. Therefore, it
has been considered that hepatic inflammatory response
attributed to trapped ox-LDL in lysosomes of KCs is mediated
by CD36 and SR-A (also known as macrophage scavenger
receptor 1, MSR1) [6], although deletion of CD36, MSRI, or
both did not completely abrogate foam cell formation in vitro
or in vivo.
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In addition to the evolved homeostatic mechanisms for
regulating transport and storage of ox-LDL, mobilization
of ox-LDL is also involved in cellular defenses against ox-
LDL toxicity. However, unlike acetylated LDL (acLDL) that
normally undergoes lysosomal hydrolysis resulting in its
accumulation in the cytoplasmic storage of cholesteryl esters,
ox-LDL is resistant to hydrolysis by lysosomal proteinases
and alters the activity of the ubiquitin-proteasome path-
way leading to its accumulation within macrophages [9].
Therefore, it has been proposed that autophagy provides a
possible alternate pathway for clearing aggregated ubiqui-
tinated proteins when the proteasome is impaired [10]. In
line with this view, Zhang et al. found that the autophagy
lysosome pathway was involved in the degradation of ox-
LDL in human vascular endothelial cells [11]. However, it
is still questionable whether autophagy lysosome pathway is
implicated in ox-LDL degradation in the liver and is involved
in the progression of NAFLD.

Quercetin is the most widely distributed flavonoids
occurring ubiquitously in plant-derived foods and accounts
for 60-75% of the total flavonol plus flavone intake [12-
15]. Quercetin has attracted increasing attention for its
broad spectrum of beneficial health effects against various
diseases. Growing experimental data have demonstrated that
quercetin could be explored as a potential candidate for
the prevention of NAFLD [16] since it has an important
role in maintaining homeostatic balance of redox status
[17-19], ameliorating inflammation and fibrosis [16, 20],
regulating the expression of lipid metabolism genes [21,
22], and improving liver integrity [23]. To the best of our
knowledge, however, little attention has been focused on the
effect of quercetin on the mobilization of ox-LDL mediated by
autophagy lysosomal pathway in a long-term high-fat diet-
(HFD-) induced mouse model. The ability of quercetin to
induce autophagy has been extensively studied in different
cancer models in vivo and in vitro [24-26]. Herein, we
investigated the potential protective role of quercetin on
HFD-induced liver damage by focusing on ox-LDL and
autophagy regulation.

2. Materials and Methods

2.1. Chemicals and Materials. Quercetin (>98%, HPLC) and
sodium dodecyl sulfate (SDS) were provided by Sigma-
Aldrich (St. Louis, Missouri, USA). Anti-CD36 rabbit poly-
clonal antibody (ab78054) and anti-LC3 A/B rabbit poly-
clonal antibody (ab58610) were obtained from Abcam (Mas-
sachusetts, USA). Anti-GAPDH rabbit polyclonal antibodies
were purchased from Boster Biological Technology, Ltd.
(Wuhan, China). Anti-MSR1 rabbit monoclonal antibody
(P21757) was obtained from Epitomics (Burlingame, CA,
USA). Anti-ox-LDL rabbit polyclonal antibodies (bs-8574R)
were provided by Biosynthesis Biotechnology CO., Ltd. (Bei-
jing, China). Anti-mTOR (7Cl10) rabbit monoclonal anti-
body (#2983), anti-SQSTM1/p62 rabbit polyclonal antibodies
(#5114), horseradish peroxidase- (HRP-) conjugated anti-
rabbit IgG (secondary antibody, #7074), and HRP-conjugated
anti-mouse IgG (secondary antibody, #7076) were obtained
from Cell Signal (Beverly, MA, USA). Western blotting
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detecting reagents (ECL) and reblot buffer were provided
by Chemicon (Temecula, CA, USA). Detection kits for total
cholesterol (TC) and triglyceride (TG), were purchased from
Biosino Biotechnology Co., Ltd. (Beijing, China). Other
chemicals and organic solvents were of analytical grade and
purchased from local reagent retailer.

