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a b s t r a c t 

A newly identified human locus on chromosome 15 was recently associated with zinc accumulation. 

Based on a prior report of a threefold difference in zinc accumulation between fumble 1 heterozygous 

mutants and control fly strains, it was suggested that phosphopantothenoylcysteine decarboxylase 

might affect zinc status through its effects on vitamin B5 (pantothenate) metabolism. We report here 

that outcrossed fumble 1 heterozygous mutant flies with low zinc content have been recovered, sug- 

gesting that pantothenate metabolism did not alter zinc homeostasis in fumble 1 heterozygous flies. We 

show instead that the Drosophila condition of low body zinc accumulation is an X-chromosome-linked 

recessive trait. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical 

Societies. All rights reserved. 
 

. Introduction 

Zinc serves as a co-factor for many protein families with diverse 

unctions; notable examples are hydrolases and zinc-finger transcrip- 

ion factors [ 1 ]. A role for zinc in enzyme catalysis was first shown for 

arbonic anhydrase [ 2 , 3 ] and in DNA binding for transcription factor 

IIA of Xenopus [ 4 –6 ]. Zinc accumulates in pancreatic granules [ 7 –

 ] and mossy fibers of the hippocampus [ 10 –12 ], where its function 

emains to be established [ 13 –16 ]. Variations in intracellular concen- 

rations of free zinc are thought to contribute to cell signaling [ 17 , 18 ]. 

inc deficiency is widespread in humans and can lead to growth re- 

ardation, hypogonadism in males, rough skin, impaired immunity 

nd neurological defects [ 19 ]. Therefore, it was surprising to discover 

rosophila melanogaster strains raised under the same (zinc replete) 

ietary conditions and bearing a threefold difference in their total 

ody zinc content had no obvious phenotypic defects [ 20 ]. 

A few aspects of zinc homeostasis have been studied in Drosophila , 

ncluding functional studies of zinc transporters [ 21 –25 ], of the zinc- 

esponsive metal transcription factor-1 (MTF1) [ 26 –29 ] and of met- 

llothioneins [ 30 –33 ], which are under MTF1 control. In addition, the 
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neurotoxic properties of zinc in neurodegenerative disease have been 

demonstrated in models of Alzheimer’s disease [ 34 , 35 ], Parkinson’s 

disease [ 36 , 37 ], as well as in activating apoptosis in Drosophila hemo- 

cytes [ 38 ]. Moreover, a study of the global transcriptional response to 

dietary zinc has been published [ 39 ]. 

In our studies of metal determinations on laboratory strains from 

diverse genetic backgrounds we consistently found total body zinc 

values below a threshold of 100 mg Zn / g dry body weight [ 40 –42 ]. In

contrast, two loss-of-function fumble ( fbl ) mutant strains (a P-element 

insertion and a deficiency) had zinc accumulated at 200 mg / g dry 

body weight [ 20 ]. As fbl encodes for pantothenate kinase [ 43 ], the 

first enzyme involved in the metabolism of Vitamin B5, which is a 

precursor of coenzyme A, our initial hypothesis was that intermediary 

metabolism might affect zinc homeostasis in some way. This idea was 

recently noted by investigators who performed a genome wide asso- 

ciation study in humans for loci affecting, amongst other elements, 

zinc accumulation in the blood [ 44 ]. A gene encoding phosphopan- 

tothenoylcysteine decarboxylase was present at a chromosome 15 

locus associated with changes in zinc accumulation [ 44 ]. The hu- 

man study prompted us to expedite the present report, because we 

have in the meantime refuted our original hypothesis associating fbl 

heterozygosity with zinc accumulation. Indeed, when we measured 

metal composition of the different Drosophila species the values de- 

termined for zinc were on the range of 200 mg / g dry body weight 

[ 45 ], which we now show to be the range of zinc accumulation also 

for wild type D. melanogaster . We report that a recessive X-linked mu- 

tation causes a threefold reduction of total body zinc accumulation 

in many D. melanogaster laboratory strains. Our results are not only 

pertinent for the community of metal biologists that use Drosophila , 
f European Biochemical Societies. All rights reserved. 
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Fig. 1. Zinc content in different genotypes of Drosophila melanogaster . (A) Zinc content 

was measured by atomic absorption spectrometry. white and fbl 1 , ry 506 / TM3, ry RK , 

Sb, Ser (abbreviated fbl 1 / TM3 throughout the text) were the same stocks as in [ 20 ], 

whereas metal content of fbl 1 , ry 506 / TM6, Tb (abbreviated fbl 1 / TM6, Tb throughout the 

text) flies was assessed for the first time here. Note that fbl 1 heterozygosity does not 

correlate with total body zinc accumulation. Analysis of Variance indicated significant 

differences between the genotypes with p < 0.001. (B) Zinc content measured in female 

and male progeny derived from indicated crosses. Note that male progeny derived 

from low zinc mothers is also low in zinc, suggesting that the maternal X-chromosome 

is responsible for the low zinc phenotype. Analysis of Variance indicated significant 

differences between samples with p < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

but could be significant in experiments involving zinc transcription

factors and other zinc-containing proteins in the fruit fly. 