2.2. Animal Treatment. Animals were cared for according
to the Guide for the Care and Use of Laboratory Animals
(Institute of Laboratory Animal Resources, Commission on
Life Sciences, National Research Council, 1996). Experiments
described in this study were approved by the Tongji Medical
College Council on Animal Care Committee. Forty-five
healthy male ApoE-knockout (C57BL/6] background) mice
weighing 16-18 g, purchased from Vital River Laboratory
Animal Technology Co., Ltd. (Beijing, China), were ran-
domly divided into three groups of fifteen animals each. The
three groups of animals were fed with normal chow diet
(ND group), HFD (containing 21% fat + 1.25% cholesterol,
HFD group) [27], and HFD plus quercetin (100 mg/kg-bw,
HFD + QR group), respectively. Meanwhile, fresh water was
provided ad libitum and body weight was monitored once a
week. Animals were kept on a regular 12:12 light dark cycle
at a controlled temperature (24 + 2°C) and relative humidity
(65-75%). The mice were sacrificed after overnight fasting.
Serum was collected from blood by centrifugation at 3500 g
for 10 min at 4°C (Eppendorf 5810R, Hamburg, Germany).
Fresh liver specimens were quickly weighted, frozen by liquid
nitrogen, and stored at —80°C for various assays.

2.3. Histological and Immunohistochemistry Analysis. Liver
tissues removed aseptically from the animals were fixed in
4% paraformaldehyde/phosphate-buffered saline, and then
the specimens were embedded in paraffin and cut into thin
slices (5 ym). The slices were stained with hematoxylin and
eosin (H&E) or incubated with anti-ox-LDL antibody (1:100
dilution) overnight at 4°C. Hepatic histopathological changes
were detected by light microscope. Immunostaining was
visualized with 3,3'-diaminobenzidine following the reaction
with corresponding secondary antibody at 1: 200 dilution for
1h.

2.4. Determination of Hepatic TC and TG. Hepatic TC and
TG content were determined according to a previously
described method [28]. Briefly, liver homogenates (10%)
were prepared with isopropanol and stewed for 48 h at 4°C.
Following centrifugation at 3000 rpm for 15min at 4°C, the
supernatants were collected to measure hepatic TC and TG
content by using commercial kits according to the manufac-
turer’s recommendations and the results were normalized to
total protein detected by the method of Lowry [29].

2.5. Real-Time Quantitative Polymerase Chain Reaction (PCR)
Analysis. Expression of mRNA was determined using real-
time reverse transcription polymerase chain reaction (RT-
PCR). Total RNA was extracted from liver tissue using the
Trizol reagent (Invitrogen, Carlsbad, CA, USA) according
to the manufacturers instructions. mRNA expressions of
the target genes were quantified by quantitative reverse
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transcriptase- (QRT-) PCR using the SYBR green-based kit
(TaKaRa BIO Inc., Dalian) with specific primers using an
RT-PCR machine (7900HT; Applied Biosystems, Forster, CA,
USA). The forward and reverse primers for CD36 were CGG
GCC ACG TAG AAA ACA CT and CAG CCA GGA CTG
CAC CAA TA, respectively. The primers of MSR1 were GAC
TTC GTC ATC CTG CTC AAT and GCT GTC GTT CTT
CTC ATC CTC. The primers of f-actin were TTC GTT
GCC GGT CCA CAC CC and GCT TTG CAC ATG CCG
GAG CC. The mRNA level of f-actin was quantified as
an endogenous control, and results were calculated by a
comparative 2~**“" method.

2.6. Western Blot Analysis. Mouse liver tissues were minced
and homogenized in radio-immunoprecipitation assay
(RIPA) lysis buffer (1% Triton X-100, 1% deoxycholate, and
0.1% sodium dodecyl sulfate (SDS)) containing 1% (v/v)
protease inhibitor phenylmethanesulfonyl fluoride (PMSF).
The homogenates were centrifuged at 10,000 g for 15min
at 4°C and protein concentrations were determined. Equal
amounts of protein extracts were mixed (3:1) with loading
buffer for electrophoresis in 10%-12% acrylamide SDS gels
and subsequently electroblotted to polyvinylidene fluoride
membrane (PVDF) (Millipore, MA, USA) by electrophoresis
(Bio-Rad, USA). Target proteins were probed with the
specific primary antibodies against the target protein and
then incubated with the species-specific second antibodies
conjugated to HRP. The chemiluminescence intensity of
membrane was subsequently detected by ECL Plus kit with
Western Blotting Detection System (Amersham Biosciences,
Little Chalford, UK), and optical densities of bands were
quantified by Gel Pro 3.0 software (Biometra, Goettingen,
Germany). Data were corrected to eliminate background
noise and standardized to GAPDH as optical density
(OD/mm?).

2.7. Statistical Analysis. All data were entered into Excel
and analyzed by SPSS 12.0 software package using one-way
analysis of variance test. The data were expressed as means +
SEM and were considered significantly different at P < 0.05
and P < 0.01.

3. Results

After 24 weeks of feeding, body weight and liver ratio to body
weight were recorded and the results are shown in Table 1.
HFD markedly affected final body weight and ratio of liver
to body weight in comparison with ND. However, quercetin
supplementation had no influence on body weight and liver
weight in comparison with HFD, suggesting that quercetin
consumption had no effect on body weight gain and ratio of
liver to body weight.

3.1. Effects of Quercetin on HED-Induced Pathological Changes
and Hepatic TC and TG Levels. H&E stained and anti-
ox-LDL immunostained liver tissue sections are shown in
Figure 1. Mice fed with an HFD for 24 weeks displayed
marked symptoms of hepatic fatty infiltration compared to

TaBLE 1: Effects of quercetin on body weight and liver ratio to body
weight in mice chronically fed with high-fat diet for 24 weeks.

ND HFD HFD + QR
Initial weight (g) 173+12 16.7+11 16.6 + 1.3
Final weight (g) 26.8+21 29.6+21° 303+19"
Liver to body weight ratio (%) 3.9+0.4 47+0.3" 4.8+05"

ND: ApoE™/™ mice fed with normal diet; HFD: ApoE/~) mice fed with
high-fat diet; and HFD + QR: ApoE(f/ ) mice fed with high-fat diet and
quercetin (100 mg/kg-bw). *P < 0.05 versus ND group (n = 12 in each
group).

ND-fed mice, but long-term dietary quercetin supplementa-
tion significantly alleviated these symptoms. Consistent with
histopathological examination, hepatic TC and TG levels also
increased in HFD-fed mice. Daily quercetin supplementation
reduced hepatic TC, but not TG, accumulation in HFD-fed
mice compared to mice receiving HFD alone.

Hepatic ox-LDL deposition was identified immuno-
histochemically with anti-ox-LDL antibody. As illustrated,
quercetin reduced hepatic ox-LDL deposition, indicating the
effects of quercetin on metabolism of ox-LDL. However,
no apparent difference was observed in ox-LDL-positive
staining between ND and HFD groups, although the amount
of lipid vacuoles in HFD group was more than that in
the ND group; similar results were observed with H&E
staining, which indicated that ox-LDL might contribute to
hepatic fatty infiltration. Distinct pathologic characteristics
and inconspicuous differences in ox-LDL level suggested that
hepatic ox-LDL accumulation and histopathological changes
induced by HFD are implicated in several processes, such as
uptake and/or degradation of ox-LDL.

3.2. Effect of Quercetin on Expression of Hepatic Scavenger
Receptors. To determine the protective role of quercetin on
exaggerated liver damage induced by HFD, we measured the
mRNA and protein expression of CD36 and MSRI, two main
scavenger receptors involved in ox-LDL uptake, by RT-PCR
and western blot analysis. In contrast to HFD-fed mice, mice
receiving daily quercetin supplementation had significantly
decreased mRNA and protein expression of both CD36 and
MSRI. These results indicated that quercetin might be a
promising inhibitor of scavenger receptors under an HFD
condition for relieving liver damage induced by excessive
ox-LDL accumulation. Nevertheless, the lower expression of
CD36 and MSRI1 and ox-LDL deposition in ND-fed mice
was comparable to that observed in HFD-fed mice. Thus, we
presumed that the liver damage induced by HFD not only is
involved in ox-LDL uptake but also may partially implicated
in ox-LDL degradation in liver tissue (Figure 2).

3.3. Quercetin Altered HFD-Induced Protein Expression of
LC3I1, p62, and mTOR. The amount of ox-LDL accumulation
observed in HFD-fed mice was comparable to that in ND-fed
mice, and to investigate this further, we examined autophagic
degradation of lipids, known as lipophagy, which served
as a possible alternate pathway for clearing lipoprotein.
Thus, the protein expression of autophagy marker protein,
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F1GURE L: Effects of quercetin on hepatic histological changes and hepatic lipid content in mice fed with high-fat diet. Fixed liver tissue sections
(three independent experiments) of mice (a) stained with H&E and (b) stained with anti-ox-LDL were observed under light microscope

(magnification 40x); (c) hepatic lipids levels. *P < 0.05 versus ND group, *

(n = 10 for hepatic lipids levels).

microtubule-associated protein 1, light chain 3 beta (LC3II), a
selective substrate of the autophagy autophagosome adaptor
p62 (also known as SQSTMI), and negative regulator of
autophagy-mammalian target of rapamycin (mTOR) were
analyzed by western blot. The normalized intensity ratio of
LC3II, p62, and mTOR to S-actin is summarized in Figure 3.
LC3II expression decreased in response to chronic HFD
consumption relative to ND group. However, the decreased
LC3II expression was effectively reversed by quercetin treat-
ment. These findings implied that autophagy dysfunction
was possibly due to long-term HFD-induced excessive