2. Materials and methods 

2.1. Fly maintenance 

D. melanogaster were reared at 25 ◦C on a standard diet con-

taining: agar (6.5%), sucrose (9.7%), glucose (21.3%), yeast (22.6%),

maize (9.7%), treacle (19.3%), soya flour (4.6%), propionic acid (0.5%)

and nipagin (0.01%). The fbl 1 stock was obtained from Bloomington

Drosophila Stock Center at Indiana University (#11777). The wild

type strain we used was collected by Rudi Costa from Tannes, Italy

and termed Tan3 [ 45 ]. Balancer strains and white mutants were from

our core lab stocks. 

2.2. Flame atomic absorption spectrometry 

The metal concentration of zinc in flies was determined by flame

atomic absorption spectrometry. With a single exception mentioned

in the text, male and females flies were used in combination and

100 mg dry mass was typically collected for each biological replicate.

For all experiments shown we used 5 biological replicates. 4- to 7-

day old flies were collected, fast-frozen in liquid nitrogen and stored

at −80 ◦C. Samples were freeze-dried for 24 h and their dry mass was

measured. Dried flies (100 mg) were acid digested by adding 1.5 ml

of 69% nitric acid (HNO3) at 50 ◦C for 4 h, then at 100 ◦C for another

4 h, followed by overnight cooling down. Acid-digested samples were

diluted with distilled water and the metal content was determined

by using an AAnalyst 200 Flame Atomic Absorption Spectrophotome-

ter (Varian Ltd., Yarnton, Oxfordshire, UK). Standards of each metal

were used to calibrate the spectrophotometer and calculate metal

concentrations in all samples. 

3. Results and discussion 

In a survey of elemental composition of some of our stocks, we

were surprised to discover that a rebalanced fbl 1 / TM6, Tb stock –

generated during our previous study of this mutant’s survival rate to

the pupal stage of development [ 20 ] – accumulated a low amount of

zinc ( Fig. 1 A). This observation suggested that fbl 1 was not involved

in zinc accumulation. Low zinc was a feature of all other lab stocks

we tested, but a wild type reference stock termed Tan3 [ 45 ] accu-

mulated threefold more zinc, similar to the original fbl 1 / TM3 (Fig.

1 A). Zinc accumulation in wild type Tan3 flies was consistent with

values observed in many other Drosophila species [ 45 ]. Our first at-

tempt to explain the new findings was to test for the presence of

maternal factors that could influence metal homeostasis, such as the

presence of Wolbachia endosymbionts [ 46 –48 ]. However, crossing of

low zinc female fbl 1 / TM6 to high / normal zinc male fbl 1 / TM3 flies and

exchanging the balancers resulted in new stocks with high / normal

zinc accumulation (data not shown). This result meant that (i) the

trait of “low zinc accumulation” was not due to a maternal factor, as

low zinc fbl 1 / TM6 females did not transmit it to their progeny, (ii) the

3rd chromosome was not determining zinc concentration in the flies,

as the same combination of 3rd chromosomes could result in differ-

ent zinc accumulations and (iii) the trait of low zinc was recessive, as

it disappeared when the two phenotypes were crossed against each

other; this was confirmed in the reverse cross of high / normal zinc

female fbl 1 / TM3 to low zinc male fbl 1 / TM6 flies. 

After excluding, by use of appropriate balancers, a role for the 2nd

chromosome, we tested if a recessive mutation on the X-chromosome

could be causing the low zinc phenotype. For this experiment, we

separated the flies by sex prior to determining the metal concentra-

tion, because females would serve as heterozygous controls, whereas

males would inherit the X-chromosome from their mothers. Indeed,
all male progeny collected from low zinc white mothers crossed to

high / normal zinc fbl 1 / TM3 fathers were low in zinc (Fig. 1 B). As ex-

pected from the recessive nature of the mutation we were following,

all female progeny from the same cross were high / normal in zinc

accumulation. Finally, when male progeny was derived from high /

normal zinc Tan3 females crossed to low zinc fbl 1 / TM6, Tb males they

were high / normal in zinc themselves (Fig. 1 B). Therefore, we can con-

clude that a recessive X-linked mutation causes a threefold reduction

of total body zinc accumulation in many D. melanogaster laboratory

strains. 

Although efforts in mapping the mutation are ongoing, we felt

that raising awareness of the presence of this mutation was pertinent

in order (i) to correct the assumption we previously published that

pantothenate kinase was associated with zinc homeostasis [ 20 ], (ii)

to avoid misleading efforts to map human genes involved in zinc

homeostasis [ 44 ] (it is interesting to note that an X-chromosome

linked locus affecting zinc homeostasis in humans was also detected

in this study), (iii) to inform on the choice of control flies, as the

previously unrecognized variation may have influenced other studies,

including the suggestion that TRPM channels transport zinc [ 49 , 50 ]

and (iv) to highlight the ability of fruit flies to survive in the lab with

threefold less zinc, a finding that begs an answer on where the excess

zinc may be stored and how zinc is distributed (preferentially or not)

to target destinations in wild type flies. 
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