*P < 0.01 versus ND group, and P < 0.01 versus HFD group

ox-LDL accumulation and quercetin improved autophagic
flux by increasing the formation of autophagosomes. Simi-
larly, the expression of p62 was low in quercetin treatment
group, suggesting that more p62 protein was degraded most
likely owing to the increase in autophagic flux induced
by quercetin. Meanwhile, expression of mTOR, autophagy
negative regulatory protein, showed a similar trend as that
of p62. These results supported the view that quercetin
played an important role in autophagy regulation under
atherogenic HFD condition, presumably by inhibiting the
mTOR pathway.
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FIGURE 2: Effects of quercetin on the expression of CD36 and MSRI in the livers of mice fed with high-fat diet. Hepatic mRNA expression of
CD36 (a) and MSRI (b) was measured by RT-PCR. Protein levels of CD36 (c) and MSRI (d) were determined with western blot analysis. Bar
diagrams show densitometric data (c and d). Results expressed as mean + SEM. “P < 0.05 versus ND group, **P < 0.01 versus ND group,
*P < 0.05 versus HED group, and **P < 0.01 versus HED group (1 = 5 for RT-PCR in each group; # = 3 for others).

4. Discussion

Apolipoprotein E is required for normal catabolism and
clearance of lipoprotein constituents and acts as a ligand
for cell-surface LDL receptors. Therefore, apoE-knockout
mice (apoE(_/ 7y experience a severe, progressive form of
hypercholesterolemia, making them the most commonly
employed model for studying the adverse influence of choles-
terol on various body [30]. NAFLD, affecting up to a third
of the population in many developed countries [31], has
recently attracted considerable attention worldwide. An HFD
is widely used to induce hepatic steatosis and NASH in
experimental animals. Several studies, including our own,
have shown that long-term intake of HFD, which can induce
obesity and insulin resistance, induces NASH and liver
tumorigenesis in C57BL/6] mice [32].

Increasing amounts of data have shown that NAFLD
frequently coexists with metabolic syndrome such as obesity,

diabetes, atherosclerosis, and dyslipidemia [33-36]. There-
fore, apoE™/™ mice fed with HFD, the classical animal model
for atherosclerosis research, are often employed to explore the
mechanism of NAFLD [37-40]. In the present study, apoE ™/~
mice were fed with HFD containing 1.25% cholesterol and
21% fat with or without quercetin (100 mg/kgbw) for 24
weeks. Our study showed that quercetin supplementation had
no effect on final body weight and liver ratio to weight, which
was not in agreement with the existing reports [22] possibly
owing to the longer feeding period and higher proportion of
cholesterol employed in our study. While quercetin reduced
the elevated serum lipid (data not shown) and hepatic TC
level, it had no effect on the increase in hepatic TG level.
Several mechanisms of ox-LDL contributing to the
atherosclerotic plaque formation and progression have been
well documented. Ox-LDL acts by binding to several SRs,
including SR-A, SR-BI, CD36, and lectin-like oxidized
low-density lipoprotein receptor-1 (LOX-1) and transforms
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FIGURE 3: Quercetin supplementation increased the protein expression of LC3II and further downregulated the protein expression of mTOR
and p62 induced by high-fat diet. Bar diagrams show densitometric data (a, b, and ¢). Results expressed as mean + SEM. “P < 0.05 versus
ND group; * P < 0.05 versus HED group (1 = 4 for western blot analysis in each group).

macrophages to foam cells, which are a hallmark of
atherosclerosis. Recently, increasing evidence is available for
hepatic inflammation due to ox-LDL deposition [6, 8]. Mice
injected with ox-LDL via tail vein displayed swollen KCs and
hepatic inflammation due to ox-LDL accumulation within
lysosomes [8]. Hyperlipidemic mice fed with a western diet
show an early onset of hepatic inflammation associated with
bloated Kupffer cells (KCs) which resemble the foam cells of
atherosclerotic lesions [41].

The role of macrophage SRs in atherogenesis has been
extensively investigated since SR-A and CD36 degrade 75-
90% of acetylated or oxidized LDL [42]. Uptake and inter-
nalization of modified LDL by SRs are believed to constitute
one of the major pathways of foam cell formation in vivo.
Quercetin protects macrophages from ox-LDL-induced lipid
accumulation by inhibiting the endoplasmic reticulum stress-
C/EBP homologous protein pathway [43], reduces HFD-
induced fat accumulation in the liver by regulating lipid
metabolism genes, including CD36 [44], and ameliorates
inflammation and fibrosis in mice with nonalcoholic steato-
hepatitis [20]. It has been illustrated that quercetin reduces
foam cell formation by downregulating surface expression of
the ox-LDL receptor CD36 in ox-LDL-treated mice [45]. The
current findings showed that HFD increased and quercetin

decreased both the mRNA and protein expression of CD36
and MSRI, indicating the possible protective role of quercetin
in HFD-induced liver damage via inhibition of scavenger
receptor expression. However, ox-LDL deposition in the
liver tissue between ND and HFD groups did not display
statistically significant difference, although the CD36 and
MSRI expression showed statistical difference (P < 0.05).
Scavenger receptors CD36 and MSRI are responsible for the
majority of modified LDL uptake into macrophages; these
receptors are unlike the native LDL receptor (LDL-R) in
that they are not feedback-controlled. These observations
suggested that scavenger receptors modulate inflammation
without altering ox-LDL accumulation in the liver. Quercetin
not only reduced ox-LDL accumulation but also alleviated
inflammatory response induced by HFD. These findings
suggested that the degradation pathway for intracellular ox-
LDL also contributes to ox-LDL deposition in liver tissue, and
quercetin reduced ox-LDL deposition indicating its potential
function in ox-LDL degradation.

Autophagy or cellular self-digestion, the basic catabolic
mechanism that involves degradation of unnecessary or
dysfunctional cellular components through the actions of
lysosomes, has been reported to be implicated in a broad
spectrum of mammalian diseases. Recently, a growing body
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of research has shown the correlation between regulation
of autophagy and liver complications associated with obe-
sity, NAFLD [46]. However, the role of autophagy in the
pathophysiology of NAFLD has been controversial [47].
Under physiological conditions, autophagy is maintained at
very low levels and is involved in the degradation of long-
lived proteins. The ubiquitin-proteasome pathway, another
catabolic process responsible for the degradation of short-
lived proteins, has no role in ox-LDL degradation owing
to the resistance of ox-LDL to hydrolysis by lysosomal
proteinases, indicating that an alternative pathway may be
involved in ox-LDL degradation. Zhang et al. found that
0x-LDL could activate the autophagic lysosome pathway in
human vascular endothelial cells through the LC3/beclinl
pathway, leading to the degradation of ox-LDL [11]. However,
the underlying intracellular pathway that contributes to hep-
atic inflammation has not been established, although a novel
animal model [48] showed the direct involvement of ox-LDL
in the development of NASH. Therefore, we proposed that the
behavior and fate of intracellular ox-LDL are responsible for
the pathophysiological symptoms associated with long-term
HFD treatment.

Quercetin, a versatile bioactive flavonoid, has been exten-
sively studied in renal ischemia/reperfusion injury [49],
leukemia [50], and many cancers [51] for its beneficial effects
in autophagy regulation. However, the protective role of
quercetin in NAFLD by influencing autophagy regulation has
not been investigated directly. While quercetin is involved
in the metabolism of unoxidized lipids, there exists no
direct evidence to support the role of autophagy in the
removal of ox-LDL [11]. Thus far, LC3 has been used as
one of the reliable autophagosome markers for monitoring
autophagy, and the amount of LC3-II correlates with the
number of autophagosomes. As shown in this study, the ox-
LDL deposition and severe liver damage induced by HFD
were comparable to those induced by ND treatment; however,
quercetin treatment not only reduced ox-LDL accumulation
but also alleviated liver damage. Our findings showed that
long-term HFD intake induced excessive ox-LDL deposi-
tion, which possibly further led to impairment of damage.
These data indicate that quercetin can protect the liver
from HFD-induced ox-LDL deposition partly by improv-
ing the autophagy lysosomal signaling pathway. The exact
mechanisms of ox-LDL degradation by lysosomal autophagy
pathway in HFD-induced NAFLD should be further verified
in vitro.

5. Conclusion

In conclusion, quercetin decreased excessive deposition
of hepatic ox-LDL and alleviated long-term HFD-induced
liver damage. Apart from inhibiting the expression of the
scavenger receptors, including MSR1 and CD36 that are
mainly responsible for hepatic ox-LDL uptake under HFD
conditions, quercetin improved autophagic capacity possibly
implicated in ox-LDL degradation mediated by autophagy
lysosomal pathway; this might partially contribute to its
protective effects. Our findings highlight the role of quercetin
or other naturally occurring phytochemicals with autophagy

modulation effect in prophylaxis of ox-LDL/HFD-induced
liver damage/NAFLD.
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